| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2016 Avago Technologies. All rights reserved. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/module.h> |
| #include <linux/parser.h> |
| #include <uapi/scsi/fc/fc_fs.h> |
| #include <uapi/scsi/fc/fc_els.h> |
| #include <linux/delay.h> |
| #include <linux/overflow.h> |
| |
| #include "nvme.h" |
| #include "fabrics.h" |
| #include <linux/nvme-fc-driver.h> |
| #include <linux/nvme-fc.h> |
| #include <scsi/scsi_transport_fc.h> |
| |
| /* *************************** Data Structures/Defines ****************** */ |
| |
| |
| enum nvme_fc_queue_flags { |
| NVME_FC_Q_CONNECTED = 0, |
| NVME_FC_Q_LIVE, |
| }; |
| |
| #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ |
| |
| struct nvme_fc_queue { |
| struct nvme_fc_ctrl *ctrl; |
| struct device *dev; |
| struct blk_mq_hw_ctx *hctx; |
| void *lldd_handle; |
| size_t cmnd_capsule_len; |
| u32 qnum; |
| u32 rqcnt; |
| u32 seqno; |
| |
| u64 connection_id; |
| atomic_t csn; |
| |
| unsigned long flags; |
| } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ |
| |
| enum nvme_fcop_flags { |
| FCOP_FLAGS_TERMIO = (1 << 0), |
| FCOP_FLAGS_AEN = (1 << 1), |
| }; |
| |
| struct nvmefc_ls_req_op { |
| struct nvmefc_ls_req ls_req; |
| |
| struct nvme_fc_rport *rport; |
| struct nvme_fc_queue *queue; |
| struct request *rq; |
| u32 flags; |
| |
| int ls_error; |
| struct completion ls_done; |
| struct list_head lsreq_list; /* rport->ls_req_list */ |
| bool req_queued; |
| }; |
| |
| enum nvme_fcpop_state { |
| FCPOP_STATE_UNINIT = 0, |
| FCPOP_STATE_IDLE = 1, |
| FCPOP_STATE_ACTIVE = 2, |
| FCPOP_STATE_ABORTED = 3, |
| FCPOP_STATE_COMPLETE = 4, |
| }; |
| |
| struct nvme_fc_fcp_op { |
| struct nvme_request nreq; /* |
| * nvme/host/core.c |
| * requires this to be |
| * the 1st element in the |
| * private structure |
| * associated with the |
| * request. |
| */ |
| struct nvmefc_fcp_req fcp_req; |
| |
| struct nvme_fc_ctrl *ctrl; |
| struct nvme_fc_queue *queue; |
| struct request *rq; |
| |
| atomic_t state; |
| u32 flags; |
| u32 rqno; |
| u32 nents; |
| |
| struct nvme_fc_cmd_iu cmd_iu; |
| struct nvme_fc_ersp_iu rsp_iu; |
| }; |
| |
| struct nvme_fcp_op_w_sgl { |
| struct nvme_fc_fcp_op op; |
| struct scatterlist sgl[NVME_INLINE_SG_CNT]; |
| uint8_t priv[0]; |
| }; |
| |
| struct nvme_fc_lport { |
| struct nvme_fc_local_port localport; |
| |
| struct ida endp_cnt; |
| struct list_head port_list; /* nvme_fc_port_list */ |
| struct list_head endp_list; |
| struct device *dev; /* physical device for dma */ |
| struct nvme_fc_port_template *ops; |
| struct kref ref; |
| atomic_t act_rport_cnt; |
| } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ |
| |
| struct nvme_fc_rport { |
| struct nvme_fc_remote_port remoteport; |
| |
| struct list_head endp_list; /* for lport->endp_list */ |
| struct list_head ctrl_list; |
| struct list_head ls_req_list; |
| struct list_head disc_list; |
| struct device *dev; /* physical device for dma */ |
| struct nvme_fc_lport *lport; |
| spinlock_t lock; |
| struct kref ref; |
| atomic_t act_ctrl_cnt; |
| unsigned long dev_loss_end; |
| } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ |
| |
| enum nvme_fcctrl_flags { |
| FCCTRL_TERMIO = (1 << 0), |
| }; |
| |
| struct nvme_fc_ctrl { |
| spinlock_t lock; |
| struct nvme_fc_queue *queues; |
| struct device *dev; |
| struct nvme_fc_lport *lport; |
| struct nvme_fc_rport *rport; |
| u32 cnum; |
| |
| bool ioq_live; |
| bool assoc_active; |
| atomic_t err_work_active; |
| u64 association_id; |
| |
| struct list_head ctrl_list; /* rport->ctrl_list */ |
| |
| struct blk_mq_tag_set admin_tag_set; |
| struct blk_mq_tag_set tag_set; |
| |
| struct delayed_work connect_work; |
| struct work_struct err_work; |
| |
| struct kref ref; |
| u32 flags; |
| u32 iocnt; |
| wait_queue_head_t ioabort_wait; |
| |
| struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; |
| |
| struct nvme_ctrl ctrl; |
| }; |
| |
| static inline struct nvme_fc_ctrl * |
| to_fc_ctrl(struct nvme_ctrl *ctrl) |
| { |
| return container_of(ctrl, struct nvme_fc_ctrl, ctrl); |
| } |
| |
| static inline struct nvme_fc_lport * |
| localport_to_lport(struct nvme_fc_local_port *portptr) |
| { |
| return container_of(portptr, struct nvme_fc_lport, localport); |
| } |
| |
| static inline struct nvme_fc_rport * |
| remoteport_to_rport(struct nvme_fc_remote_port *portptr) |
| { |
| return container_of(portptr, struct nvme_fc_rport, remoteport); |
| } |
| |
| static inline struct nvmefc_ls_req_op * |
| ls_req_to_lsop(struct nvmefc_ls_req *lsreq) |
| { |
| return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); |
| } |
| |
| static inline struct nvme_fc_fcp_op * |
| fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) |
| { |
| return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); |
| } |
| |
| |
| |
| /* *************************** Globals **************************** */ |
| |
| |
| static DEFINE_SPINLOCK(nvme_fc_lock); |
| |
| static LIST_HEAD(nvme_fc_lport_list); |
| static DEFINE_IDA(nvme_fc_local_port_cnt); |
| static DEFINE_IDA(nvme_fc_ctrl_cnt); |
| |
| static struct workqueue_struct *nvme_fc_wq; |
| |
| static bool nvme_fc_waiting_to_unload; |
| static DECLARE_COMPLETION(nvme_fc_unload_proceed); |
| |
| /* |
| * These items are short-term. They will eventually be moved into |
| * a generic FC class. See comments in module init. |
| */ |
| static struct device *fc_udev_device; |
| |
| |
| /* *********************** FC-NVME Port Management ************************ */ |
| |
| static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, |
| struct nvme_fc_queue *, unsigned int); |
| |
| static void |
| nvme_fc_free_lport(struct kref *ref) |
| { |
| struct nvme_fc_lport *lport = |
| container_of(ref, struct nvme_fc_lport, ref); |
| unsigned long flags; |
| |
| WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); |
| WARN_ON(!list_empty(&lport->endp_list)); |
| |
| /* remove from transport list */ |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| list_del(&lport->port_list); |
| if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list)) |
| complete(&nvme_fc_unload_proceed); |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); |
| ida_destroy(&lport->endp_cnt); |
| |
| put_device(lport->dev); |
| |
| kfree(lport); |
| } |
| |
| static void |
| nvme_fc_lport_put(struct nvme_fc_lport *lport) |
| { |
| kref_put(&lport->ref, nvme_fc_free_lport); |
| } |
| |
| static int |
| nvme_fc_lport_get(struct nvme_fc_lport *lport) |
| { |
| return kref_get_unless_zero(&lport->ref); |
| } |
| |
| |
| static struct nvme_fc_lport * |
| nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, |
| struct nvme_fc_port_template *ops, |
| struct device *dev) |
| { |
| struct nvme_fc_lport *lport; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| |
| list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { |
| if (lport->localport.node_name != pinfo->node_name || |
| lport->localport.port_name != pinfo->port_name) |
| continue; |
| |
| if (lport->dev != dev) { |
| lport = ERR_PTR(-EXDEV); |
| goto out_done; |
| } |
| |
| if (lport->localport.port_state != FC_OBJSTATE_DELETED) { |
| lport = ERR_PTR(-EEXIST); |
| goto out_done; |
| } |
| |
| if (!nvme_fc_lport_get(lport)) { |
| /* |
| * fails if ref cnt already 0. If so, |
| * act as if lport already deleted |
| */ |
| lport = NULL; |
| goto out_done; |
| } |
| |
| /* resume the lport */ |
| |
| lport->ops = ops; |
| lport->localport.port_role = pinfo->port_role; |
| lport->localport.port_id = pinfo->port_id; |
| lport->localport.port_state = FC_OBJSTATE_ONLINE; |
| |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| return lport; |
| } |
| |
| lport = NULL; |
| |
| out_done: |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| return lport; |
| } |
| |
| /** |
| * nvme_fc_register_localport - transport entry point called by an |
| * LLDD to register the existence of a NVME |
| * host FC port. |
| * @pinfo: pointer to information about the port to be registered |
| * @template: LLDD entrypoints and operational parameters for the port |
| * @dev: physical hardware device node port corresponds to. Will be |
| * used for DMA mappings |
| * @portptr: pointer to a local port pointer. Upon success, the routine |
| * will allocate a nvme_fc_local_port structure and place its |
| * address in the local port pointer. Upon failure, local port |
| * pointer will be set to 0. |
| * |
| * Returns: |
| * a completion status. Must be 0 upon success; a negative errno |
| * (ex: -ENXIO) upon failure. |
| */ |
| int |
| nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, |
| struct nvme_fc_port_template *template, |
| struct device *dev, |
| struct nvme_fc_local_port **portptr) |
| { |
| struct nvme_fc_lport *newrec; |
| unsigned long flags; |
| int ret, idx; |
| |
| if (!template->localport_delete || !template->remoteport_delete || |
| !template->ls_req || !template->fcp_io || |
| !template->ls_abort || !template->fcp_abort || |
| !template->max_hw_queues || !template->max_sgl_segments || |
| !template->max_dif_sgl_segments || !template->dma_boundary || |
| !template->module) { |
| ret = -EINVAL; |
| goto out_reghost_failed; |
| } |
| |
| /* |
| * look to see if there is already a localport that had been |
| * deregistered and in the process of waiting for all the |
| * references to fully be removed. If the references haven't |
| * expired, we can simply re-enable the localport. Remoteports |
| * and controller reconnections should resume naturally. |
| */ |
| newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); |
| |
| /* found an lport, but something about its state is bad */ |
| if (IS_ERR(newrec)) { |
| ret = PTR_ERR(newrec); |
| goto out_reghost_failed; |
| |
| /* found existing lport, which was resumed */ |
| } else if (newrec) { |
| *portptr = &newrec->localport; |
| return 0; |
| } |
| |
| /* nothing found - allocate a new localport struct */ |
| |
| newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), |
| GFP_KERNEL); |
| if (!newrec) { |
| ret = -ENOMEM; |
| goto out_reghost_failed; |
| } |
| |
| idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); |
| if (idx < 0) { |
| ret = -ENOSPC; |
| goto out_fail_kfree; |
| } |
| |
| if (!get_device(dev) && dev) { |
| ret = -ENODEV; |
| goto out_ida_put; |
| } |
| |
| INIT_LIST_HEAD(&newrec->port_list); |
| INIT_LIST_HEAD(&newrec->endp_list); |
| kref_init(&newrec->ref); |
| atomic_set(&newrec->act_rport_cnt, 0); |
| newrec->ops = template; |
| newrec->dev = dev; |
| ida_init(&newrec->endp_cnt); |
| newrec->localport.private = &newrec[1]; |
| newrec->localport.node_name = pinfo->node_name; |
| newrec->localport.port_name = pinfo->port_name; |
| newrec->localport.port_role = pinfo->port_role; |
| newrec->localport.port_id = pinfo->port_id; |
| newrec->localport.port_state = FC_OBJSTATE_ONLINE; |
| newrec->localport.port_num = idx; |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| list_add_tail(&newrec->port_list, &nvme_fc_lport_list); |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| if (dev) |
| dma_set_seg_boundary(dev, template->dma_boundary); |
| |
| *portptr = &newrec->localport; |
| return 0; |
| |
| out_ida_put: |
| ida_simple_remove(&nvme_fc_local_port_cnt, idx); |
| out_fail_kfree: |
| kfree(newrec); |
| out_reghost_failed: |
| *portptr = NULL; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_fc_register_localport); |
| |
| /** |
| * nvme_fc_unregister_localport - transport entry point called by an |
| * LLDD to deregister/remove a previously |
| * registered a NVME host FC port. |
| * @portptr: pointer to the (registered) local port that is to be deregistered. |
| * |
| * Returns: |
| * a completion status. Must be 0 upon success; a negative errno |
| * (ex: -ENXIO) upon failure. |
| */ |
| int |
| nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) |
| { |
| struct nvme_fc_lport *lport = localport_to_lport(portptr); |
| unsigned long flags; |
| |
| if (!portptr) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| |
| if (portptr->port_state != FC_OBJSTATE_ONLINE) { |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| return -EINVAL; |
| } |
| portptr->port_state = FC_OBJSTATE_DELETED; |
| |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| if (atomic_read(&lport->act_rport_cnt) == 0) |
| lport->ops->localport_delete(&lport->localport); |
| |
| nvme_fc_lport_put(lport); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); |
| |
| /* |
| * TRADDR strings, per FC-NVME are fixed format: |
| * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters |
| * udev event will only differ by prefix of what field is |
| * being specified: |
| * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters |
| * 19 + 43 + null_fudge = 64 characters |
| */ |
| #define FCNVME_TRADDR_LENGTH 64 |
| |
| static void |
| nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, |
| struct nvme_fc_rport *rport) |
| { |
| char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ |
| char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ |
| char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; |
