| /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ |
| #ifndef __BPF_HELPERS__ |
| #define __BPF_HELPERS__ |
| |
| /* |
| * Note that bpf programs need to include either |
| * vmlinux.h (auto-generated from BTF) or linux/types.h |
| * in advance since bpf_helper_defs.h uses such types |
| * as __u64. |
| */ |
| #include "bpf_helper_defs.h" |
| |
| #define __uint(name, val) int (*name)[val] |
| #define __type(name, val) typeof(val) *name |
| #define __array(name, val) typeof(val) *name[] |
| |
| /* Helper macro to print out debug messages */ |
| #define bpf_printk(fmt, ...) \ |
| ({ \ |
| char ____fmt[] = fmt; \ |
| bpf_trace_printk(____fmt, sizeof(____fmt), \ |
| ##__VA_ARGS__); \ |
| }) |
| |
| /* |
| * Helper macro to place programs, maps, license in |
| * different sections in elf_bpf file. Section names |
| * are interpreted by libbpf depending on the context (BPF programs, BPF maps, |
| * extern variables, etc). |
| * To allow use of SEC() with externs (e.g., for extern .maps declarations), |
| * make sure __attribute__((unused)) doesn't trigger compilation warning. |
| */ |
| #define SEC(name) \ |
| _Pragma("GCC diagnostic push") \ |
| _Pragma("GCC diagnostic ignored \"-Wignored-attributes\"") \ |
| __attribute__((section(name), used)) \ |
| _Pragma("GCC diagnostic pop") \ |
| |
| /* Avoid 'linux/stddef.h' definition of '__always_inline'. */ |
| #undef __always_inline |
| #define __always_inline inline __attribute__((always_inline)) |
| |
| #ifndef __noinline |
| #define __noinline __attribute__((noinline)) |
| #endif |
| #ifndef __weak |
| #define __weak __attribute__((weak)) |
| #endif |
| |
| /* |
| * Use __hidden attribute to mark a non-static BPF subprogram effectively |
| * static for BPF verifier's verification algorithm purposes, allowing more |
| * extensive and permissive BPF verification process, taking into account |
| * subprogram's caller context. |
| */ |
| #define __hidden __attribute__((visibility("hidden"))) |
| |
| /* When utilizing vmlinux.h with BPF CO-RE, user BPF programs can't include |
| * any system-level headers (such as stddef.h, linux/version.h, etc), and |
| * commonly-used macros like NULL and KERNEL_VERSION aren't available through |
| * vmlinux.h. This just adds unnecessary hurdles and forces users to re-define |
| * them on their own. So as a convenience, provide such definitions here. |
| */ |
| #ifndef NULL |
| #define NULL ((void *)0) |
| #endif |
| |
| #ifndef KERNEL_VERSION |
| #define KERNEL_VERSION(a, b, c) (((a) << 16) + ((b) << 8) + ((c) > 255 ? 255 : (c))) |
| #endif |
| |
| /* |
| * Helper macros to manipulate data structures |
| */ |
| #ifndef offsetof |
| #define offsetof(TYPE, MEMBER) ((unsigned long)&((TYPE *)0)->MEMBER) |
| #endif |
| #ifndef container_of |
| #define container_of(ptr, type, member) \ |
| ({ \ |
| void *__mptr = (void *)(ptr); \ |
| ((type *)(__mptr - offsetof(type, member))); \ |
| }) |
| #endif |
| |
| /* |
| * Helper macro to throw a compilation error if __bpf_unreachable() gets |
| * built into the resulting code. This works given BPF back end does not |
| * implement __builtin_trap(). This is useful to assert that certain paths |
| * of the program code are never used and hence eliminated by the compiler. |
| * |
| * For example, consider a switch statement that covers known cases used by |
| * the program. __bpf_unreachable() can then reside in the default case. If |
| * the program gets extended such that a case is not covered in the switch |
| * statement, then it will throw a build error due to the default case not |
| * being compiled out. |
| */ |
| #ifndef __bpf_unreachable |
| # define __bpf_unreachable() __builtin_trap() |
| #endif |
| |
| /* |
| * Helper function to perform a tail call with a constant/immediate map slot. |
| */ |
| #if __clang_major__ >= 8 && defined(__bpf__) |
| static __always_inline void |
| bpf_tail_call_static(void *ctx, const void *map, const __u32 slot) |
| { |
| if (!__builtin_constant_p(slot)) |
| __bpf_unreachable(); |
| |
| /* |
| * Provide a hard guarantee that LLVM won't optimize setting r2 (map |
| * pointer) and r3 (constant map index) from _different paths_ ending |
| * up at the _same_ call insn as otherwise we won't be able to use the |
| * jmpq/nopl retpoline-free patching by the x86-64 JIT in the kernel |
| * given they mismatch. See also d2e4c1e6c294 ("bpf: Constant map key |
| * tracking for prog array pokes") for details on verifier tracking. |
| * |
| * Note on clobber list: we need to stay in-line with BPF calling |
| * convention, so even if we don't end up using r0, r4, r5, we need |
| * to mark them as clobber so that LLVM doesn't end up using them |
| * before / after the call. |
| */ |
| asm volatile("r1 = %[ctx]\n\t" |
| "r2 = %[map]\n\t" |
| "r3 = %[slot]\n\t" |
| "call 12" |
| :: [ctx]"r"(ctx), [map]"r"(map), [slot]"i"(slot) |
| : "r0", "r1", "r2", "r3", "r4", "r5"); |
| } |
| #endif |
| |
| /* |
| * Helper structure used by eBPF C program |
| * to describe BPF map attributes to libbpf loader |
| */ |
| struct bpf_map_def { |
| unsigned int type; |
| unsigned int key_size; |
| unsigned int value_size; |
| unsigned int max_entries; |
| unsigned int map_flags; |
| }; |
| |
| enum libbpf_pin_type { |
| LIBBPF_PIN_NONE, |
| /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ |
| LIBBPF_PIN_BY_NAME, |
| }; |
| |
| enum libbpf_tristate { |
| TRI_NO = 0, |
| TRI_YES = 1, |
| TRI_MODULE = 2, |
| }; |
| |
| #define __kconfig __attribute__((section(".kconfig"))) |
| #define __ksym __attribute__((section(".ksyms"))) |
| |
| #endif |