| /* MN10300 Page table manipulators and constants |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| * |
| * |
| * The Linux memory management assumes a three-level page table setup. On |
| * the i386, we use that, but "fold" the mid level into the top-level page |
| * table, so that we physically have the same two-level page table as the |
| * i386 mmu expects. |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the i386 page table tree for the purposes of the MN10300 TLB handler |
| * functions. |
| */ |
| #ifndef _ASM_PGTABLE_H |
| #define _ASM_PGTABLE_H |
| |
| #include <asm/cpu-regs.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <asm/processor.h> |
| #include <asm/cache.h> |
| #include <linux/threads.h> |
| |
| #include <asm/bitops.h> |
| |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| extern unsigned long empty_zero_page[1024]; |
| extern spinlock_t pgd_lock; |
| extern struct page *pgd_list; |
| |
| extern void pmd_ctor(void *, struct kmem_cache *, unsigned long); |
| extern void pgtable_cache_init(void); |
| extern void paging_init(void); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * The Linux mn10300 paging architecture only implements both the traditional |
| * 2-level page tables |
| */ |
| #define PGDIR_SHIFT 22 |
| #define PTRS_PER_PGD 1024 |
| #define PTRS_PER_PUD 1 /* we don't really have any PUD physically */ |
| #define PTRS_PER_PMD 1 /* we don't really have any PMD physically */ |
| #define PTRS_PER_PTE 1024 |
| |
| #define PGD_SIZE PAGE_SIZE |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE - 1)) |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0 |
| |
| #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) |
| #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS) |
| |
| #define TWOLEVEL_PGDIR_SHIFT 22 |
| #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) |
| #define BOOT_KERNEL_PGD_PTRS (1024 - BOOT_USER_PGD_PTRS) |
| |
| #ifndef __ASSEMBLY__ |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| #endif |
| |
| /* |
| * Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM |
| * area has to be in the lower half of the virtual address range (the upper |
| * half is not translated through the TLB). |
| * |
| * So in this case, the vmalloc area goes at the bottom of the address map |
| * (leaving a hole at the very bottom to catch addressing errors), and |
| * userspace starts immediately above. |
| * |
| * The vmalloc() routines also leaves a hole of 4kB between each vmalloced |
| * area to catch addressing errors. |
| */ |
| #define VMALLOC_OFFSET (8 * 1024 * 1024) |
| #define VMALLOC_START (0x70000000) |
| #define VMALLOC_END (0x7C000000) |
| |
| #ifndef __ASSEMBLY__ |
| extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE]; |
| #endif |
| |
| /* IPTEL2/DPTEL2 bit assignments */ |
| #define _PAGE_BIT_VALID xPTEL2_V_BIT |
| #define _PAGE_BIT_CACHE xPTEL2_C_BIT |
| #define _PAGE_BIT_PRESENT xPTEL2_PV_BIT |
| #define _PAGE_BIT_DIRTY xPTEL2_D_BIT |
| #define _PAGE_BIT_GLOBAL xPTEL2_G_BIT |
| #define _PAGE_BIT_ACCESSED xPTEL2_UNUSED1_BIT /* mustn't be loaded into IPTEL2/DPTEL2 */ |
| |
| #define _PAGE_VALID xPTEL2_V |
| #define _PAGE_CACHE xPTEL2_C |
| #define _PAGE_PRESENT xPTEL2_PV |
| #define _PAGE_DIRTY xPTEL2_D |
| #define _PAGE_PROT xPTEL2_PR |
| #define _PAGE_PROT_RKNU xPTEL2_PR_ROK |
| #define _PAGE_PROT_WKNU xPTEL2_PR_RWK |
| #define _PAGE_PROT_RKRU xPTEL2_PR_ROK_ROU |
| #define _PAGE_PROT_WKRU xPTEL2_PR_RWK_ROU |
| #define _PAGE_PROT_WKWU xPTEL2_PR_RWK_RWU |
| #define _PAGE_GLOBAL xPTEL2_G |
| #define _PAGE_PS_MASK xPTEL2_PS |
| #define _PAGE_PS_4Kb xPTEL2_PS_4Kb |
| #define _PAGE_PS_128Kb xPTEL2_PS_128Kb |
| #define _PAGE_PS_1Kb xPTEL2_PS_1Kb |
| #define _PAGE_PS_4Mb xPTEL2_PS_4Mb |
| #define _PAGE_PSE xPTEL2_PS_4Mb /* 4MB page */ |
| #define _PAGE_CACHE_WT xPTEL2_CWT |
| #define _PAGE_ACCESSED xPTEL2_UNUSED1 |
| #define _PAGE_NX 0 /* no-execute bit */ |
| |
| /* If _PAGE_VALID is clear, we use these: */ |
| #define _PAGE_FILE xPTEL2_C /* set:pagecache unset:swap */ |
| #define _PAGE_PROTNONE 0x000 /* If not present */ |
| |
| #define __PAGE_PROT_UWAUX 0x010 |
| #define __PAGE_PROT_USER 0x020 |
| #define __PAGE_PROT_WRITE 0x040 |
| |
| #define _PAGE_PRESENTV (_PAGE_PRESENT|_PAGE_VALID) |
| |
| #ifndef __ASSEMBLY__ |
| |
| #define VMALLOC_VMADDR(x) ((unsigned long)(x)) |
| |
| #define _PAGE_TABLE (_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY) |
| #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| |
| #define __PAGE_NONE (_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE) |
| #define __PAGE_SHARED (_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE) |
| #define __PAGE_COPY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE) |
| #define __PAGE_READONLY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE) |
| |
| #define PAGE_NONE __pgprot(__PAGE_NONE | _PAGE_NX) |
| #define PAGE_SHARED_NOEXEC __pgprot(__PAGE_SHARED | _PAGE_NX) |
