blob: b4f519768d5e082b1b8c0754b12666656e5b730e [file] [log] [blame]
/*
* Copyright 2017 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "vmm.h"
#include <core/client.h>
#include <subdev/fb.h>
#include <subdev/ltc.h>
#include <subdev/timer.h>
#include <engine/gr.h>
#include <nvif/ifc00d.h>
#include <nvif/unpack.h>
static void
gp100_vmm_pfn_unmap(struct nvkm_vmm *vmm,
struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
{
struct device *dev = vmm->mmu->subdev.device->dev;
dma_addr_t addr;
nvkm_kmap(pt->memory);
while (ptes--) {
u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 0);
u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 4);
u64 data = (u64)datahi << 32 | datalo;
if ((data & (3ULL << 1)) != 0) {
addr = (data >> 8) << 12;
dma_unmap_page(dev, addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
}
ptei++;
}
nvkm_done(pt->memory);
}
static bool
gp100_vmm_pfn_clear(struct nvkm_vmm *vmm,
struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
{
bool dma = false;
nvkm_kmap(pt->memory);
while (ptes--) {
u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 0);
u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 4);
u64 data = (u64)datahi << 32 | datalo;
if ((data & BIT_ULL(0)) && (data & (3ULL << 1)) != 0) {
VMM_WO064(pt, vmm, ptei * 8, data & ~BIT_ULL(0));
dma = true;
}
ptei++;
}
nvkm_done(pt->memory);
return dma;
}
static void
gp100_vmm_pgt_pfn(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
{
struct device *dev = vmm->mmu->subdev.device->dev;
dma_addr_t addr;
nvkm_kmap(pt->memory);
while (ptes--) {
u64 data = 0;
if (!(*map->pfn & NVKM_VMM_PFN_W))
data |= BIT_ULL(6); /* RO. */
if (!(*map->pfn & NVKM_VMM_PFN_VRAM)) {
addr = *map->pfn >> NVKM_VMM_PFN_ADDR_SHIFT;
addr = dma_map_page(dev, pfn_to_page(addr), 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
if (!WARN_ON(dma_mapping_error(dev, addr))) {
data |= addr >> 4;
data |= 2ULL << 1; /* SYSTEM_COHERENT_MEMORY. */
data |= BIT_ULL(3); /* VOL. */
data |= BIT_ULL(0); /* VALID. */
}
} else {
data |= (*map->pfn & NVKM_VMM_PFN_ADDR) >> 4;
data |= BIT_ULL(0); /* VALID. */
}
VMM_WO064(pt, vmm, ptei++ * 8, data);
map->pfn++;
}
nvkm_done(pt->memory);
}
static inline void
gp100_vmm_pgt_pte(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
u32 ptei, u32 ptes, struct nvkm_vmm_map *map, u64 addr)
{
u64 data = (addr >> 4) | map->type;
map->type += ptes * map->ctag;
while (ptes--) {
VMM_WO064(pt, vmm, ptei++ * 8, data);
data += map->next;
}
}
static void
gp100_vmm_pgt_sgl(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
{
VMM_MAP_ITER_SGL(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte);
}
static void
gp100_vmm_pgt_dma(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
{
if (map->page->shift == PAGE_SHIFT) {
VMM_SPAM(vmm, "DMAA %08x %08x PTE(s)", ptei, ptes);
nvkm_kmap(pt->memory);
while (ptes--) {
const u64 data = (*map->dma++ >> 4) | map->type;
VMM_WO064(pt, vmm, ptei++ * 8, data);
map->type += map->ctag;
}
nvkm_done(pt->memory);
return;
}
VMM_MAP_ITER_DMA(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte);
}
static void
gp100_vmm_pgt_mem(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