| |
| if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) |
| return; |
| |
| snprintf(hostaddr, sizeof(hostaddr), |
| "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", |
| lport->localport.node_name, lport->localport.port_name); |
| snprintf(tgtaddr, sizeof(tgtaddr), |
| "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", |
| rport->remoteport.node_name, rport->remoteport.port_name); |
| kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); |
| } |
| |
| static void |
| nvme_fc_free_rport(struct kref *ref) |
| { |
| struct nvme_fc_rport *rport = |
| container_of(ref, struct nvme_fc_rport, ref); |
| struct nvme_fc_lport *lport = |
| localport_to_lport(rport->remoteport.localport); |
| unsigned long flags; |
| |
| WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); |
| WARN_ON(!list_empty(&rport->ctrl_list)); |
| |
| /* remove from lport list */ |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| list_del(&rport->endp_list); |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| WARN_ON(!list_empty(&rport->disc_list)); |
| ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); |
| |
| kfree(rport); |
| |
| nvme_fc_lport_put(lport); |
| } |
| |
| static void |
| nvme_fc_rport_put(struct nvme_fc_rport *rport) |
| { |
| kref_put(&rport->ref, nvme_fc_free_rport); |
| } |
| |
| static int |
| nvme_fc_rport_get(struct nvme_fc_rport *rport) |
| { |
| return kref_get_unless_zero(&rport->ref); |
| } |
| |
| static void |
| nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) |
| { |
| switch (ctrl->ctrl.state) { |
| case NVME_CTRL_NEW: |
| case NVME_CTRL_CONNECTING: |
| /* |
| * As all reconnects were suppressed, schedule a |
| * connect. |
| */ |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: connectivity re-established. " |
| "Attempting reconnect\n", ctrl->cnum); |
| |
| queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); |
| break; |
| |
| case NVME_CTRL_RESETTING: |
| /* |
| * Controller is already in the process of terminating the |
| * association. No need to do anything further. The reconnect |
| * step will naturally occur after the reset completes. |
| */ |
| break; |
| |
| default: |
| /* no action to take - let it delete */ |
| break; |
| } |
| } |
| |
| static struct nvme_fc_rport * |
| nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, |
| struct nvme_fc_port_info *pinfo) |
| { |
| struct nvme_fc_rport *rport; |
| struct nvme_fc_ctrl *ctrl; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| |
| list_for_each_entry(rport, &lport->endp_list, endp_list) { |
| if (rport->remoteport.node_name != pinfo->node_name || |
| rport->remoteport.port_name != pinfo->port_name) |
| continue; |
| |
| if (!nvme_fc_rport_get(rport)) { |
| rport = ERR_PTR(-ENOLCK); |
| goto out_done; |
| } |
| |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| spin_lock_irqsave(&rport->lock, flags); |
| |
| /* has it been unregistered */ |
| if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { |
| /* means lldd called us twice */ |
| spin_unlock_irqrestore(&rport->lock, flags); |
| nvme_fc_rport_put(rport); |
| return ERR_PTR(-ESTALE); |
| } |
| |
| rport->remoteport.port_role = pinfo->port_role; |
| rport->remoteport.port_id = pinfo->port_id; |
| rport->remoteport.port_state = FC_OBJSTATE_ONLINE; |
| rport->dev_loss_end = 0; |
| |
| /* |
| * kick off a reconnect attempt on all associations to the |
| * remote port. A successful reconnects will resume i/o. |
| */ |
| list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) |
| nvme_fc_resume_controller(ctrl); |
| |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| return rport; |
| } |
| |
| rport = NULL; |
| |
| out_done: |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| return rport; |
| } |
| |
| static inline void |
| __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, |
| struct nvme_fc_port_info *pinfo) |
| { |
| if (pinfo->dev_loss_tmo) |
| rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; |
| else |
| rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; |
| } |
| |
| /** |
| * nvme_fc_register_remoteport - transport entry point called by an |
| * LLDD to register the existence of a NVME |
| * subsystem FC port on its fabric. |
| * @localport: pointer to the (registered) local port that the remote |
| * subsystem port is connected to. |
| * @pinfo: pointer to information about the port to be registered |
| * @portptr: pointer to a remote port pointer. Upon success, the routine |
| * will allocate a nvme_fc_remote_port structure and place its |
| * address in the remote port pointer. Upon failure, remote port |
| * pointer will be set to 0. |
| * |
| * Returns: |
| * a completion status. Must be 0 upon success; a negative errno |
| * (ex: -ENXIO) upon failure. |
| */ |
| int |
| nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, |
| struct nvme_fc_port_info *pinfo, |
| struct nvme_fc_remote_port **portptr) |
| { |
| struct nvme_fc_lport *lport = localport_to_lport(localport); |
| struct nvme_fc_rport *newrec; |
| unsigned long flags; |
| int ret, idx; |
| |
| if (!nvme_fc_lport_get(lport)) { |
| ret = -ESHUTDOWN; |
| goto out_reghost_failed; |
| } |
| |
| /* |
| * look to see if there is already a remoteport that is waiting |
| * for a reconnect (within dev_loss_tmo) with the same WWN's. |
| * If so, transition to it and reconnect. |
| */ |
| newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); |
| |
| /* found an rport, but something about its state is bad */ |
| if (IS_ERR(newrec)) { |
| ret = PTR_ERR(newrec); |
| goto out_lport_put; |
| |
| /* found existing rport, which was resumed */ |
| } else if (newrec) { |
| nvme_fc_lport_put(lport); |
| __nvme_fc_set_dev_loss_tmo(newrec, pinfo); |
| nvme_fc_signal_discovery_scan(lport, newrec); |
| *portptr = &newrec->remoteport; |
| return 0; |
| } |
| |
| /* nothing found - allocate a new remoteport struct */ |
| |
| newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), |
| GFP_KERNEL); |
| if (!newrec) { |
| ret = -ENOMEM; |
| goto out_lport_put; |
| } |
| |
| idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); |
| if (idx < 0) { |
| ret = -ENOSPC; |
| goto out_kfree_rport; |
| } |
| |
| INIT_LIST_HEAD(&newrec->endp_list); |
| INIT_LIST_HEAD(&newrec->ctrl_list); |
| INIT_LIST_HEAD(&newrec->ls_req_list); |
| INIT_LIST_HEAD(&newrec->disc_list); |
| kref_init(&newrec->ref); |
| atomic_set(&newrec->act_ctrl_cnt, 0); |
| spin_lock_init(&newrec->lock); |
| newrec->remoteport.localport = &lport->localport; |
| newrec->dev = lport->dev; |
| newrec->lport = lport; |
| newrec->remoteport.private = &newrec[1]; |
| newrec->remoteport.port_role = pinfo->port_role; |
| newrec->remoteport.node_name = pinfo->node_name; |
| newrec->remoteport.port_name = pinfo->port_name; |
| newrec->remoteport.port_id = pinfo->port_id; |
| newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; |
| newrec->remoteport.port_num = idx; |
| __nvme_fc_set_dev_loss_tmo(newrec, pinfo); |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| list_add_tail(&newrec->endp_list, &lport->endp_list); |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| nvme_fc_signal_discovery_scan(lport, newrec); |
| |
| *portptr = &newrec->remoteport; |
| return 0; |
| |
| out_kfree_rport: |
| kfree(newrec); |
| out_lport_put: |
| nvme_fc_lport_put(lport); |
| out_reghost_failed: |
| *portptr = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); |
| |
| static int |
| nvme_fc_abort_lsops(struct nvme_fc_rport *rport) |
| { |
| struct nvmefc_ls_req_op *lsop; |
| unsigned long flags; |
| |
| restart: |
| spin_lock_irqsave(&rport->lock, flags); |
| |
| list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { |
| if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { |
| lsop->flags |= FCOP_FLAGS_TERMIO; |
| spin_unlock_irqrestore(&rport->lock, flags); |
| rport->lport->ops->ls_abort(&rport->lport->localport, |
| &rport->remoteport, |
| &lsop->ls_req); |
| goto restart; |
| } |
| } |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| return 0; |
| } |
| |
| static void |
| nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) |
| { |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: controller connectivity lost. Awaiting " |
| "Reconnect", ctrl->cnum); |
| |
| switch (ctrl->ctrl.state) { |
| case NVME_CTRL_NEW: |
| case NVME_CTRL_LIVE: |
| /* |
| * Schedule a controller reset. The reset will terminate the |
| * association and schedule the reconnect timer. Reconnects |
| * will be attempted until either the ctlr_loss_tmo |
| * (max_retries * connect_delay) expires or the remoteport's |
| * dev_loss_tmo expires. |
| */ |
| if (nvme_reset_ctrl(&ctrl->ctrl)) { |
| dev_warn(ctrl->ctrl.device, |
| "NVME-FC{%d}: Couldn't schedule reset.\n", |
| ctrl->cnum); |
| nvme_delete_ctrl(&ctrl->ctrl); |
| } |
| break; |
| |
| case NVME_CTRL_CONNECTING: |
| /* |
| * The association has already been terminated and the |
| * controller is attempting reconnects. No need to do anything |
| * futher. Reconnects will be attempted until either the |
| * ctlr_loss_tmo (max_retries * connect_delay) expires or the |
| * remoteport's dev_loss_tmo expires. |
| */ |
| break; |
| |
| case NVME_CTRL_RESETTING: |
| /* |
| * Controller is already in the process of terminating the |
| * association. No need to do anything further. The reconnect |
| * step will kick in naturally after the association is |
| * terminated. |
| */ |
| break; |
| |
| case NVME_CTRL_DELETING: |
| default: |
| /* no action to take - let it delete */ |
| break; |
| } |
| } |
| |
| /** |
| * nvme_fc_unregister_remoteport - transport entry point called by an |
| * LLDD to deregister/remove a previously |
| * registered a NVME subsystem FC port. |
| * @portptr: pointer to the (registered) remote port that is to be |
| * deregistered. |
| * |
| * Returns: |
| * a completion status. Must be 0 upon success; a negative errno |
| * (ex: -ENXIO) upon failure. |
| */ |
| int |
| nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) |
| { |
| struct nvme_fc_rport *rport = remoteport_to_rport(portptr); |
| struct nvme_fc_ctrl *ctrl; |
| unsigned long flags; |
| |
| if (!portptr) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&rport->lock, flags); |
| |
| if (portptr->port_state != FC_OBJSTATE_ONLINE) { |
| spin_unlock_irqrestore(&rport->lock, flags); |
| return -EINVAL; |
| } |
| portptr->port_state = FC_OBJSTATE_DELETED; |
| |
| rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); |
| |
| list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { |
| /* if dev_loss_tmo==0, dev loss is immediate */ |
| if (!portptr->dev_loss_tmo) { |
| dev_warn(ctrl->ctrl.device, |
| "NVME-FC{%d}: controller connectivity lost.\n", |
| ctrl->cnum); |
| nvme_delete_ctrl(&ctrl->ctrl); |
| } else |
| nvme_fc_ctrl_connectivity_loss(ctrl); |
| } |
| |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| nvme_fc_abort_lsops(rport); |
| |
| if (atomic_read(&rport->act_ctrl_cnt) == 0) |
| rport->lport->ops->remoteport_delete(portptr); |
| |
| /* |
| * release the reference, which will allow, if all controllers |
| * go away, which should only occur after dev_loss_tmo occurs, |
| * for the rport to be torn down. |
| */ |
| nvme_fc_rport_put(rport); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); |
| |
| /** |
| * nvme_fc_rescan_remoteport - transport entry point called by an |
| * LLDD to request a nvme device rescan. |
| * @remoteport: pointer to the (registered) remote port that is to be |
| * rescanned. |
| * |
| * Returns: N/A |
| */ |
| void |
| nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) |
| { |
| struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); |
| |
| nvme_fc_signal_discovery_scan(rport->lport, rport); |
| } |
| EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); |
| |
| int |
| nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, |
| u32 dev_loss_tmo) |
| { |
| struct nvme_fc_rport *rport = remoteport_to_rport(portptr); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rport->lock, flags); |
| |
| if (portptr->port_state != FC_OBJSTATE_ONLINE) { |
| spin_unlock_irqrestore(&rport->lock, flags); |
| return -EINVAL; |
| } |
| |
| /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ |
| rport->remoteport.dev_loss_tmo = dev_loss_tmo; |
| |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); |
| |
| |
| /* *********************** FC-NVME DMA Handling **************************** */ |
| |
| /* |
| * The fcloop device passes in a NULL device pointer. Real LLD's will |
| * pass in a valid device pointer. If NULL is passed to the dma mapping |
| * routines, depending on the platform, it may or may not succeed, and |
| * may crash. |
| * |
| * As such: |
| * Wrapper all the dma routines and check the dev pointer. |
| * |
| * If simple mappings (return just a dma address, we'll noop them, |
| * returning a dma address of 0. |
| * |
| * On more complex mappings (dma_map_sg), a pseudo routine fills |
| * in the scatter list, setting all dma addresses to 0. |
| */ |
| |
| static inline dma_addr_t |
| fc_dma_map_single(struct device *dev, void *ptr, size_t size, |