| #define PAGE_COPY_NOEXEC __pgprot(__PAGE_COPY | _PAGE_NX) |
| #define PAGE_READONLY_NOEXEC __pgprot(__PAGE_READONLY | _PAGE_NX) |
| #define PAGE_SHARED_EXEC __pgprot(__PAGE_SHARED) |
| #define PAGE_COPY_EXEC __pgprot(__PAGE_COPY) |
| #define PAGE_READONLY_EXEC __pgprot(__PAGE_READONLY) |
| #define PAGE_COPY PAGE_COPY_NOEXEC |
| #define PAGE_READONLY PAGE_READONLY_NOEXEC |
| #define PAGE_SHARED PAGE_SHARED_EXEC |
| |
| #define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL) |
| |
| #define __PAGE_KERNEL (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX) |
| #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX) |
| #define __PAGE_KERNEL_EXEC (__PAGE_KERNEL & ~_PAGE_NX) |
| #define __PAGE_KERNEL_RO (__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX) |
| #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) |
| #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) |
| |
| #define PAGE_KERNEL __pgprot(__PAGE_KERNEL) |
| #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) |
| #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) |
| #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) |
| #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) |
| #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC) |
| |
| /* |
| * Whilst the MN10300 can do page protection for execute (given separate data |
| * and insn TLBs), we are not supporting it at the moment. Write permission, |
| * however, always implies read permission (but not execute permission). |
| */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY_NOEXEC |
| #define __P010 PAGE_COPY_NOEXEC |
| #define __P011 PAGE_COPY_NOEXEC |
| #define __P100 PAGE_READONLY_EXEC |
| #define __P101 PAGE_READONLY_EXEC |
| #define __P110 PAGE_COPY_EXEC |
| #define __P111 PAGE_COPY_EXEC |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY_NOEXEC |
| #define __S010 PAGE_SHARED_NOEXEC |
| #define __S011 PAGE_SHARED_NOEXEC |
| #define __S100 PAGE_READONLY_EXEC |
| #define __S101 PAGE_READONLY_EXEC |
| #define __S110 PAGE_SHARED_EXEC |
| #define __S111 PAGE_SHARED_EXEC |
| |
| /* |
| * Define this to warn about kernel memory accesses that are |
| * done without a 'verify_area(VERIFY_WRITE,..)' |
| */ |
| #undef TEST_VERIFY_AREA |
| |
| #define pte_present(x) (pte_val(x) & _PAGE_VALID) |
| #define pte_clear(mm, addr, xp) \ |
| do { \ |
| set_pte_at((mm), (addr), (xp), __pte(0)); \ |
| } while (0) |
| |
| #define pmd_none(x) (!pmd_val(x)) |
| #define pmd_present(x) (!pmd_none(x)) |
| #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) |
| #define pmd_bad(x) 0 |
| |
| |
| #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| static inline int pte_user(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; } |
| static inline int pte_read(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & __PAGE_PROT_WRITE; } |
| static inline int pte_special(pte_t pte){ return 0; } |
| |
| /* |
| * The following only works if pte_present() is not true. |
| */ |
| static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| |
| static inline pte_t pte_rdprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte; |
| } |
| static inline pte_t pte_exprotect(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_NX; return pte; |
| } |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte; |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_NX; return pte; } |
| |
| static inline pte_t pte_mkread(pte_t pte) |
| { |
| pte_val(pte) |= __PAGE_PROT_USER; |
| if (pte_write(pte)) |
| pte_val(pte) |= __PAGE_PROT_UWAUX; |
| return pte; |
| } |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| pte_val(pte) |= __PAGE_PROT_WRITE; |
| if (pte_val(pte) & __PAGE_PROT_USER) |
| pte_val(pte) |= __PAGE_PROT_UWAUX; |
| return pte; |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; } |
| |
| #define pte_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \ |
| __FILE__, __LINE__, pte_val(e)) |
| #define pgd_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ |
| __FILE__, __LINE__, pgd_val(e)) |
| |
| /* |
| * The "pgd_xxx()" functions here are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| */ |
| #define pgd_clear(xp) do { } while (0) |
| |
| /* |
| * Certain architectures need to do special things when PTEs |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| #define set_pte(pteptr, pteval) (*(pteptr) = pteval) |
| #define set_pte_at(mm, addr, ptep, pteval) set_pte((ptep), (pteval)) |
| #define set_pte_atomic(pteptr, pteval) set_pte((pteptr), (pteval)) |
| |
| /* |
| * (pmds are folded into pgds so this doesn't get actually called, |
| * but the define is needed for a generic inline function.) |
| */ |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) |
| |
| #define ptep_get_and_clear(mm, addr, ptep) \ |
| __pte(xchg(&(ptep)->pte, 0)) |
| #define pte_same(a, b) (pte_val(a) == pte_val(b)) |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| #define pte_none(x) (!pte_val(x)) |
| #define pte_pfn(x) ((unsigned long) (pte_val(x) >> PAGE_SHIFT)) |