{
VMM_MAP_ITER_MEM(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte);
}
static void
gp100_vmm_pgt_sparse(struct nvkm_vmm *vmm,
struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
{
/* VALID_FALSE + VOL tells the MMU to treat the PTE as sparse. */
VMM_FO064(pt, vmm, ptei * 8, BIT_ULL(3) /* VOL. */, ptes);
}
static const struct nvkm_vmm_desc_func
gp100_vmm_desc_spt = {
.unmap = gf100_vmm_pgt_unmap,
.sparse = gp100_vmm_pgt_sparse,
.mem = gp100_vmm_pgt_mem,
.dma = gp100_vmm_pgt_dma,
.sgl = gp100_vmm_pgt_sgl,
.pfn = gp100_vmm_pgt_pfn,
.pfn_clear = gp100_vmm_pfn_clear,
.pfn_unmap = gp100_vmm_pfn_unmap,
};
static void
gp100_vmm_lpt_invalid(struct nvkm_vmm *vmm,
struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes)
{
/* VALID_FALSE + PRIV tells the MMU to ignore corresponding SPTEs. */
VMM_FO064(pt, vmm, ptei * 8, BIT_ULL(5) /* PRIV. */, ptes);
}
static const struct nvkm_vmm_desc_func
gp100_vmm_desc_lpt = {
.invalid = gp100_vmm_lpt_invalid,
.unmap = gf100_vmm_pgt_unmap,
.sparse = gp100_vmm_pgt_sparse,
.mem = gp100_vmm_pgt_mem,
};
static inline void
gp100_vmm_pd0_pte(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
u32 ptei, u32 ptes, struct nvkm_vmm_map *map, u64 addr)
{
u64 data = (addr >> 4) | map->type;
map->type += ptes * map->ctag;
while (ptes--) {
VMM_WO128(pt, vmm, ptei++ * 0x10, data, 0ULL);
data += map->next;
}
}
static void
gp100_vmm_pd0_mem(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt,
u32 ptei, u32 ptes, struct nvkm_vmm_map *map)
{
VMM_MAP_ITER_MEM(vmm, pt, ptei, ptes, map, gp100_vmm_pd0_pte);
}
static inline bool
gp100_vmm_pde(struct nvkm_mmu_pt *pt, u64 *data)
{
switch (nvkm_memory_target(pt->memory)) {
case NVKM_MEM_TARGET_VRAM: *data |= 1ULL << 1; break;
case NVKM_MEM_TARGET_HOST: *data |= 2ULL << 1;
*data |= BIT_ULL(3); /* VOL. */
break;
case NVKM_MEM_TARGET_NCOH: *data |= 3ULL << 1; break;
default:
WARN_ON(1);
return false;
}
*data |= pt->addr >> 4;
return true;
}
static void
gp100_vmm_pd0_pde(struct nvkm_vmm *vmm, struct nvkm_vmm_pt *pgd, u32 pdei)
{
struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
struct nvkm_mmu_pt *pd = pgd->pt[0];
u64 data[2] = {};
if (pgt->pt[0] && !gp100_vmm_pde(pgt->pt[0], &data[0]))
return;
if (pgt->pt[1] && !gp100_vmm_pde(pgt->pt[1], &data[1]))
return;
nvkm_kmap(pd->memory);
VMM_WO128(pd, vmm, pdei * 0x10, data[0], data[1]);
nvkm_done(pd->memory);
}
static void
gp100_vmm_pd0_sparse(struct nvkm_vmm *vmm,
struct nvkm_mmu_pt *pt, u32 pdei, u32 pdes)
{
/* VALID_FALSE + VOL_BIG tells the MMU to treat the PDE as sparse. */
VMM_FO128(pt, vmm, pdei * 0x10, BIT_ULL(3) /* VOL_BIG. */, 0ULL, pdes);
}
static void
gp100_vmm_pd0_unmap(struct nvkm_vmm *vmm,
struct nvkm_mmu_pt *pt, u32 pdei, u32 pdes)
{
VMM_FO128(pt, vmm, pdei * 0x10, 0ULL, 0ULL, pdes);
}
static const struct nvkm_vmm_desc_func
gp100_vmm_desc_pd0 = {
.unmap = gp100_vmm_pd0_unmap,
.sparse = gp100_vmm_pd0_sparse,
.pde = gp100_vmm_pd0_pde,
.mem = gp100_vmm_pd0_mem,
};
static void
gp100_vmm_pd1_pde(struct nvkm_vmm *vmm, struct nvkm_vmm_pt *pgd, u32 pdei)
{
struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
struct nvkm_mmu_pt *pd = pgd->pt[0];