| enum dma_data_direction dir) |
| { |
| return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; |
| } |
| |
| static inline int |
| fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return dev ? dma_mapping_error(dev, dma_addr) : 0; |
| } |
| |
| static inline void |
| fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| if (dev) |
| dma_unmap_single(dev, addr, size, dir); |
| } |
| |
| static inline void |
| fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| if (dev) |
| dma_sync_single_for_cpu(dev, addr, size, dir); |
| } |
| |
| static inline void |
| fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| if (dev) |
| dma_sync_single_for_device(dev, addr, size, dir); |
| } |
| |
| /* pseudo dma_map_sg call */ |
| static int |
| fc_map_sg(struct scatterlist *sg, int nents) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| WARN_ON(nents == 0 || sg[0].length == 0); |
| |
| for_each_sg(sg, s, nents, i) { |
| s->dma_address = 0L; |
| #ifdef CONFIG_NEED_SG_DMA_LENGTH |
| s->dma_length = s->length; |
| #endif |
| } |
| return nents; |
| } |
| |
| static inline int |
| fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir) |
| { |
| return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); |
| } |
| |
| static inline void |
| fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir) |
| { |
| if (dev) |
| dma_unmap_sg(dev, sg, nents, dir); |
| } |
| |
| /* *********************** FC-NVME LS Handling **************************** */ |
| |
| static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); |
| static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); |
| |
| |
| static void |
| __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) |
| { |
| struct nvme_fc_rport *rport = lsop->rport; |
| struct nvmefc_ls_req *lsreq = &lsop->ls_req; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rport->lock, flags); |
| |
| if (!lsop->req_queued) { |
| spin_unlock_irqrestore(&rport->lock, flags); |
| return; |
| } |
| |
| list_del(&lsop->lsreq_list); |
| |
| lsop->req_queued = false; |
| |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| fc_dma_unmap_single(rport->dev, lsreq->rqstdma, |
| (lsreq->rqstlen + lsreq->rsplen), |
| DMA_BIDIRECTIONAL); |
| |
| nvme_fc_rport_put(rport); |
| } |
| |
| static int |
| __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, |
| struct nvmefc_ls_req_op *lsop, |
| void (*done)(struct nvmefc_ls_req *req, int status)) |
| { |
| struct nvmefc_ls_req *lsreq = &lsop->ls_req; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) |
| return -ECONNREFUSED; |
| |
| if (!nvme_fc_rport_get(rport)) |
| return -ESHUTDOWN; |
| |
| lsreq->done = done; |
| lsop->rport = rport; |
| lsop->req_queued = false; |
| INIT_LIST_HEAD(&lsop->lsreq_list); |
| init_completion(&lsop->ls_done); |
| |
| lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, |
| lsreq->rqstlen + lsreq->rsplen, |
| DMA_BIDIRECTIONAL); |
| if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { |
| ret = -EFAULT; |
| goto out_putrport; |
| } |
| lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; |
| |
| spin_lock_irqsave(&rport->lock, flags); |
| |
| list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); |
| |
| lsop->req_queued = true; |
| |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| ret = rport->lport->ops->ls_req(&rport->lport->localport, |
| &rport->remoteport, lsreq); |
| if (ret) |
| goto out_unlink; |
| |
| return 0; |
| |
| out_unlink: |
| lsop->ls_error = ret; |
| spin_lock_irqsave(&rport->lock, flags); |
| lsop->req_queued = false; |
| list_del(&lsop->lsreq_list); |
| spin_unlock_irqrestore(&rport->lock, flags); |
| fc_dma_unmap_single(rport->dev, lsreq->rqstdma, |
| (lsreq->rqstlen + lsreq->rsplen), |
| DMA_BIDIRECTIONAL); |
| out_putrport: |
| nvme_fc_rport_put(rport); |
| |
| return ret; |
| } |
| |
| static void |
| nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) |
| { |
| struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); |
| |
| lsop->ls_error = status; |
| complete(&lsop->ls_done); |
| } |
| |
| static int |
| nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) |
| { |
| struct nvmefc_ls_req *lsreq = &lsop->ls_req; |
| struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; |
| int ret; |
| |
| ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); |
| |
| if (!ret) { |
| /* |
| * No timeout/not interruptible as we need the struct |
| * to exist until the lldd calls us back. Thus mandate |
| * wait until driver calls back. lldd responsible for |
| * the timeout action |
| */ |
| wait_for_completion(&lsop->ls_done); |
| |
| __nvme_fc_finish_ls_req(lsop); |
| |
| ret = lsop->ls_error; |
| } |
| |
| if (ret) |
| return ret; |
| |
| /* ACC or RJT payload ? */ |
| if (rjt->w0.ls_cmd == FCNVME_LS_RJT) |
| return -ENXIO; |
| |
| return 0; |
| } |
| |
| static int |
| nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, |
| struct nvmefc_ls_req_op *lsop, |
| void (*done)(struct nvmefc_ls_req *req, int status)) |
| { |
| /* don't wait for completion */ |
| |
| return __nvme_fc_send_ls_req(rport, lsop, done); |
| } |
| |
| /* Validation Error indexes into the string table below */ |
| enum { |
| VERR_NO_ERROR = 0, |
| VERR_LSACC = 1, |
| VERR_LSDESC_RQST = 2, |
| VERR_LSDESC_RQST_LEN = 3, |
| VERR_ASSOC_ID = 4, |
| VERR_ASSOC_ID_LEN = 5, |
| VERR_CONN_ID = 6, |
| VERR_CONN_ID_LEN = 7, |
| VERR_CR_ASSOC = 8, |
| VERR_CR_ASSOC_ACC_LEN = 9, |
| VERR_CR_CONN = 10, |
| VERR_CR_CONN_ACC_LEN = 11, |
| VERR_DISCONN = 12, |
| VERR_DISCONN_ACC_LEN = 13, |
| }; |
| |
| static char *validation_errors[] = { |
| "OK", |
| "Not LS_ACC", |
| "Not LSDESC_RQST", |
| "Bad LSDESC_RQST Length", |
| "Not Association ID", |
| "Bad Association ID Length", |
| "Not Connection ID", |
| "Bad Connection ID Length", |
| "Not CR_ASSOC Rqst", |
| "Bad CR_ASSOC ACC Length", |
| "Not CR_CONN Rqst", |
| "Bad CR_CONN ACC Length", |
| "Not Disconnect Rqst", |
| "Bad Disconnect ACC Length", |
| }; |
| |
| static int |
| nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, |
| struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) |
| { |
| struct nvmefc_ls_req_op *lsop; |
| struct nvmefc_ls_req *lsreq; |
| struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; |
| struct fcnvme_ls_cr_assoc_acc *assoc_acc; |
| int ret, fcret = 0; |
| |
| lsop = kzalloc((sizeof(*lsop) + |
| ctrl->lport->ops->lsrqst_priv_sz + |
| sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); |
| if (!lsop) { |
| ret = -ENOMEM; |
| goto out_no_memory; |
| } |
| lsreq = &lsop->ls_req; |
| |
| lsreq->private = (void *)&lsop[1]; |
| assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) |
| (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); |
| assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; |
| |
| assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; |
| assoc_rqst->desc_list_len = |
| cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); |
| |
| assoc_rqst->assoc_cmd.desc_tag = |
| cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); |
| assoc_rqst->assoc_cmd.desc_len = |
| fcnvme_lsdesc_len( |
| sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); |
| |
| assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); |
| assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); |
| /* Linux supports only Dynamic controllers */ |
| assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); |
| uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); |
| strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, |
| min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); |
| strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, |
| min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); |
| |
| lsop->queue = queue; |
| lsreq->rqstaddr = assoc_rqst; |
| lsreq->rqstlen = sizeof(*assoc_rqst); |
| lsreq->rspaddr = assoc_acc; |
| lsreq->rsplen = sizeof(*assoc_acc); |
| lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; |
| |
| ret = nvme_fc_send_ls_req(ctrl->rport, lsop); |
| if (ret) |
| goto out_free_buffer; |
| |
| /* process connect LS completion */ |
| |
| /* validate the ACC response */ |
| if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) |
| fcret = VERR_LSACC; |
| else if (assoc_acc->hdr.desc_list_len != |
| fcnvme_lsdesc_len( |
| sizeof(struct fcnvme_ls_cr_assoc_acc))) |
| fcret = VERR_CR_ASSOC_ACC_LEN; |
| else if (assoc_acc->hdr.rqst.desc_tag != |
| cpu_to_be32(FCNVME_LSDESC_RQST)) |
| fcret = VERR_LSDESC_RQST; |
| else if (assoc_acc->hdr.rqst.desc_len != |
| fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) |
| fcret = VERR_LSDESC_RQST_LEN; |
| else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) |
| fcret = VERR_CR_ASSOC; |
| else if (assoc_acc->associd.desc_tag != |
| cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) |
| fcret = VERR_ASSOC_ID; |
| else if (assoc_acc->associd.desc_len != |
| fcnvme_lsdesc_len( |
| sizeof(struct fcnvme_lsdesc_assoc_id))) |
| fcret = VERR_ASSOC_ID_LEN; |
| else if (assoc_acc->connectid.desc_tag != |
| cpu_to_be32(FCNVME_LSDESC_CONN_ID)) |
| fcret = VERR_CONN_ID; |
| else if (assoc_acc->connectid.desc_len != |
| fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) |
| fcret = VERR_CONN_ID_LEN; |
| |
| if (fcret) { |
| ret = -EBADF; |
| dev_err(ctrl->dev, |
| "q %d Create Association LS failed: %s\n", |
| queue->qnum, validation_errors[fcret]); |
| } else { |
| ctrl->association_id = |
| be64_to_cpu(assoc_acc->associd.association_id); |
| queue->connection_id = |
| be64_to_cpu(assoc_acc->connectid.connection_id); |
| set_bit(NVME_FC_Q_CONNECTED, &queue->flags); |
| } |
| |
| out_free_buffer: |
| kfree(lsop); |
| out_no_memory: |
| if (ret) |
| dev_err(ctrl->dev, |
| "queue %d connect admin queue failed (%d).\n", |
| queue->qnum, ret); |
| return ret; |
| } |
| |
| static int |
| nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, |
| u16 qsize, u16 ersp_ratio) |
| { |
| struct nvmefc_ls_req_op *lsop; |
| struct nvmefc_ls_req *lsreq; |
| struct fcnvme_ls_cr_conn_rqst *conn_rqst; |
| struct fcnvme_ls_cr_conn_acc *conn_acc; |
| int ret, fcret = 0; |
| |
| lsop = kzalloc((sizeof(*lsop) + |
| ctrl->lport->ops->lsrqst_priv_sz + |
| sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); |
| if (!lsop) { |
| ret = -ENOMEM; |
| goto out_no_memory; |
| } |
| lsreq = &lsop->ls_req; |
| |
| lsreq->private = (void *)&lsop[1]; |
| conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) |
| (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); |
| conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; |
| |
| conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; |
| conn_rqst->desc_list_len = cpu_to_be32( |
| sizeof(struct fcnvme_lsdesc_assoc_id) + |
| sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); |
| |
| conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); |
| conn_rqst->associd.desc_len = |
| fcnvme_lsdesc_len( |
| sizeof(struct fcnvme_lsdesc_assoc_id)); |
| conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); |
| conn_rqst->connect_cmd.desc_tag = |
| cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); |
| conn_rqst->connect_cmd.desc_len = |
| fcnvme_lsdesc_len( |
| sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); |
| conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); |
| conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); |
| conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); |
| |
| lsop->queue = queue; |
| lsreq->rqstaddr = conn_rqst; |
| lsreq->rqstlen = sizeof(*conn_rqst); |
| lsreq->rspaddr = conn_acc; |
| lsreq->rsplen = sizeof(*conn_acc); |
| lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; |
| |
| ret = nvme_fc_send_ls_req(ctrl->rport, lsop); |
| if (ret) |
| goto out_free_buffer; |
| |
| /* process connect LS completion */ |
| |
| /* validate the ACC response */ |
| if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) |
| fcret = VERR_LSACC; |
| else if (conn_acc->hdr.desc_list_len != |
| fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) |
| fcret = VERR_CR_CONN_ACC_LEN; |
| else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) |
| fcret = VERR_LSDESC_RQST; |
| else if (conn_acc->hdr.rqst.desc_len != |
| fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) |
| fcret = VERR_LSDESC_RQST_LEN; |
| else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) |
| fcret = VERR_CR_CONN; |
| else if (conn_acc->connectid.desc_tag != |
| cpu_to_be32(FCNVME_LSDESC_CONN_ID)) |
| fcret = VERR_CONN_ID; |
| else if (conn_acc->connectid.desc_len != |
| fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) |
| fcret = VERR_CONN_ID_LEN; |
| |
| if (fcret) { |
| ret = -EBADF; |
| dev_err(ctrl->dev, |
| "q %d Create I/O Connection LS failed: %s\n", |
| queue->qnum, validation_errors[fcret]); |
| } else { |
| queue->connection_id = |
| be64_to_cpu(conn_acc->connectid.connection_id); |
| set_bit(NVME_FC_Q_CONNECTED, &queue->flags); |
| } |
| |
| out_free_buffer: |
| kfree(lsop); |
| out_no_memory: |
| if (ret) |
| dev_err(ctrl->dev, |
| "queue %d connect I/O queue failed (%d).\n", |
| queue->qnum, ret); |
| return ret; |
| } |
| |
| static void |
| nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) |
| { |
| struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); |
| |
| __nvme_fc_finish_ls_req(lsop); |
| |
| /* fc-nvme initiator doesn't care about success or failure of cmd */ |
| |
| kfree(lsop); |
| } |
| |
| /* |
| * This routine sends a FC-NVME LS to disconnect (aka terminate) |
| * the FC-NVME Association. Terminating the association also |
| * terminates the FC-NVME connections (per queue, both admin and io |
| * queues) that are part of the association. E.g. things are torn |
| * down, and the related FC-NVME Association ID and Connection IDs |
| * become invalid. |
| * |
| * The behavior of the fc-nvme initiator is such that it's |
| * understanding of the association and connections will implicitly |
| * be torn down. The action is implicit as it may be due to a loss of |
| * connectivity with the fc-nvme target, so you may never get a |
| * response even if you tried. As such, the action of this routine |
| * is to asynchronously send the LS, ignore any results of the LS, and |
| * continue on with terminating the association. If the fc-nvme target |
| * is present and receives the LS, it too can tear down. |
| */ |
| static void |
| nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) |
| { |
| struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; |
| struct fcnvme_ls_disconnect_assoc_acc *discon_acc; |
| struct nvmefc_ls_req_op *lsop; |
| struct nvmefc_ls_req *lsreq; |
| int ret; |
| |
| lsop = kzalloc((sizeof(*lsop) + |
| ctrl->lport->ops->lsrqst_priv_sz + |
| sizeof(*discon_rqst) + sizeof(*discon_acc)), |
| GFP_KERNEL); |
| if (!lsop) |
| /* couldn't sent it... too bad */ |
| return; |
| |
| lsreq = &lsop->ls_req; |
| |
| lsreq->private = (void *)&lsop[1]; |
| discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *) |
| (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); |
| discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; |
| |
| discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC; |
| discon_rqst->desc_list_len = cpu_to_be32( |
| sizeof(struct fcnvme_lsdesc_assoc_id) + |
| sizeof(struct fcnvme_lsdesc_disconn_cmd)); |
| |
| discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); |
| discon_rqst->associd.desc_len = |
| fcnvme_lsdesc_len( |
| sizeof(struct fcnvme_lsdesc_assoc_id)); |
| |
| discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); |
| |
| discon_rqst->discon_cmd.desc_tag = cpu_to_be32( |
| FCNVME_LSDESC_DISCONN_CMD); |
| discon_rqst->discon_cmd.desc_len = |
| fcnvme_lsdesc_len( |
| sizeof(struct fcnvme_lsdesc_disconn_cmd)); |
| |
| lsreq->rqstaddr = discon_rqst; |
| lsreq->rqstlen = sizeof(*discon_rqst); |
| lsreq->rspaddr = discon_acc; |
| lsreq->rsplen = sizeof(*discon_acc); |
| lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; |
| |
| ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, |
| nvme_fc_disconnect_assoc_done); |
| if (ret) |
| kfree(lsop); |
| } |
| |
| |
| /* *********************** NVME Ctrl Routines **************************** */ |
| |
| static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); |
| |
| static void |
| __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, |
| struct nvme_fc_fcp_op *op) |
| { |
| fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, |
| sizeof(op->rsp_iu), DMA_FROM_DEVICE); |
| fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, |
| sizeof(op->cmd_iu), DMA_TO_DEVICE); |
| |
| atomic_set(&op->state, FCPOP_STATE_UNINIT); |
| } |
| |
| static void |
| nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, |
| unsigned int hctx_idx) |
| { |
| struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); |
| |
| return __nvme_fc_exit_request(set->driver_data, op); |
| } |
| |
| static int |
| __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) |
| { |
| unsigned long flags; |
| int opstate; |
| |
| spin_lock_irqsave(&ctrl->lock, flags); |
| opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); |
| if (opstate != FCPOP_STATE_ACTIVE) |
| atomic_set(&op->state, opstate); |
| else if (ctrl->flags & FCCTRL_TERMIO) |
| ctrl->iocnt++; |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| |
| if (opstate != FCPOP_STATE_ACTIVE) |
| return -ECANCELED; |
| |
| ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, |
| &ctrl->rport->remoteport, |
| op->queue->lldd_handle, |
| &op->fcp_req); |
| |
| return 0; |
| } |
| |
| static void |
| nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; |
| int i; |
| |
| /* ensure we've initialized the ops once */ |
| if (!(aen_op->flags & FCOP_FLAGS_AEN)) |
| return; |
| |
| for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) |
| __nvme_fc_abort_op(ctrl, aen_op); |
| } |
| |
| static inline void |
| __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, |
| struct nvme_fc_fcp_op *op, int opstate) |
| { |
| unsigned long flags; |
| |
| if (opstate == FCPOP_STATE_ABORTED) { |
| spin_lock_irqsave(&ctrl->lock, flags); |
| if (ctrl->flags & FCCTRL_TERMIO) { |
| if (!--ctrl->iocnt) |
| wake_up(&ctrl->ioabort_wait); |
| } |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| } |
| } |
| |
| static void |
| nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) |
| { |
| struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); |
| struct request *rq = op->rq; |
| struct nvmefc_fcp_req *freq = &op->fcp_req; |
| struct nvme_fc_ctrl *ctrl = op->ctrl; |
| struct nvme_fc_queue *queue = op->queue; |
| struct nvme_completion *cqe = &op->rsp_iu.cqe; |
| struct nvme_command *sqe = &op->cmd_iu.sqe; |
| __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); |
| union nvme_result result; |
| bool terminate_assoc = true; |
| int opstate; |
| |
| /* |
| * WARNING: |
| * The current linux implementation of a nvme controller |
| * allocates a single tag set for all io queues and sizes |
| * the io queues to fully hold all possible tags. Thus, the |
| * implementation does not reference or care about the sqhd |
| * value as it never needs to use the sqhd/sqtail pointers |
| * for submission pacing. |
| * |
| * This affects the FC-NVME implementation in two ways: |
| * 1) As the value doesn't matter, we don't need to waste |
| * cycles extracting it from ERSPs and stamping it in the |
| * cases where the transport fabricates CQEs on successful |
| * completions. |
| * 2) The FC-NVME implementation requires that delivery of |
| * ERSP completions are to go back to the nvme layer in order |
| * relative to the rsn, such that the sqhd value will always |
| * be "in order" for the nvme layer. As the nvme layer in |
| * linux doesn't care about sqhd, there's no need to return |
| * them in order. |
| * |
| * Additionally: |
| * As the core nvme layer in linux currently does not look at |
| * every field in the cqe - in cases where the FC transport must |
| * fabricate a CQE, the following fields will not be set as they |
| * are not referenced: |
| * cqe.sqid, cqe.sqhd, cqe.command_id |
| * |
| * Failure or error of an individual i/o, in a transport |
| * detected fashion unrelated to the nvme completion status, |
| * potentially cause the initiator and target sides to get out |
| * of sync on SQ head/tail (aka outstanding io count allowed). |
| * Per FC-NVME spec, failure of an individual command requires |
| * the connection to be terminated, which in turn requires the |
| * association to be terminated. |
| */ |
| |
| opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); |
| |
| fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, |
| sizeof(op->rsp_iu), DMA_FROM_DEVICE); |
| |
| if (opstate == FCPOP_STATE_ABORTED) |
| status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); |
| else if (freq->status) { |
| status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: io failed due to lldd error %d\n", |
| ctrl->cnum, freq->status); |
| } |
| |
| /* |
| * For the linux implementation, if we have an unsuccesful |
| * status, they blk-mq layer can typically be called with the |
| * non-zero status and the content of the cqe isn't important. |
| */ |
| if (status) |
| goto done; |
| |
| /* |
| * command completed successfully relative to the wire |
| * protocol. However, validate anything received and |
| * extract the status and result from the cqe (create it |
| * where necessary). |
| */ |
| |
| switch (freq->rcv_rsplen) { |
| |
| case 0: |
| case NVME_FC_SIZEOF_ZEROS_RSP: |
| /* |
| * No response payload or 12 bytes of payload (which |
| * should all be zeros) are considered successful and |
| * no payload in the CQE by the transport. |
| */ |
| if (freq->transferred_length != |
| be32_to_cpu(op->cmd_iu.data_len)) { |
| status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: io failed due to bad transfer " |
| "length: %d vs expected %d\n", |
| ctrl->cnum, freq->transferred_length, |
| be32_to_cpu(op->cmd_iu.data_len)); |
| goto done; |
| } |
| result.u64 = 0; |
| break; |
| |
| case sizeof(struct nvme_fc_ersp_iu): |
| /* |
| * The ERSP IU contains a full completion with CQE. |
| * Validate ERSP IU and look at cqe. |
| */ |
| if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != |
| (freq->rcv_rsplen / 4) || |
| be32_to_cpu(op->rsp_iu.xfrd_len) != |
| freq->transferred_length || |
| op->rsp_iu.ersp_result || |
| sqe->common.command_id != cqe->command_id)) { |
| status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " |
| "iu len %d, xfr len %d vs %d, status code " |
| "%d, cmdid %d vs %d\n", |
| ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), |
| be32_to_cpu(op->rsp_iu.xfrd_len), |
| freq->transferred_length, |
| op->rsp_iu.ersp_result, |
| sqe->common.command_id, |
| cqe->command_id); |
| goto done; |
| } |
| result = cqe->result; |
| status = cqe->status; |
| break; |
| |
| default: |
| status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " |
| "len %d\n", |
| ctrl->cnum, freq->rcv_rsplen); |
| goto done; |
| } |
| |
| terminate_assoc = false; |
| |
| done: |
| if (op->flags & FCOP_FLAGS_AEN) { |
| nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); |
| __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); |
| atomic_set(&op->state, FCPOP_STATE_IDLE); |
| op->flags = FCOP_FLAGS_AEN; /* clear other flags */ |
| nvme_fc_ctrl_put(ctrl); |
| goto check_error; |
| } |
| |
| __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); |
| nvme_end_request(rq, status, result); |
| |
| check_error: |
| if (terminate_assoc) |
| nvme_fc_error_recovery(ctrl, "transport detected io error"); |
| } |
| |
| static int |
| __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, |
| struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, |
| struct request *rq, u32 rqno) |
| { |
| struct nvme_fcp_op_w_sgl *op_w_sgl = |
| container_of(op, typeof(*op_w_sgl), op); |
| struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; |
| int ret = 0; |
| |
| memset(op, 0, sizeof(*op)); |
| op->fcp_req.cmdaddr = &op->cmd_iu; |
| op->fcp_req.cmdlen = sizeof(op->cmd_iu); |
| op->fcp_req.rspaddr = &op->rsp_iu; |
| op->fcp_req.rsplen = sizeof(op->rsp_iu); |
| op->fcp_req.done = nvme_fc_fcpio_done; |
| op->ctrl = ctrl; |
| op->queue = queue; |
| op->rq = rq; |
| op->rqno = rqno; |
| |
| cmdiu->format_id = NVME_CMD_FORMAT_ID; |
| cmdiu->fc_id = NVME_CMD_FC_ID; |
| cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); |
| if (queue->qnum) |
| cmdiu->rsv_cat = fccmnd_set_cat_css(0, |
| (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); |
| else |
| cmdiu->rsv_cat = fccmnd_set_cat_admin(0); |
| |
| op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, |
| &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); |
| if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { |
| dev_err(ctrl->dev, |
| "FCP Op failed - cmdiu dma mapping failed.\n"); |
| ret = EFAULT; |
| goto out_on_error; |
| } |
| |
| op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, |
| &op->rsp_iu, sizeof(op->rsp_iu), |
| DMA_FROM_DEVICE); |
| if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { |
| dev_err(ctrl->dev, |
| "FCP Op failed - rspiu dma mapping failed.\n"); |
| ret = EFAULT; |
| } |
| |
| atomic_set(&op->state, FCPOP_STATE_IDLE); |
| out_on_error: |
| return ret; |
| } |
| |
| static int |
| nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, |
| unsigned int hctx_idx, unsigned int numa_node) |
| { |
| struct nvme_fc_ctrl *ctrl = set->driver_data; |
| struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); |
| int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; |
| struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; |
| int res; |
| |
| res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); |
| if (res) |
| return res; |
| op->op.fcp_req.first_sgl = &op->sgl[0]; |
| op->op.fcp_req.private = &op->priv[0]; |
| nvme_req(rq)->ctrl = &ctrl->ctrl; |
| return res; |
| } |
| |
| static int |
| nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvme_fc_fcp_op *aen_op; |
| struct nvme_fc_cmd_iu *cmdiu; |
| struct nvme_command *sqe; |
| void *private; |
| int i, ret; |
| |
| aen_op = ctrl->aen_ops; |
| for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { |
| private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, |