| #define __pfn_addr(pfn) ((pfn) << PAGE_SHIFT) |
| #define pfn_pte(pfn, prot) __pte(__pfn_addr(pfn) | pgprot_val(prot)) |
| #define pfn_pmd(pfn, prot) __pmd(__pfn_addr(pfn) | pgprot_val(prot)) |
| |
| /* |
| * All present user pages are user-executable: |
| */ |
| static inline int pte_exec(pte_t pte) |
| { |
| return pte_user(pte); |
| } |
| |
| /* |
| * All present pages are kernel-executable: |
| */ |
| static inline int pte_exec_kernel(pte_t pte) |
| { |
| return 1; |
| } |
| |
| /* |
| * Bits 0 and 1 are taken, split up the 29 bits of offset |
| * into this range: |
| */ |
| #define PTE_FILE_MAX_BITS 29 |
| |
| #define pte_to_pgoff(pte) (pte_val(pte) >> 2) |
| #define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE) |
| |
| /* Encode and de-code a swap entry */ |
| #define __swp_type(x) (((x).val >> 2) & 0x3f) |
| #define __swp_offset(x) ((x).val >> 8) |
| #define __swp_entry(type, offset) \ |
| ((swp_entry_t) { ((type) << 2) | ((offset) << 8) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) __pte((x).val) |
| |
| static inline |
| int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| if (!pte_dirty(*ptep)) |
| return 0; |
| return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte); |
| } |
| |
| static inline |
| int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| if (!pte_young(*ptep)) |
| return 0; |
| return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte); |
| } |
| |
| static inline |
| void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); |
| } |
| |
| static inline void ptep_mkdirty(pte_t *ptep) |
| { |
| set_bit(_PAGE_BIT_DIRTY, &ptep->pte); |
| } |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". On processors which |
| * do not support it, this is a no-op. |
| */ |
| #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_CACHE) |
| |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| #define mk_pte_huge(entry) \ |
| ((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) &= _PAGE_CHG_MASK; |
| pte_val(pte) |= pgprot_val(newprot); |
| return pte; |
| } |
| |
| #define page_pte(page) page_pte_prot((page), __pgprot(0)) |
| |
| #define pmd_page_kernel(pmd) \ |
| ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| |
| #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) |
| |
| #define pmd_large(pmd) \ |
| ((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \ |
| (_PAGE_PSE | _PAGE_PRESENT)) |
| |
| /* |
| * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] |
| * |
| * this macro returns the index of the entry in the pgd page which would |
| * control the given virtual address |
| */ |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) |
| |
| /* |
| * pgd_offset() returns a (pgd_t *) |
| * pgd_index() is used get the offset into the pgd page's array of pgd_t's; |
| */ |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| /* |
| * a shortcut which implies the use of the kernel's pgd, instead |
| * of a process's |
| */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* |
| * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] |
| * |
| * this macro returns the index of the entry in the pmd page which would |
| * control the given virtual address |
| */ |
| #define pmd_index(address) \ |
| (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) |
| |
| /* |
| * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] |
| * |
| * this macro returns the index of the entry in the pte page which would |
| * control the given virtual address |
| */ |
| #define pte_index(address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| |
| #define pte_offset_kernel(dir, address) \ |
| ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address)) |
| |
| /* |
| * Make a given kernel text page executable/non-executable. |
| * Returns the previous executability setting of that page (which |
| * is used to restore the previous state). Used by the SMP bootup code. |
| * NOTE: this is an __init function for security reasons. |
| */ |
| static inline int set_kernel_exec(unsigned long vaddr, int enable) |
| { |
| return 0; |
| } |
| |
| #define pte_offset_map(dir, address) \ |
| ((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address)) |
| #define pte_unmap(pte) do {} while (0) |
| |
| /* |
| * The MN10300 has external MMU info in the form of a TLB: this is adapted from |
| * the kernel page tables containing the necessary information by tlb-mn10300.S |
| */ |
| extern void update_mmu_cache(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define kern_addr_valid(addr) (1) |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range((vma), (vaddr), (pfn), (size), (prot)) |
| |
| #define MK_IOSPACE_PFN(space, pfn) (pfn) |
| #define GET_IOSPACE(pfn) 0 |
| #define GET_PFN(pfn) (pfn) |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| #define __HAVE_ARCH_PTEP_MKDIRTY |
| #define __HAVE_ARCH_PTE_SAME |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_PGTABLE_H */ |