u64 data = 0;
if (!gp100_vmm_pde(pgt->pt[0], &data))
return;
nvkm_kmap(pd->memory);
VMM_WO064(pd, vmm, pdei * 8, data);
nvkm_done(pd->memory);
}
static const struct nvkm_vmm_desc_func
gp100_vmm_desc_pd1 = {
.unmap = gf100_vmm_pgt_unmap,
.sparse = gp100_vmm_pgt_sparse,
.pde = gp100_vmm_pd1_pde,
};
const struct nvkm_vmm_desc
gp100_vmm_desc_16[] = {
{ LPT, 5, 8, 0x0100, &gp100_vmm_desc_lpt },
{ PGD, 8, 16, 0x1000, &gp100_vmm_desc_pd0 },
{ PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 },
{ PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 },
{ PGD, 2, 8, 0x1000, &gp100_vmm_desc_pd1 },
{}
};
const struct nvkm_vmm_desc
gp100_vmm_desc_12[] = {
{ SPT, 9, 8, 0x1000, &gp100_vmm_desc_spt },
{ PGD, 8, 16, 0x1000, &gp100_vmm_desc_pd0 },
{ PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 },
{ PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 },
{ PGD, 2, 8, 0x1000, &gp100_vmm_desc_pd1 },
{}
};
int
gp100_vmm_valid(struct nvkm_vmm *vmm, void *argv, u32 argc,
struct nvkm_vmm_map *map)
{
const enum nvkm_memory_target target = nvkm_memory_target(map->memory);
const struct nvkm_vmm_page *page = map->page;
union {
struct gp100_vmm_map_vn vn;
struct gp100_vmm_map_v0 v0;
} *args = argv;
struct nvkm_device *device = vmm->mmu->subdev.device;
struct nvkm_memory *memory = map->memory;
u8 kind, priv, ro, vol;
int kindn, aper, ret = -ENOSYS;
const u8 *kindm;
map->next = (1ULL << page->shift) >> 4;
map->type = 0;
if (!(ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) {
vol = !!args->v0.vol;
ro = !!args->v0.ro;
priv = !!args->v0.priv;
kind = args->v0.kind;
} else
if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) {
vol = target == NVKM_MEM_TARGET_HOST;
ro = 0;
priv = 0;
kind = 0x00;
} else {
VMM_DEBUG(vmm, "args");
return ret;
}
aper = vmm->func->aper(target);
if (WARN_ON(aper < 0))
return aper;
kindm = vmm->mmu->func->kind(vmm->mmu, &kindn);
if (kind >= kindn || kindm[kind] == 0xff) {
VMM_DEBUG(vmm, "kind %02x", kind);
return -EINVAL;
}
if (kindm[kind] != kind) {
u64 tags = nvkm_memory_size(memory) >> 16;
if (aper != 0 || !(page->type & NVKM_VMM_PAGE_COMP)) {
VMM_DEBUG(vmm, "comp %d %02x", aper, page->type);
return -EINVAL;
}
ret = nvkm_memory_tags_get(memory, device, tags,
nvkm_ltc_tags_clear,
&map->tags);
if (ret) {
VMM_DEBUG(vmm, "comp %d", ret);
return ret;
}
if (map->tags->mn) {
tags = map->tags->mn->offset + (map->offset >> 16);
map->ctag |= ((1ULL << page->shift) >> 16) << 36;
map->type |= tags << 36;
map->next |= map->ctag;
} else {
kind = kindm[kind];
}
}
map->type |= BIT(0);
map->type |= (u64)aper << 1;
map->type |= (u64) vol << 3;
map->type |= (u64)priv << 5;
map->type |= (u64) ro << 6;
map->type |= (u64)kind << 56;
return 0;
}
static int
gp100_vmm_fault_cancel(struct nvkm_vmm *vmm, void *argv, u32 argc)
{
struct nvkm_device *device = vmm->mmu->subdev.device;
union {
struct gp100_vmm_fault_cancel_v0 v0;
} *args = argv;
int ret = -ENOSYS;
u32 inst, aper;
if ((ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false)))
return ret;
/* Translate MaxwellFaultBufferA instance pointer to the same
* format as the NV_GR_FECS_CURRENT_CTX register.