| GFP_KERNEL); |
| if (!private) |
| return -ENOMEM; |
| |
| cmdiu = &aen_op->cmd_iu; |
| sqe = &cmdiu->sqe; |
| ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], |
| aen_op, (struct request *)NULL, |
| (NVME_AQ_BLK_MQ_DEPTH + i)); |
| if (ret) { |
| kfree(private); |
| return ret; |
| } |
| |
| aen_op->flags = FCOP_FLAGS_AEN; |
| aen_op->fcp_req.private = private; |
| |
| memset(sqe, 0, sizeof(*sqe)); |
| sqe->common.opcode = nvme_admin_async_event; |
| /* Note: core layer may overwrite the sqe.command_id value */ |
| sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; |
| } |
| return 0; |
| } |
| |
| static void |
| nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvme_fc_fcp_op *aen_op; |
| int i; |
| |
| aen_op = ctrl->aen_ops; |
| for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { |
| if (!aen_op->fcp_req.private) |
| continue; |
| |
| __nvme_fc_exit_request(ctrl, aen_op); |
| |
| kfree(aen_op->fcp_req.private); |
| aen_op->fcp_req.private = NULL; |
| } |
| } |
| |
| static inline void |
| __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, |
| unsigned int qidx) |
| { |
| struct nvme_fc_queue *queue = &ctrl->queues[qidx]; |
| |
| hctx->driver_data = queue; |
| queue->hctx = hctx; |
| } |
| |
| static int |
| nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_fc_ctrl *ctrl = data; |
| |
| __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); |
| |
| return 0; |
| } |
| |
| static int |
| nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_fc_ctrl *ctrl = data; |
| |
| __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); |
| |
| return 0; |
| } |
| |
| static void |
| nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) |
| { |
| struct nvme_fc_queue *queue; |
| |
| queue = &ctrl->queues[idx]; |
| memset(queue, 0, sizeof(*queue)); |
| queue->ctrl = ctrl; |
| queue->qnum = idx; |
| atomic_set(&queue->csn, 0); |
| queue->dev = ctrl->dev; |
| |
| if (idx > 0) |
| queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; |
| else |
| queue->cmnd_capsule_len = sizeof(struct nvme_command); |
| |
| /* |
| * Considered whether we should allocate buffers for all SQEs |
| * and CQEs and dma map them - mapping their respective entries |
| * into the request structures (kernel vm addr and dma address) |
| * thus the driver could use the buffers/mappings directly. |
| * It only makes sense if the LLDD would use them for its |
| * messaging api. It's very unlikely most adapter api's would use |
| * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload |
| * structures were used instead. |
| */ |
| } |
| |
| /* |
| * This routine terminates a queue at the transport level. |
| * The transport has already ensured that all outstanding ios on |
| * the queue have been terminated. |
| * The transport will send a Disconnect LS request to terminate |
| * the queue's connection. Termination of the admin queue will also |
| * terminate the association at the target. |
| */ |
| static void |
| nvme_fc_free_queue(struct nvme_fc_queue *queue) |
| { |
| if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) |
| return; |
| |
| clear_bit(NVME_FC_Q_LIVE, &queue->flags); |
| /* |
| * Current implementation never disconnects a single queue. |
| * It always terminates a whole association. So there is never |
| * a disconnect(queue) LS sent to the target. |
| */ |
| |
| queue->connection_id = 0; |
| atomic_set(&queue->csn, 0); |
| } |
| |
| static void |
| __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, |
| struct nvme_fc_queue *queue, unsigned int qidx) |
| { |
| if (ctrl->lport->ops->delete_queue) |
| ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, |
| queue->lldd_handle); |
| queue->lldd_handle = NULL; |
| } |
| |
| static void |
| nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) |
| { |
| int i; |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++) |
| nvme_fc_free_queue(&ctrl->queues[i]); |
| } |
| |
| static int |
| __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, |
| struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) |
| { |
| int ret = 0; |
| |
| queue->lldd_handle = NULL; |
| if (ctrl->lport->ops->create_queue) |
| ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, |
| qidx, qsize, &queue->lldd_handle); |
| |
| return ret; |
| } |
| |
| static void |
| nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; |
| int i; |
| |
| for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) |
| __nvme_fc_delete_hw_queue(ctrl, queue, i); |
| } |
| |
| static int |
| nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) |
| { |
| struct nvme_fc_queue *queue = &ctrl->queues[1]; |
| int i, ret; |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { |
| ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); |
| if (ret) |
| goto delete_queues; |
| } |
| |
| return 0; |
| |
| delete_queues: |
| for (; i >= 0; i--) |
| __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); |
| return ret; |
| } |
| |
| static int |
| nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) |
| { |
| int i, ret = 0; |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++) { |
| ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, |
| (qsize / 5)); |
| if (ret) |
| break; |
| ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false); |
| if (ret) |
| break; |
| |
| set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); |
| } |
| |
| return ret; |
| } |
| |
| static void |
| nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) |
| { |
| int i; |
| |
| for (i = 1; i < ctrl->ctrl.queue_count; i++) |
| nvme_fc_init_queue(ctrl, i); |
| } |
| |
| static void |
| nvme_fc_ctrl_free(struct kref *ref) |
| { |
| struct nvme_fc_ctrl *ctrl = |
| container_of(ref, struct nvme_fc_ctrl, ref); |
| struct nvme_fc_lport *lport = ctrl->lport; |
| unsigned long flags; |
| |
| if (ctrl->ctrl.tagset) { |
| blk_cleanup_queue(ctrl->ctrl.connect_q); |
| blk_mq_free_tag_set(&ctrl->tag_set); |
| } |
| |
| /* remove from rport list */ |
| spin_lock_irqsave(&ctrl->rport->lock, flags); |
| list_del(&ctrl->ctrl_list); |
| spin_unlock_irqrestore(&ctrl->rport->lock, flags); |
| |
| blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); |
| blk_cleanup_queue(ctrl->ctrl.admin_q); |
| blk_cleanup_queue(ctrl->ctrl.fabrics_q); |
| blk_mq_free_tag_set(&ctrl->admin_tag_set); |
| |
| kfree(ctrl->queues); |
| |
| put_device(ctrl->dev); |
| nvme_fc_rport_put(ctrl->rport); |
| |
| ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); |
| if (ctrl->ctrl.opts) |
| nvmf_free_options(ctrl->ctrl.opts); |
| kfree(ctrl); |
| module_put(lport->ops->module); |
| } |
| |
| static void |
| nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) |
| { |
| kref_put(&ctrl->ref, nvme_fc_ctrl_free); |
| } |
| |
| static int |
| nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) |
| { |
| return kref_get_unless_zero(&ctrl->ref); |
| } |
| |
| /* |
| * All accesses from nvme core layer done - can now free the |
| * controller. Called after last nvme_put_ctrl() call |
| */ |
| static void |
| nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) |
| { |
| struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); |
| |
| WARN_ON(nctrl != &ctrl->ctrl); |
| |
| nvme_fc_ctrl_put(ctrl); |
| } |
| |
| static void |
| nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) |
| { |
| int active; |
| |
| /* |
| * if an error (io timeout, etc) while (re)connecting, |
| * it's an error on creating the new association. |
| * Start the error recovery thread if it hasn't already |
| * been started. It is expected there could be multiple |
| * ios hitting this path before things are cleaned up. |
| */ |
| if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { |
| active = atomic_xchg(&ctrl->err_work_active, 1); |
| if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) { |
| atomic_set(&ctrl->err_work_active, 0); |
| WARN_ON(1); |
| } |
| return; |
| } |
| |
| /* Otherwise, only proceed if in LIVE state - e.g. on first error */ |
| if (ctrl->ctrl.state != NVME_CTRL_LIVE) |
| return; |
| |
| dev_warn(ctrl->ctrl.device, |
| "NVME-FC{%d}: transport association error detected: %s\n", |
| ctrl->cnum, errmsg); |
| dev_warn(ctrl->ctrl.device, |
| "NVME-FC{%d}: resetting controller\n", ctrl->cnum); |
| |
| nvme_reset_ctrl(&ctrl->ctrl); |
| } |
| |
| static enum blk_eh_timer_return |
| nvme_fc_timeout(struct request *rq, bool reserved) |
| { |
| struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); |
| struct nvme_fc_ctrl *ctrl = op->ctrl; |
| |
| /* |
| * we can't individually ABTS an io without affecting the queue, |
| * thus killing the queue, and thus the association. |
| * So resolve by performing a controller reset, which will stop |
| * the host/io stack, terminate the association on the link, |
| * and recreate an association on the link. |
| */ |
| nvme_fc_error_recovery(ctrl, "io timeout error"); |
| |
| /* |
| * the io abort has been initiated. Have the reset timer |
| * restarted and the abort completion will complete the io |
| * shortly. Avoids a synchronous wait while the abort finishes. |
| */ |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| static int |
| nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, |
| struct nvme_fc_fcp_op *op) |
| { |
| struct nvmefc_fcp_req *freq = &op->fcp_req; |
| int ret; |
| |
| freq->sg_cnt = 0; |
| |
| if (!blk_rq_nr_phys_segments(rq)) |
| return 0; |
| |
| freq->sg_table.sgl = freq->first_sgl; |
| ret = sg_alloc_table_chained(&freq->sg_table, |
| blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, |
| NVME_INLINE_SG_CNT); |
| if (ret) |
| return -ENOMEM; |
| |
| op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); |
| WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); |
| freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, |
| op->nents, rq_dma_dir(rq)); |
| if (unlikely(freq->sg_cnt <= 0)) { |
| sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); |
| freq->sg_cnt = 0; |
| return -EFAULT; |
| } |
| |
| /* |
| * TODO: blk_integrity_rq(rq) for DIF |
| */ |
| return 0; |
| } |
| |
| static void |
| nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, |
| struct nvme_fc_fcp_op *op) |
| { |
| struct nvmefc_fcp_req *freq = &op->fcp_req; |
| |
| if (!freq->sg_cnt) |
| return; |
| |
| fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, |
| rq_dma_dir(rq)); |
| |
| sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); |
| |
| freq->sg_cnt = 0; |
| } |
| |
| /* |
| * In FC, the queue is a logical thing. At transport connect, the target |
| * creates its "queue" and returns a handle that is to be given to the |
| * target whenever it posts something to the corresponding SQ. When an |
| * SQE is sent on a SQ, FC effectively considers the SQE, or rather the |
| * command contained within the SQE, an io, and assigns a FC exchange |
| * to it. The SQE and the associated SQ handle are sent in the initial |
| * CMD IU sents on the exchange. All transfers relative to the io occur |
| * as part of the exchange. The CQE is the last thing for the io, |
| * which is transferred (explicitly or implicitly) with the RSP IU |
| * sent on the exchange. After the CQE is received, the FC exchange is |
| * terminaed and the Exchange may be used on a different io. |
| * |
| * The transport to LLDD api has the transport making a request for a |
| * new fcp io request to the LLDD. The LLDD then allocates a FC exchange |
| * resource and transfers the command. The LLDD will then process all |
| * steps to complete the io. Upon completion, the transport done routine |
| * is called. |
| * |
| * So - while the operation is outstanding to the LLDD, there is a link |
| * level FC exchange resource that is also outstanding. This must be |
| * considered in all cleanup operations. |
| */ |
| static blk_status_t |
| nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, |
| struct nvme_fc_fcp_op *op, u32 data_len, |
| enum nvmefc_fcp_datadir io_dir) |
| { |
| struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; |
| struct nvme_command *sqe = &cmdiu->sqe; |
| int ret, opstate; |
| |
| /* |
| * before attempting to send the io, check to see if we believe |
| * the target device is present |
| */ |
| if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) |
| return BLK_STS_RESOURCE; |
| |
| if (!nvme_fc_ctrl_get(ctrl)) |
| return BLK_STS_IOERR; |
| |
| /* format the FC-NVME CMD IU and fcp_req */ |
| cmdiu->connection_id = cpu_to_be64(queue->connection_id); |
| cmdiu->data_len = cpu_to_be32(data_len); |
| switch (io_dir) { |
| case NVMEFC_FCP_WRITE: |
| cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; |
| break; |
| case NVMEFC_FCP_READ: |
| cmdiu->flags = FCNVME_CMD_FLAGS_READ; |
| break; |
| case NVMEFC_FCP_NODATA: |
| cmdiu->flags = 0; |
| break; |
| } |
| op->fcp_req.payload_length = data_len; |
| op->fcp_req.io_dir = io_dir; |
| op->fcp_req.transferred_length = 0; |
| op->fcp_req.rcv_rsplen = 0; |
| op->fcp_req.status = NVME_SC_SUCCESS; |
| op->fcp_req.sqid = cpu_to_le16(queue->qnum); |
| |
| /* |
| * validate per fabric rules, set fields mandated by fabric spec |
