| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2017 ARM Ltd. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/random.h> |
| #include <linux/memblock.h> |
| #include <asm/alternative.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/insn.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/memory.h> |
| |
| /* |
| * The LSB of the HYP VA tag |
| */ |
| static u8 tag_lsb; |
| /* |
| * The HYP VA tag value with the region bit |
| */ |
| static u64 tag_val; |
| static u64 va_mask; |
| |
| /* |
| * Compute HYP VA by using the same computation as kern_hyp_va(). |
| */ |
| static u64 __early_kern_hyp_va(u64 addr) |
| { |
| addr &= va_mask; |
| addr |= tag_val << tag_lsb; |
| return addr; |
| } |
| |
| /* |
| * Store a hyp VA <-> PA offset into a EL2-owned variable. |
| */ |
| static void init_hyp_physvirt_offset(void) |
| { |
| u64 kern_va, hyp_va; |
| |
| /* Compute the offset from the hyp VA and PA of a random symbol. */ |
| kern_va = (u64)lm_alias(__hyp_text_start); |
| hyp_va = __early_kern_hyp_va(kern_va); |
| hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va; |
| } |
| |
| /* |
| * We want to generate a hyp VA with the following format (with V == |
| * vabits_actual): |
| * |
| * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0 |
| * --------------------------------------------------------- |
| * | 0000000 | hyp_va_msb | random tag | kern linear VA | |
| * |--------- tag_val -----------|----- va_mask ---| |
| * |
| * which does not conflict with the idmap regions. |
| */ |
| __init void kvm_compute_layout(void) |
| { |
| phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start); |
| u64 hyp_va_msb; |
| |
| /* Where is my RAM region? */ |
| hyp_va_msb = idmap_addr & BIT(vabits_actual - 1); |
| hyp_va_msb ^= BIT(vabits_actual - 1); |
| |
| tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^ |
| (u64)(high_memory - 1)); |
| |
| va_mask = GENMASK_ULL(tag_lsb - 1, 0); |
| tag_val = hyp_va_msb; |
| |
| if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) { |
| /* We have some free bits to insert a random tag. */ |
| tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb); |
| } |
| tag_val >>= tag_lsb; |
| |
| init_hyp_physvirt_offset(); |
| } |
| |
| /* |
| * The .hyp.reloc ELF section contains a list of kimg positions that |
| * contains kimg VAs but will be accessed only in hyp execution context. |
| * Convert them to hyp VAs. See gen-hyprel.c for more details. |
| */ |
| __init void kvm_apply_hyp_relocations(void) |
| { |
| int32_t *rel; |
| int32_t *begin = (int32_t *)__hyp_reloc_begin; |
| int32_t *end = (int32_t *)__hyp_reloc_end; |
| |
| for (rel = begin; rel < end; ++rel) { |
| uintptr_t *ptr, kimg_va; |
| |
| /* |
| * Each entry contains a 32-bit relative offset from itself |
| * to a kimg VA position. |
| */ |
| ptr = (uintptr_t *)lm_alias((char *)rel + *rel); |
| |
| /* Read the kimg VA value at the relocation address. */ |
| kimg_va = *ptr; |
| |
| /* Convert to hyp VA and store back to the relocation address. */ |
| *ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va)); |
| } |
| } |
| |
| static u32 compute_instruction(int n, u32 rd, u32 rn) |
| { |
| u32 insn = AARCH64_BREAK_FAULT; |
| |
| switch (n) { |
| case 0: |
| insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND, |
| AARCH64_INSN_VARIANT_64BIT, |
| rn, rd, va_mask); |
| break; |
| |
| case 1: |
| /* ROR is a variant of EXTR with Rm = Rn */ |
| insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, |
| rn, rn, rd, |
| tag_lsb); |
| break; |
| |
| case 2: |
| insn = aarch64_insn_gen_add_sub_imm(rd, rn, |
| tag_val & GENMASK(11, 0), |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_ADSB_ADD); |
| break; |
| |
| case 3: |
| insn = aarch64_insn_gen_add_sub_imm(rd, rn, |
| tag_val & GENMASK(23, 12), |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_ADSB_ADD); |
| break; |
| |
| case 4: |