*/
aper = (args->v0.inst >> 8) & 3;
args->v0.inst >>= 12;
args->v0.inst |= aper << 28;
args->v0.inst |= 0x80000000;
if (!WARN_ON(nvkm_gr_ctxsw_pause(device))) {
if ((inst = nvkm_gr_ctxsw_inst(device)) == args->v0.inst) {
gf100_vmm_invalidate(vmm, 0x0000001b
/* CANCEL_TARGETED. */ |
(args->v0.hub << 20) |
(args->v0.gpc << 15) |
(args->v0.client << 9));
}
WARN_ON(nvkm_gr_ctxsw_resume(device));
}
return 0;
}
static int
gp100_vmm_fault_replay(struct nvkm_vmm *vmm, void *argv, u32 argc)
{
union {
struct gp100_vmm_fault_replay_vn vn;
} *args = argv;
int ret = -ENOSYS;
if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) {
gf100_vmm_invalidate(vmm, 0x0000000b); /* REPLAY_GLOBAL. */
}
return ret;
}
int
gp100_vmm_mthd(struct nvkm_vmm *vmm,
struct nvkm_client *client, u32 mthd, void *argv, u32 argc)
{
if (client->super) {
switch (mthd) {
case GP100_VMM_VN_FAULT_REPLAY:
return gp100_vmm_fault_replay(vmm, argv, argc);
case GP100_VMM_VN_FAULT_CANCEL:
return gp100_vmm_fault_cancel(vmm, argv, argc);
default:
break;
}
}
return -EINVAL;
}
void
gp100_vmm_invalidate_pdb(struct nvkm_vmm *vmm, u64 addr)
{
struct nvkm_device *device = vmm->mmu->subdev.device;
nvkm_wr32(device, 0x100cb8, lower_32_bits(addr));
nvkm_wr32(device, 0x100cec, upper_32_bits(addr));
}
void
gp100_vmm_flush(struct nvkm_vmm *vmm, int depth)
{
u32 type = (5 /* CACHE_LEVEL_UP_TO_PDE3 */ - depth) << 24;
type = 0; /*XXX: need to confirm stuff works with depth enabled... */
if (atomic_read(&vmm->engref[NVKM_SUBDEV_BAR]))
type |= 0x00000004; /* HUB_ONLY */
type |= 0x00000001; /* PAGE_ALL */
gf100_vmm_invalidate(vmm, type);
}
int
gp100_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
{
u64 base = BIT_ULL(10) /* VER2 */ | BIT_ULL(11) /* 64KiB */;
if (vmm->replay) {
base |= BIT_ULL(4); /* FAULT_REPLAY_TEX */
base |= BIT_ULL(5); /* FAULT_REPLAY_GCC */
}
return gf100_vmm_join_(vmm, inst, base);
}
static const struct nvkm_vmm_func
gp100_vmm = {
.join = gp100_vmm_join,
.part = gf100_vmm_part,
.aper = gf100_vmm_aper,
.valid = gp100_vmm_valid,
.flush = gp100_vmm_flush,
.mthd = gp100_vmm_mthd,
.invalidate_pdb = gp100_vmm_invalidate_pdb,
.page = {
{ 47, &gp100_vmm_desc_16[4], NVKM_VMM_PAGE_Sxxx },
{ 38, &gp100_vmm_desc_16[3], NVKM_VMM_PAGE_Sxxx },
{ 29, &gp100_vmm_desc_16[2], NVKM_VMM_PAGE_Sxxx },
{ 21, &gp100_vmm_desc_16[1], NVKM_VMM_PAGE_SVxC },
{ 16, &gp100_vmm_desc_16[0], NVKM_VMM_PAGE_SVxC },
{ 12, &gp100_vmm_desc_12[0], NVKM_VMM_PAGE_SVHx },
{}
}
};
int
gp100_vmm_new_(const struct nvkm_vmm_func *func,
struct nvkm_mmu *mmu, bool managed, u64 addr, u64 size,
void *argv, u32 argc, struct lock_class_key *key,
const char *name, struct nvkm_vmm **pvmm)
{
union {
struct gp100_vmm_vn vn;
struct gp100_vmm_v0 v0;
} *args = argv;
int ret = -ENOSYS;
bool replay;
if (!(ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) {
replay = args->v0.fault_replay != 0;
} else
if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) {
replay = false;
} else
return ret;
ret = nvkm_vmm_new_(func, mmu, 0, managed, addr, size, key, name, pvmm);
if (ret)
return ret;
(*pvmm)->replay = replay;
return 0;
}
int
gp100_vmm_new(struct nvkm_mmu *mmu, bool managed, u64 addr, u64 size,
void *argv, u32 argc, struct lock_class_key *key,
const char *name, struct nvkm_vmm **pvmm)
{
return gp100_vmm_new_(&gp100_vmm, mmu, managed, addr, size,
argv, argc, key, name, pvmm);
}