| * as well as those by FC-NVME spec. |
| */ |
| WARN_ON_ONCE(sqe->common.metadata); |
| sqe->common.flags |= NVME_CMD_SGL_METABUF; |
| |
| /* |
| * format SQE DPTR field per FC-NVME rules: |
| * type=0x5 Transport SGL Data Block Descriptor |
| * subtype=0xA Transport-specific value |
| * address=0 |
| * length=length of the data series |
| */ |
| sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | |
| NVME_SGL_FMT_TRANSPORT_A; |
| sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); |
| sqe->rw.dptr.sgl.addr = 0; |
| |
| if (!(op->flags & FCOP_FLAGS_AEN)) { |
| ret = nvme_fc_map_data(ctrl, op->rq, op); |
| if (ret < 0) { |
| nvme_cleanup_cmd(op->rq); |
| nvme_fc_ctrl_put(ctrl); |
| if (ret == -ENOMEM || ret == -EAGAIN) |
| return BLK_STS_RESOURCE; |
| return BLK_STS_IOERR; |
| } |
| } |
| |
| fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, |
| sizeof(op->cmd_iu), DMA_TO_DEVICE); |
| |
| atomic_set(&op->state, FCPOP_STATE_ACTIVE); |
| |
| if (!(op->flags & FCOP_FLAGS_AEN)) |
| blk_mq_start_request(op->rq); |
| |
| cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); |
| ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, |
| &ctrl->rport->remoteport, |
| queue->lldd_handle, &op->fcp_req); |
| |
| if (ret) { |
| /* |
| * If the lld fails to send the command is there an issue with |
| * the csn value? If the command that fails is the Connect, |
| * no - as the connection won't be live. If it is a command |
| * post-connect, it's possible a gap in csn may be created. |
| * Does this matter? As Linux initiators don't send fused |
| * commands, no. The gap would exist, but as there's nothing |
| * that depends on csn order to be delivered on the target |
| * side, it shouldn't hurt. It would be difficult for a |
| * target to even detect the csn gap as it has no idea when the |
| * cmd with the csn was supposed to arrive. |
| */ |
| opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); |
| __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); |
| |
| if (!(op->flags & FCOP_FLAGS_AEN)) |
| nvme_fc_unmap_data(ctrl, op->rq, op); |
| |
| nvme_cleanup_cmd(op->rq); |
| nvme_fc_ctrl_put(ctrl); |
| |
| if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && |
| ret != -EBUSY) |
| return BLK_STS_IOERR; |
| |
| return BLK_STS_RESOURCE; |
| } |
| |
| return BLK_STS_OK; |
| } |
| |
| static blk_status_t |
| nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, |
| const struct blk_mq_queue_data *bd) |
| { |
| struct nvme_ns *ns = hctx->queue->queuedata; |
| struct nvme_fc_queue *queue = hctx->driver_data; |
| struct nvme_fc_ctrl *ctrl = queue->ctrl; |
| struct request *rq = bd->rq; |
| struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); |
| struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; |
| struct nvme_command *sqe = &cmdiu->sqe; |
| enum nvmefc_fcp_datadir io_dir; |
| bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); |
| u32 data_len; |
| blk_status_t ret; |
| |
| if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || |
| !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) |
| return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); |
| |
| ret = nvme_setup_cmd(ns, rq, sqe); |
| if (ret) |
| return ret; |
| |
| /* |
| * nvme core doesn't quite treat the rq opaquely. Commands such |
| * as WRITE ZEROES will return a non-zero rq payload_bytes yet |
| * there is no actual payload to be transferred. |
| * To get it right, key data transmission on there being 1 or |
| * more physical segments in the sg list. If there is no |
| * physical segments, there is no payload. |
| */ |
| if (blk_rq_nr_phys_segments(rq)) { |
| data_len = blk_rq_payload_bytes(rq); |
| io_dir = ((rq_data_dir(rq) == WRITE) ? |
| NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); |
| } else { |
| data_len = 0; |
| io_dir = NVMEFC_FCP_NODATA; |
| } |
| |
| |
| return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); |
| } |
| |
| static void |
| nvme_fc_submit_async_event(struct nvme_ctrl *arg) |
| { |
| struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); |
| struct nvme_fc_fcp_op *aen_op; |
| unsigned long flags; |
| bool terminating = false; |
| blk_status_t ret; |
| |
| spin_lock_irqsave(&ctrl->lock, flags); |
| if (ctrl->flags & FCCTRL_TERMIO) |
| terminating = true; |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| |
| if (terminating) |
| return; |
| |
| aen_op = &ctrl->aen_ops[0]; |
| |
| ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, |
| NVMEFC_FCP_NODATA); |
| if (ret) |
| dev_err(ctrl->ctrl.device, |
| "failed async event work\n"); |
| } |
| |
| static void |
| nvme_fc_complete_rq(struct request *rq) |
| { |
| struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); |
| struct nvme_fc_ctrl *ctrl = op->ctrl; |
| |
| atomic_set(&op->state, FCPOP_STATE_IDLE); |
| |
| nvme_fc_unmap_data(ctrl, rq, op); |
| nvme_complete_rq(rq); |
| nvme_fc_ctrl_put(ctrl); |
| } |
| |
| /* |
| * This routine is used by the transport when it needs to find active |
| * io on a queue that is to be terminated. The transport uses |
| * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke |
| * this routine to kill them on a 1 by 1 basis. |
| * |
| * As FC allocates FC exchange for each io, the transport must contact |
| * the LLDD to terminate the exchange, thus releasing the FC exchange. |
| * After terminating the exchange the LLDD will call the transport's |
| * normal io done path for the request, but it will have an aborted |
| * status. The done path will return the io request back to the block |
| * layer with an error status. |
| */ |
| static bool |
| nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) |
| { |
| struct nvme_ctrl *nctrl = data; |
| struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); |
| struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); |
| |
| __nvme_fc_abort_op(ctrl, op); |
| return true; |
| } |
| |
| |
| static const struct blk_mq_ops nvme_fc_mq_ops = { |
| .queue_rq = nvme_fc_queue_rq, |
| .complete = nvme_fc_complete_rq, |
| .init_request = nvme_fc_init_request, |
| .exit_request = nvme_fc_exit_request, |
| .init_hctx = nvme_fc_init_hctx, |
| .timeout = nvme_fc_timeout, |
| }; |
| |
| static int |
| nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; |
| unsigned int nr_io_queues; |
| int ret; |
| |
| nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), |
| ctrl->lport->ops->max_hw_queues); |
| ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); |
| if (ret) { |
| dev_info(ctrl->ctrl.device, |
| "set_queue_count failed: %d\n", ret); |
| return ret; |
| } |
| |
| ctrl->ctrl.queue_count = nr_io_queues + 1; |
| if (!nr_io_queues) |
| return 0; |
| |
| nvme_fc_init_io_queues(ctrl); |
| |
| memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); |
| ctrl->tag_set.ops = &nvme_fc_mq_ops; |
| ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; |
| ctrl->tag_set.reserved_tags = 1; /* fabric connect */ |
| ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; |
| ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; |
| ctrl->tag_set.cmd_size = |
| struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, |
| ctrl->lport->ops->fcprqst_priv_sz); |
| ctrl->tag_set.driver_data = ctrl; |
| ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; |
| ctrl->tag_set.timeout = NVME_IO_TIMEOUT; |
| |
| ret = blk_mq_alloc_tag_set(&ctrl->tag_set); |
| if (ret) |
| return ret; |
| |
| ctrl->ctrl.tagset = &ctrl->tag_set; |
| |
| ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); |
| if (IS_ERR(ctrl->ctrl.connect_q)) { |
| ret = PTR_ERR(ctrl->ctrl.connect_q); |
| goto out_free_tag_set; |
| } |
| |
| ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); |
| if (ret) |
| goto out_cleanup_blk_queue; |
| |
| ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); |
| if (ret) |
| goto out_delete_hw_queues; |
| |
| ctrl->ioq_live = true; |
| |
| return 0; |
| |
| out_delete_hw_queues: |
| nvme_fc_delete_hw_io_queues(ctrl); |
| out_cleanup_blk_queue: |
| blk_cleanup_queue(ctrl->ctrl.connect_q); |
| out_free_tag_set: |
| blk_mq_free_tag_set(&ctrl->tag_set); |
| nvme_fc_free_io_queues(ctrl); |
| |
| /* force put free routine to ignore io queues */ |
| ctrl->ctrl.tagset = NULL; |
| |
| return ret; |
| } |
| |
| static int |
| nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; |
| u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; |
| unsigned int nr_io_queues; |
| int ret; |
| |
| nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), |
| ctrl->lport->ops->max_hw_queues); |
| ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); |
| if (ret) { |
| dev_info(ctrl->ctrl.device, |
| "set_queue_count failed: %d\n", ret); |
| return ret; |
| } |
| |
| if (!nr_io_queues && prior_ioq_cnt) { |
| dev_info(ctrl->ctrl.device, |
| "Fail Reconnect: At least 1 io queue " |
| "required (was %d)\n", prior_ioq_cnt); |
| return -ENOSPC; |
| } |
| |
| ctrl->ctrl.queue_count = nr_io_queues + 1; |
| /* check for io queues existing */ |
| if (ctrl->ctrl.queue_count == 1) |
| return 0; |
| |
| ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); |
| if (ret) |
| goto out_free_io_queues; |
| |
| ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); |
| if (ret) |
| goto out_delete_hw_queues; |
| |
| if (prior_ioq_cnt != nr_io_queues) |
| dev_info(ctrl->ctrl.device, |
| "reconnect: revising io queue count from %d to %d\n", |
| prior_ioq_cnt, nr_io_queues); |
| blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); |
| |
| return 0; |
| |
| out_delete_hw_queues: |
| nvme_fc_delete_hw_io_queues(ctrl); |
| out_free_io_queues: |
| nvme_fc_free_io_queues(ctrl); |
| return ret; |
| } |
| |
| static void |
| nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) |
| { |
| struct nvme_fc_lport *lport = rport->lport; |
| |
| atomic_inc(&lport->act_rport_cnt); |
| } |
| |
| static void |
| nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) |
| { |
| struct nvme_fc_lport *lport = rport->lport; |
| u32 cnt; |
| |
| cnt = atomic_dec_return(&lport->act_rport_cnt); |
| if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) |
| lport->ops->localport_delete(&lport->localport); |
| } |
| |
| static int |
| nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvme_fc_rport *rport = ctrl->rport; |
| u32 cnt; |
| |
| if (ctrl->assoc_active) |
| return 1; |
| |
| ctrl->assoc_active = true; |
| cnt = atomic_inc_return(&rport->act_ctrl_cnt); |
| if (cnt == 1) |
| nvme_fc_rport_active_on_lport(rport); |
| |
| return 0; |
| } |
| |
| static int |
| nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvme_fc_rport *rport = ctrl->rport; |
| struct nvme_fc_lport *lport = rport->lport; |
| u32 cnt; |
| |
| /* ctrl->assoc_active=false will be set independently */ |
| |
| cnt = atomic_dec_return(&rport->act_ctrl_cnt); |
| if (cnt == 0) { |
| if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) |
| lport->ops->remoteport_delete(&rport->remoteport); |
| nvme_fc_rport_inactive_on_lport(rport); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This routine restarts the controller on the host side, and |
| * on the link side, recreates the controller association. |
| */ |
| static int |
| nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) |
| { |
| struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; |
| int ret; |
| bool changed; |
| |
| ++ctrl->ctrl.nr_reconnects; |
| |
| if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) |
| return -ENODEV; |
| |
| if (nvme_fc_ctlr_active_on_rport(ctrl)) |
| return -ENOTUNIQ; |
| |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: create association : host wwpn 0x%016llx " |
| " rport wwpn 0x%016llx: NQN \"%s\"\n", |
| ctrl->cnum, ctrl->lport->localport.port_name, |
| ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); |
| |
| /* |
| * Create the admin queue |
| */ |
| |
| ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, |
| NVME_AQ_DEPTH); |
| if (ret) |
| goto out_free_queue; |
| |
| ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], |
| NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); |
| if (ret) |
| goto out_delete_hw_queue; |
| |
| ret = nvmf_connect_admin_queue(&ctrl->ctrl); |
| if (ret) |
| goto out_disconnect_admin_queue; |
| |
| set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); |
| |
| /* |
| * Check controller capabilities |
| * |
| * todo:- add code to check if ctrl attributes changed from |
| * prior connection values |
| */ |
| |
| ret = nvme_enable_ctrl(&ctrl->ctrl); |
| if (ret) |
| goto out_disconnect_admin_queue; |
| |
| ctrl->ctrl.max_hw_sectors = |
| (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); |
| |
| blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); |
| |
| ret = nvme_init_identify(&ctrl->ctrl); |
| if (ret) |
| goto out_disconnect_admin_queue; |
| |
| /* sanity checks */ |
| |
| /* FC-NVME does not have other data in the capsule */ |
| if (ctrl->ctrl.icdoff) { |
| dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", |
| ctrl->ctrl.icdoff); |
| goto out_disconnect_admin_queue; |
| } |
| |
| /* FC-NVME supports normal SGL Data Block Descriptors */ |
| |
| if (opts->queue_size > ctrl->ctrl.maxcmd) { |