| /* ROR is a variant of EXTR with Rm = Rn */ |
| insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, |
| rn, rn, rd, 64 - tag_lsb); |
| break; |
| } |
| |
| return insn; |
| } |
| |
| void __init kvm_update_va_mask(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst) |
| { |
| int i; |
| |
| BUG_ON(nr_inst != 5); |
| |
| for (i = 0; i < nr_inst; i++) { |
| u32 rd, rn, insn, oinsn; |
| |
| /* |
| * VHE doesn't need any address translation, let's NOP |
| * everything. |
| * |
| * Alternatively, if the tag is zero (because the layout |
| * dictates it and we don't have any spare bits in the |
| * address), NOP everything after masking the kernel VA. |
| */ |
| if (has_vhe() || (!tag_val && i > 0)) { |
| updptr[i] = cpu_to_le32(aarch64_insn_gen_nop()); |
| continue; |
| } |
| |
| oinsn = le32_to_cpu(origptr[i]); |
| rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); |
| rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn); |
| |
| insn = compute_instruction(i, rd, rn); |
| BUG_ON(insn == AARCH64_BREAK_FAULT); |
| |
| updptr[i] = cpu_to_le32(insn); |
| } |
| } |
| |
| void kvm_patch_vector_branch(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst) |
| { |
| u64 addr; |
| u32 insn; |
| |
| BUG_ON(nr_inst != 4); |
| |
| if (!cpus_have_const_cap(ARM64_SPECTRE_V3A) || WARN_ON_ONCE(has_vhe())) |
| return; |
| |
| /* |
| * Compute HYP VA by using the same computation as kern_hyp_va() |
| */ |
| addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector)); |
| |
| /* Use PC[10:7] to branch to the same vector in KVM */ |
| addr |= ((u64)origptr & GENMASK_ULL(10, 7)); |
| |
| /* |
| * Branch over the preamble in order to avoid the initial store on |
| * the stack (which we already perform in the hardening vectors). |
| */ |
| addr += KVM_VECTOR_PREAMBLE; |
| |
| /* movz x0, #(addr & 0xffff) */ |
| insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, |
| (u16)addr, |
| 0, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_ZERO); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */ |
| insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, |
| (u16)(addr >> 16), |
| 16, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_KEEP); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */ |
| insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, |
| (u16)(addr >> 32), |
| 32, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_KEEP); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* br x0 */ |
| insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0, |
| AARCH64_INSN_BRANCH_NOLINK); |
| *updptr++ = cpu_to_le32(insn); |
| } |
| |
| static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst) |
| { |
| u32 insn, oinsn, rd; |
| |
| BUG_ON(nr_inst != 4); |
| |
| /* Compute target register */ |
| oinsn = le32_to_cpu(*origptr); |
| rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); |
| |
| /* movz rd, #(val & 0xffff) */ |
| insn = aarch64_insn_gen_movewide(rd, |
| (u16)val, |
| 0, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_ZERO); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movk rd, #((val >> 16) & 0xffff), lsl #16 */ |
| insn = aarch64_insn_gen_movewide(rd, |
| (u16)(val >> 16), |
| 16, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_KEEP); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movk rd, #((val >> 32) & 0xffff), lsl #32 */ |
| insn = aarch64_insn_gen_movewide(rd, |
| (u16)(val >> 32), |
| 32, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_KEEP); |
| *updptr++ = cpu_to_le32(insn); |
| |
| /* movk rd, #((val >> 48) & 0xffff), lsl #48 */ |
| insn = aarch64_insn_gen_movewide(rd, |
| (u16)(val >> 48), |
| 48, |
| AARCH64_INSN_VARIANT_64BIT, |
| AARCH64_INSN_MOVEWIDE_KEEP); |
| *updptr++ = cpu_to_le32(insn); |
| } |
| |
| void kvm_get_kimage_voffset(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst) |
| { |
| generate_mov_q(kimage_voffset, origptr, updptr, nr_inst); |
| } |