| /* warn if maxcmd is lower than queue_size */ |
| dev_warn(ctrl->ctrl.device, |
| "queue_size %zu > ctrl maxcmd %u, reducing " |
| "to maxcmd\n", |
| opts->queue_size, ctrl->ctrl.maxcmd); |
| opts->queue_size = ctrl->ctrl.maxcmd; |
| } |
| |
| if (opts->queue_size > ctrl->ctrl.sqsize + 1) { |
| /* warn if sqsize is lower than queue_size */ |
| dev_warn(ctrl->ctrl.device, |
| "queue_size %zu > ctrl sqsize %u, reducing " |
| "to sqsize\n", |
| opts->queue_size, ctrl->ctrl.sqsize + 1); |
| opts->queue_size = ctrl->ctrl.sqsize + 1; |
| } |
| |
| ret = nvme_fc_init_aen_ops(ctrl); |
| if (ret) |
| goto out_term_aen_ops; |
| |
| /* |
| * Create the io queues |
| */ |
| |
| if (ctrl->ctrl.queue_count > 1) { |
| if (!ctrl->ioq_live) |
| ret = nvme_fc_create_io_queues(ctrl); |
| else |
| ret = nvme_fc_recreate_io_queues(ctrl); |
| if (ret) |
| goto out_term_aen_ops; |
| } |
| |
| changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); |
| |
| ctrl->ctrl.nr_reconnects = 0; |
| |
| if (changed) |
| nvme_start_ctrl(&ctrl->ctrl); |
| |
| return 0; /* Success */ |
| |
| out_term_aen_ops: |
| nvme_fc_term_aen_ops(ctrl); |
| out_disconnect_admin_queue: |
| /* send a Disconnect(association) LS to fc-nvme target */ |
| nvme_fc_xmt_disconnect_assoc(ctrl); |
| ctrl->association_id = 0; |
| out_delete_hw_queue: |
| __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); |
| out_free_queue: |
| nvme_fc_free_queue(&ctrl->queues[0]); |
| ctrl->assoc_active = false; |
| nvme_fc_ctlr_inactive_on_rport(ctrl); |
| |
| return ret; |
| } |
| |
| /* |
| * This routine stops operation of the controller on the host side. |
| * On the host os stack side: Admin and IO queues are stopped, |
| * outstanding ios on them terminated via FC ABTS. |
| * On the link side: the association is terminated. |
| */ |
| static void |
| nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) |
| { |
| unsigned long flags; |
| |
| if (!ctrl->assoc_active) |
| return; |
| ctrl->assoc_active = false; |
| |
| spin_lock_irqsave(&ctrl->lock, flags); |
| ctrl->flags |= FCCTRL_TERMIO; |
| ctrl->iocnt = 0; |
| spin_unlock_irqrestore(&ctrl->lock, flags); |
| |
| /* |
| * If io queues are present, stop them and terminate all outstanding |
| * ios on them. As FC allocates FC exchange for each io, the |
| * transport must contact the LLDD to terminate the exchange, |
| * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() |
| * to tell us what io's are busy and invoke a transport routine |
| * to kill them with the LLDD. After terminating the exchange |
| * the LLDD will call the transport's normal io done path, but it |
| * will have an aborted status. The done path will return the |
| * io requests back to the block layer as part of normal completions |
| * (but with error status). |
| */ |
| if (ctrl->ctrl.queue_count > 1) { |
| nvme_stop_queues(&ctrl->ctrl); |
| blk_mq_tagset_busy_iter(&ctrl->tag_set, |
| nvme_fc_terminate_exchange, &ctrl->ctrl); |
| blk_mq_tagset_wait_completed_request(&ctrl->tag_set); |
| } |
| |
| /* |
| * Other transports, which don't have link-level contexts bound |
| * to sqe's, would try to gracefully shutdown the controller by |
| * writing the registers for shutdown and polling (call |
| * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially |
| * just aborted and we will wait on those contexts, and given |
| * there was no indication of how live the controlelr is on the |
| * link, don't send more io to create more contexts for the |
| * shutdown. Let the controller fail via keepalive failure if |
| * its still present. |
| */ |
| |
| /* |
| * clean up the admin queue. Same thing as above. |
| * use blk_mq_tagset_busy_itr() and the transport routine to |
| * terminate the exchanges. |
| */ |
| blk_mq_quiesce_queue(ctrl->ctrl.admin_q); |
| blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, |
| nvme_fc_terminate_exchange, &ctrl->ctrl); |
| blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); |
| |
| /* kill the aens as they are a separate path */ |
| nvme_fc_abort_aen_ops(ctrl); |
| |
| /* wait for all io that had to be aborted */ |
| spin_lock_irq(&ctrl->lock); |
| wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); |
| ctrl->flags &= ~FCCTRL_TERMIO; |
| spin_unlock_irq(&ctrl->lock); |
| |
| nvme_fc_term_aen_ops(ctrl); |
| |
| /* |
| * send a Disconnect(association) LS to fc-nvme target |
| * Note: could have been sent at top of process, but |
| * cleaner on link traffic if after the aborts complete. |
| * Note: if association doesn't exist, association_id will be 0 |
| */ |
| if (ctrl->association_id) |
| nvme_fc_xmt_disconnect_assoc(ctrl); |
| |
| ctrl->association_id = 0; |
| |
| if (ctrl->ctrl.tagset) { |
| nvme_fc_delete_hw_io_queues(ctrl); |
| nvme_fc_free_io_queues(ctrl); |
| } |
| |
| __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); |
| nvme_fc_free_queue(&ctrl->queues[0]); |
| |
| /* re-enable the admin_q so anything new can fast fail */ |
| blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); |
| |
| /* resume the io queues so that things will fast fail */ |
| nvme_start_queues(&ctrl->ctrl); |
| |
| nvme_fc_ctlr_inactive_on_rport(ctrl); |
| } |
| |
| static void |
| nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) |
| { |
| struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); |
| |
| cancel_work_sync(&ctrl->err_work); |
| cancel_delayed_work_sync(&ctrl->connect_work); |
| /* |
| * kill the association on the link side. this will block |
| * waiting for io to terminate |
| */ |
| nvme_fc_delete_association(ctrl); |
| } |
| |
| static void |
| nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) |
| { |
| struct nvme_fc_rport *rport = ctrl->rport; |
| struct nvme_fc_remote_port *portptr = &rport->remoteport; |
| unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; |
| bool recon = true; |
| |
| if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) |
| return; |
| |
| if (portptr->port_state == FC_OBJSTATE_ONLINE) |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", |
| ctrl->cnum, status); |
| else if (time_after_eq(jiffies, rport->dev_loss_end)) |
| recon = false; |
| |
| if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { |
| if (portptr->port_state == FC_OBJSTATE_ONLINE) |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: Reconnect attempt in %ld " |
| "seconds\n", |
| ctrl->cnum, recon_delay / HZ); |
| else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) |
| recon_delay = rport->dev_loss_end - jiffies; |
| |
| queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); |
| } else { |
| if (portptr->port_state == FC_OBJSTATE_ONLINE) |
| dev_warn(ctrl->ctrl.device, |
| "NVME-FC{%d}: Max reconnect attempts (%d) " |
| "reached.\n", |
| ctrl->cnum, ctrl->ctrl.nr_reconnects); |
| else |
| dev_warn(ctrl->ctrl.device, |
| "NVME-FC{%d}: dev_loss_tmo (%d) expired " |
| "while waiting for remoteport connectivity.\n", |
| ctrl->cnum, portptr->dev_loss_tmo); |
| WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); |
| } |
| } |
| |
| static void |
| __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl) |
| { |
| /* |
| * if state is connecting - the error occurred as part of a |
| * reconnect attempt. The create_association error paths will |
| * clean up any outstanding io. |
| * |
| * if it's a different state - ensure all pending io is |
| * terminated. Given this can delay while waiting for the |
| * aborted io to return, we recheck adapter state below |
| * before changing state. |
| */ |
| if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { |
| nvme_stop_keep_alive(&ctrl->ctrl); |
| |
| /* will block will waiting for io to terminate */ |
| nvme_fc_delete_association(ctrl); |
| } |
| |
| if (ctrl->ctrl.state != NVME_CTRL_CONNECTING && |
| !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) |
| dev_err(ctrl->ctrl.device, |
| "NVME-FC{%d}: error_recovery: Couldn't change state " |
| "to CONNECTING\n", ctrl->cnum); |
| } |
| |
| static void |
| nvme_fc_reset_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_fc_ctrl *ctrl = |
| container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); |
| int ret; |
| |
| __nvme_fc_terminate_io(ctrl); |
| |
| nvme_stop_ctrl(&ctrl->ctrl); |
| |
| if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) |
| ret = nvme_fc_create_association(ctrl); |
| else |
| ret = -ENOTCONN; |
| |
| if (ret) |
| nvme_fc_reconnect_or_delete(ctrl, ret); |
| else |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: controller reset complete\n", |
| ctrl->cnum); |
| } |
| |
| static void |
| nvme_fc_connect_err_work(struct work_struct *work) |
| { |
| struct nvme_fc_ctrl *ctrl = |
| container_of(work, struct nvme_fc_ctrl, err_work); |
| |
| __nvme_fc_terminate_io(ctrl); |
| |
| atomic_set(&ctrl->err_work_active, 0); |
| |
| /* |
| * Rescheduling the connection after recovering |
| * from the io error is left to the reconnect work |
| * item, which is what should have stalled waiting on |
| * the io that had the error that scheduled this work. |
| */ |
| } |
| |
| static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { |
| .name = "fc", |
| .module = THIS_MODULE, |
| .flags = NVME_F_FABRICS, |
| .reg_read32 = nvmf_reg_read32, |
| .reg_read64 = nvmf_reg_read64, |
| .reg_write32 = nvmf_reg_write32, |
| .free_ctrl = nvme_fc_nvme_ctrl_freed, |
| .submit_async_event = nvme_fc_submit_async_event, |
| .delete_ctrl = nvme_fc_delete_ctrl, |
| .get_address = nvmf_get_address, |
| }; |
| |
| static void |
| nvme_fc_connect_ctrl_work(struct work_struct *work) |
| { |
| int ret; |
| |
| struct nvme_fc_ctrl *ctrl = |
| container_of(to_delayed_work(work), |
| struct nvme_fc_ctrl, connect_work); |
| |
| ret = nvme_fc_create_association(ctrl); |
| if (ret) |
| nvme_fc_reconnect_or_delete(ctrl, ret); |
| else |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: controller connect complete\n", |
| ctrl->cnum); |
| } |
| |
| |
| static const struct blk_mq_ops nvme_fc_admin_mq_ops = { |
| .queue_rq = nvme_fc_queue_rq, |
| .complete = nvme_fc_complete_rq, |
| .init_request = nvme_fc_init_request, |
| .exit_request = nvme_fc_exit_request, |
| .init_hctx = nvme_fc_init_admin_hctx, |
| .timeout = nvme_fc_timeout, |
| }; |
| |
| |
| /* |
| * Fails a controller request if it matches an existing controller |
| * (association) with the same tuple: |
| * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> |
| * |
| * The ports don't need to be compared as they are intrinsically |
| * already matched by the port pointers supplied. |
| */ |
| static bool |
| nvme_fc_existing_controller(struct nvme_fc_rport *rport, |
| struct nvmf_ctrl_options *opts) |
| { |
| struct nvme_fc_ctrl *ctrl; |
| unsigned long flags; |
| bool found = false; |
| |
| spin_lock_irqsave(&rport->lock, flags); |
| list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { |
| found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); |
| if (found) |
| break; |
| } |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| return found; |
| } |
| |
| static struct nvme_ctrl * |
| nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, |
| struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) |
| { |
| struct nvme_fc_ctrl *ctrl; |
| unsigned long flags; |
| int ret, idx; |
| |
| if (!(rport->remoteport.port_role & |
| (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { |
| ret = -EBADR; |
| goto out_fail; |
| } |
| |
| if (!opts->duplicate_connect && |
| nvme_fc_existing_controller(rport, opts)) { |
| ret = -EALREADY; |
| goto out_fail; |
| } |
| |
| ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); |
| if (!ctrl) { |
| ret = -ENOMEM; |
| goto out_fail; |
| } |
| |
| if (!try_module_get(lport->ops->module)) { |
| ret = -EUNATCH; |
| goto out_free_ctrl; |
| } |
| |
| idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); |
| if (idx < 0) { |
| ret = -ENOSPC; |
| goto out_mod_put; |
| } |
| |
| ctrl->ctrl.opts = opts; |
| ctrl->ctrl.nr_reconnects = 0; |
| if (lport->dev) |
| ctrl->ctrl.numa_node = dev_to_node(lport->dev); |
| else |
| ctrl->ctrl.numa_node = NUMA_NO_NODE; |
| INIT_LIST_HEAD(&ctrl->ctrl_list); |
| ctrl->lport = lport; |
| ctrl->rport = rport; |
| ctrl->dev = lport->dev; |
| ctrl->cnum = idx; |
| ctrl->ioq_live = false; |
| ctrl->assoc_active = false; |
| atomic_set(&ctrl->err_work_active, 0); |
| init_waitqueue_head(&ctrl->ioabort_wait); |
| |
| get_device(ctrl->dev); |
| kref_init(&ctrl->ref); |
| |
| INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); |
| INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); |
| INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work); |
| spin_lock_init(&ctrl->lock); |
| |
| /* io queue count */ |
| ctrl->ctrl.queue_count = min_t(unsigned int, |
| opts->nr_io_queues, |
| lport->ops->max_hw_queues); |
| ctrl->ctrl.queue_count++; /* +1 for admin queue */ |
| |
| ctrl->ctrl.sqsize = opts->queue_size - 1; |
| ctrl->ctrl.kato = opts->kato; |
| ctrl->ctrl.cntlid = 0xffff; |
| |
| ret = -ENOMEM; |
| ctrl->queues = kcalloc(ctrl->ctrl.queue_count, |
| sizeof(struct nvme_fc_queue), GFP_KERNEL); |
| if (!ctrl->queues) |
| goto out_free_ida; |
| |
| nvme_fc_init_queue(ctrl, 0); |
| |
| memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); |
| ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; |
| ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; |
| ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ |
| ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; |
| ctrl->admin_tag_set.cmd_size = |
| struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, |
| ctrl->lport->ops->fcprqst_priv_sz); |
| ctrl->admin_tag_set.driver_data = ctrl; |
| ctrl->admin_tag_set.nr_hw_queues = 1; |
| ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; |
| ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; |
| |
| ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); |
| if (ret) |
| goto out_free_queues; |
| ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; |
| |
| ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); |
| if (IS_ERR(ctrl->ctrl.fabrics_q)) { |
| ret = PTR_ERR(ctrl->ctrl.fabrics_q); |
| goto out_free_admin_tag_set; |
| } |
| |
| ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); |
| if (IS_ERR(ctrl->ctrl.admin_q)) { |
| ret = PTR_ERR(ctrl->ctrl.admin_q); |
| goto out_cleanup_fabrics_q; |
| } |
| |
| /* |
| * Would have been nice to init io queues tag set as well. |
| * However, we require interaction from the controller |
| * for max io queue count before we can do so. |
| * Defer this to the connect path. |
| */ |
| |
| ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); |
| if (ret) |
| goto out_cleanup_admin_q; |
| |
| /* at this point, teardown path changes to ref counting on nvme ctrl */ |
| |
| spin_lock_irqsave(&rport->lock, flags); |
| list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); |
| spin_unlock_irqrestore(&rport->lock, flags); |
| |
| if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || |
| !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { |
| dev_err(ctrl->ctrl.device, |
| "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); |
| goto fail_ctrl; |
| } |
| |
| nvme_get_ctrl(&ctrl->ctrl); |
| |
| if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { |
| nvme_put_ctrl(&ctrl->ctrl); |
| dev_err(ctrl->ctrl.device, |
| "NVME-FC{%d}: failed to schedule initial connect\n", |
| ctrl->cnum); |
| goto fail_ctrl; |
| } |
| |
| flush_delayed_work(&ctrl->connect_work); |
| |
| dev_info(ctrl->ctrl.device, |
| "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", |
| ctrl->cnum, ctrl->ctrl.opts->subsysnqn); |
| |
| return &ctrl->ctrl; |
| |
| fail_ctrl: |
| nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); |
| cancel_work_sync(&ctrl->ctrl.reset_work); |
| cancel_work_sync(&ctrl->err_work); |
| cancel_delayed_work_sync(&ctrl->connect_work); |
| |
| ctrl->ctrl.opts = NULL; |
| |
| /* initiate nvme ctrl ref counting teardown */ |
| nvme_uninit_ctrl(&ctrl->ctrl); |
| |
| /* Remove core ctrl ref. */ |
| nvme_put_ctrl(&ctrl->ctrl); |
| |
| /* as we're past the point where we transition to the ref |
| * counting teardown path, if we return a bad pointer here, |
| * the calling routine, thinking it's prior to the |
| * transition, will do an rport put. Since the teardown |
| * path also does a rport put, we do an extra get here to |
| * so proper order/teardown happens. |
| */ |
| nvme_fc_rport_get(rport); |
| |
| return ERR_PTR(-EIO); |
| |
| out_cleanup_admin_q: |
| blk_cleanup_queue(ctrl->ctrl.admin_q); |
| out_cleanup_fabrics_q: |
| blk_cleanup_queue(ctrl->ctrl.fabrics_q); |
| out_free_admin_tag_set: |
| blk_mq_free_tag_set(&ctrl->admin_tag_set); |
| out_free_queues: |
| kfree(ctrl->queues); |
| out_free_ida: |
| put_device(ctrl->dev); |
| ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); |
| out_mod_put: |
| module_put(lport->ops->module); |
| out_free_ctrl: |
| kfree(ctrl); |
| out_fail: |
| /* exit via here doesn't follow ctlr ref points */ |
| return ERR_PTR(ret); |
| } |
| |
| |
| struct nvmet_fc_traddr { |
| u64 nn; |
| u64 pn; |
| }; |
| |
| static int |
| __nvme_fc_parse_u64(substring_t *sstr, u64 *val) |
| { |
| u64 token64; |
| |
| if (match_u64(sstr, &token64)) |
| return -EINVAL; |
| *val = token64; |
| |
| return 0; |
| } |
| |
| /* |
| * This routine validates and extracts the WWN's from the TRADDR string. |
| * As kernel parsers need the 0x to determine number base, universally |
| * build string to parse with 0x prefix before parsing name strings. |
| */ |
| static int |
| nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) |
| { |
| char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; |
| substring_t wwn = { name, &name[sizeof(name)-1] }; |
| int nnoffset, pnoffset; |
| |
| /* validate if string is one of the 2 allowed formats */ |
| if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && |
| !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && |
| !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], |
| "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { |
| nnoffset = NVME_FC_TRADDR_OXNNLEN; |
| pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + |
| NVME_FC_TRADDR_OXNNLEN; |
| } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && |
| !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && |
| !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], |
| "pn-", NVME_FC_TRADDR_NNLEN))) { |
| nnoffset = NVME_FC_TRADDR_NNLEN; |
| pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; |
| } else |
| goto out_einval; |
| |
| name[0] = '0'; |
| name[1] = 'x'; |
| name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; |
| |
| memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); |
| if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) |
| goto out_einval; |
| |
| memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); |
| if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) |
| goto out_einval; |
| |
| return 0; |
| |
| out_einval: |
| pr_warn("%s: bad traddr string\n", __func__); |
| return -EINVAL; |
| } |
| |
| static struct nvme_ctrl * |
| nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) |
| { |
| struct nvme_fc_lport *lport; |
| struct nvme_fc_rport *rport; |
| struct nvme_ctrl *ctrl; |
| struct nvmet_fc_traddr laddr = { 0L, 0L }; |
| struct nvmet_fc_traddr raddr = { 0L, 0L }; |
| unsigned long flags; |
| int ret; |
| |
| ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); |
| if (ret || !raddr.nn || !raddr.pn) |
| return ERR_PTR(-EINVAL); |
| |
| ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); |
| if (ret || !laddr.nn || !laddr.pn) |
| return ERR_PTR(-EINVAL); |
| |
| /* find the host and remote ports to connect together */ |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { |
| if (lport->localport.node_name != laddr.nn || |
| lport->localport.port_name != laddr.pn) |
| continue; |
| |
| list_for_each_entry(rport, &lport->endp_list, endp_list) { |
| if (rport->remoteport.node_name != raddr.nn || |
| rport->remoteport.port_name != raddr.pn) |
| continue; |
| |
| /* if fail to get reference fall through. Will error */ |
| if (!nvme_fc_rport_get(rport)) |
| break; |
| |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); |
| if (IS_ERR(ctrl)) |
| nvme_fc_rport_put(rport); |
| return ctrl; |
| } |
| } |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| pr_warn("%s: %s - %s combination not found\n", |
| __func__, opts->traddr, opts->host_traddr); |
| return ERR_PTR(-ENOENT); |
| } |
| |
| |
| static struct nvmf_transport_ops nvme_fc_transport = { |
| .name = "fc", |
| .module = THIS_MODULE, |
| .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, |
| .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, |
| .create_ctrl = nvme_fc_create_ctrl, |
| }; |
| |
| /* Arbitrary successive failures max. With lots of subsystems could be high */ |
| #define DISCOVERY_MAX_FAIL 20 |
| |
| static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| unsigned long flags; |
| LIST_HEAD(local_disc_list); |
| struct nvme_fc_lport *lport; |
| struct nvme_fc_rport *rport; |
| int failcnt = 0; |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| restart: |
| list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { |
| list_for_each_entry(rport, &lport->endp_list, endp_list) { |
| if (!nvme_fc_lport_get(lport)) |
| continue; |
| if (!nvme_fc_rport_get(rport)) { |
| /* |
| * This is a temporary condition. Upon restart |
| * this rport will be gone from the list. |
| * |
| * Revert the lport put and retry. Anything |
| * added to the list already will be skipped (as |
| * they are no longer list_empty). Loops should |
| * resume at rports that were not yet seen. |
| */ |
| nvme_fc_lport_put(lport); |
| |
| if (failcnt++ < DISCOVERY_MAX_FAIL) |
| goto restart; |
| |
| pr_err("nvme_discovery: too many reference " |
| "failures\n"); |
| goto process_local_list; |
| } |
| if (list_empty(&rport->disc_list)) |
| list_add_tail(&rport->disc_list, |
| &local_disc_list); |
| } |
| } |
| |
| process_local_list: |
| while (!list_empty(&local_disc_list)) { |
| rport = list_first_entry(&local_disc_list, |
| struct nvme_fc_rport, disc_list); |
| list_del_init(&rport->disc_list); |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| lport = rport->lport; |
| /* signal discovery. Won't hurt if it repeats */ |
| nvme_fc_signal_discovery_scan(lport, rport); |
| nvme_fc_rport_put(rport); |
| nvme_fc_lport_put(lport); |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| } |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| |
| return count; |
| } |
| static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); |
| |
| static struct attribute *nvme_fc_attrs[] = { |
| &dev_attr_nvme_discovery.attr, |
| NULL |
| }; |
| |
| static struct attribute_group nvme_fc_attr_group = { |
| .attrs = nvme_fc_attrs, |
| }; |
| |
| static const struct attribute_group *nvme_fc_attr_groups[] = { |
| &nvme_fc_attr_group, |
| NULL |
| }; |
| |
| static struct class fc_class = { |
| .name = "fc", |
| .dev_groups = nvme_fc_attr_groups, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init nvme_fc_init_module(void) |
| { |
| int ret; |
| |
| nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0); |
| if (!nvme_fc_wq) |
| return -ENOMEM; |
| |
| /* |
| * NOTE: |
| * It is expected that in the future the kernel will combine |
| * the FC-isms that are currently under scsi and now being |
| * added to by NVME into a new standalone FC class. The SCSI |
| * and NVME protocols and their devices would be under this |
| * new FC class. |
| * |
| * As we need something to post FC-specific udev events to, |
| * specifically for nvme probe events, start by creating the |
| * new device class. When the new standalone FC class is |
| * put in place, this code will move to a more generic |
| * location for the class. |
| */ |
| ret = class_register(&fc_class); |
| if (ret) { |
| pr_err("couldn't register class fc\n"); |
| goto out_destroy_wq; |
| } |
| |
| /* |
| * Create a device for the FC-centric udev events |
| */ |
| fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, |
| "fc_udev_device"); |
| if (IS_ERR(fc_udev_device)) { |
| pr_err("couldn't create fc_udev device!\n"); |
| ret = PTR_ERR(fc_udev_device); |
| goto out_destroy_class; |
| } |
| |
| ret = nvmf_register_transport(&nvme_fc_transport); |
| if (ret) |
| goto out_destroy_device; |
| |
| return 0; |
| |
| out_destroy_device: |
| device_destroy(&fc_class, MKDEV(0, 0)); |
| out_destroy_class: |
| class_unregister(&fc_class); |
| out_destroy_wq: |
| destroy_workqueue(nvme_fc_wq); |
| |
| return ret; |
| } |
| |
| static void |
| nvme_fc_delete_controllers(struct nvme_fc_rport *rport) |
| { |
| struct nvme_fc_ctrl *ctrl; |
| |
| spin_lock(&rport->lock); |
| list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { |
| dev_warn(ctrl->ctrl.device, |
| "NVME-FC{%d}: transport unloading: deleting ctrl\n", |
| ctrl->cnum); |
| nvme_delete_ctrl(&ctrl->ctrl); |
| } |
| spin_unlock(&rport->lock); |
| } |
| |
| static void |
| nvme_fc_cleanup_for_unload(void) |
| { |
| struct nvme_fc_lport *lport; |
| struct nvme_fc_rport *rport; |
| |
| list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { |
| list_for_each_entry(rport, &lport->endp_list, endp_list) { |
| nvme_fc_delete_controllers(rport); |
| } |
| } |
| } |
| |
| static void __exit nvme_fc_exit_module(void) |
| { |
| unsigned long flags; |
| bool need_cleanup = false; |
| |
| spin_lock_irqsave(&nvme_fc_lock, flags); |
| nvme_fc_waiting_to_unload = true; |
| if (!list_empty(&nvme_fc_lport_list)) { |
| need_cleanup = true; |
| nvme_fc_cleanup_for_unload(); |
| } |
| spin_unlock_irqrestore(&nvme_fc_lock, flags); |
| if (need_cleanup) { |
| pr_info("%s: waiting for ctlr deletes\n", __func__); |
| wait_for_completion(&nvme_fc_unload_proceed); |
| pr_info("%s: ctrl deletes complete\n", __func__); |
| } |
| |
| nvmf_unregister_transport(&nvme_fc_transport); |
| |
| ida_destroy(&nvme_fc_local_port_cnt); |
| ida_destroy(&nvme_fc_ctrl_cnt); |
| |
| device_destroy(&fc_class, MKDEV(0, 0)); |
| class_unregister(&fc_class); |
| destroy_workqueue(nvme_fc_wq); |
| } |
| |
| module_init(nvme_fc_init_module); |
| module_exit(nvme_fc_exit_module); |
| |
| MODULE_LICENSE("GPL v2"); |