blob: f9aa50ff14d42bfcdeed861f2e71d3581b5cf0e4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Cadence CDNSP DRD Driver.
*
* Copyright (C) 2020 Cadence.
*
* Author: Pawel Laszczak <pawell@cadence.com>
*
*/
#include <linux/moduleparam.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/irq.h>
#include <linux/dmi.h>
#include "core.h"
#include "gadget-export.h"
#include "drd.h"
#include "cdnsp-gadget.h"
#include "cdnsp-trace.h"
unsigned int cdnsp_port_speed(unsigned int port_status)
{
/*Detect gadget speed based on PORTSC register*/
if (DEV_SUPERSPEEDPLUS(port_status))
return USB_SPEED_SUPER_PLUS;
else if (DEV_SUPERSPEED(port_status))
return USB_SPEED_SUPER;
else if (DEV_HIGHSPEED(port_status))
return USB_SPEED_HIGH;
else if (DEV_FULLSPEED(port_status))
return USB_SPEED_FULL;
/* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
return USB_SPEED_UNKNOWN;
}
/*
* Given a port state, this function returns a value that would result in the
* port being in the same state, if the value was written to the port status
* control register.
* Save Read Only (RO) bits and save read/write bits where
* writing a 0 clears the bit and writing a 1 sets the bit (RWS).
* For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
*/
u32 cdnsp_port_state_to_neutral(u32 state)
{
/* Save read-only status and port state. */
return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
}
/**
* cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
* with capability ID id.
* @base: PCI MMIO registers base address.
* @start: Address at which to start looking, (0 or HCC_PARAMS to start at
* beginning of list)
* @id: Extended capability ID to search for.
*
* Returns the offset of the next matching extended capability structure.
* Some capabilities can occur several times,
* e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
*/
int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
{
u32 offset = start;
u32 next;
u32 val;
if (!start || start == HCC_PARAMS_OFFSET) {
val = readl(base + HCC_PARAMS_OFFSET);
if (val == ~0)
return 0;
offset = HCC_EXT_CAPS(val) << 2;
if (!offset)
return 0;
}
do {
val = readl(base + offset);
if (val == ~0)
return 0;
if (EXT_CAPS_ID(val) == id && offset != start)
return offset;
next = EXT_CAPS_NEXT(val);
offset += next << 2;
} while (next);
return 0;
}
void cdnsp_set_link_state(struct cdnsp_device *pdev,
__le32 __iomem *port_regs,
u32 link_state)
{
int port_num = 0xFF;
u32 temp;
temp = readl(port_regs);
temp = cdnsp_port_state_to_neutral(temp);
temp |= PORT_WKCONN_E | PORT_WKDISC_E;
writel(temp, port_regs);
temp &= ~PORT_PLS_MASK;
temp |= PORT_LINK_STROBE | link_state;
if (pdev->active_port)
port_num = pdev->active_port->port_num;
trace_cdnsp_handle_port_status(port_num, readl(port_regs));
writel(temp, port_regs);
trace_cdnsp_link_state_changed(port_num, readl(port_regs));
}
static void cdnsp_disable_port(struct cdnsp_device *pdev,
__le32 __iomem *port_regs)
{
u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
writel(temp | PORT_PED, port_regs);
}
static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
__le32 __iomem *port_regs)
{
u32 portsc = readl(port_regs);
writel(cdnsp_port_state_to_neutral(portsc) |
(portsc & PORT_CHANGE_BITS), port_regs);
}
static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
{
__le32 __iomem *reg;
void __iomem *base;
u32 offset = 0;
base = &pdev->cap_regs->hc_capbase;
offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
bit = readl(reg) | bit;
writel(bit, reg);
}
static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
{
__le32 __iomem *reg;
void __iomem *base;
u32 offset = 0;
base = &pdev->cap_regs->hc_capbase;
offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
bit = readl(reg) & ~bit;
writel(bit, reg);
}
/*
* Disable interrupts and begin the controller halting process.
*/
static void cdnsp_quiesce(struct cdnsp_device *pdev)
{
u32 halted;
u32 mask;
u32 cmd;
mask = ~(u32)(CDNSP_IRQS);
halted = readl(&pdev->op_regs->status) & STS_HALT;
if (!halted)
mask &= ~(CMD_R_S | CMD_DEVEN);
cmd = readl(&pdev->op_regs->command);
cmd &= mask;
writel(cmd, &pdev->op_regs->command);
}
/*
* Force controller into halt state.
*
* Disable any IRQs and clear the run/stop bit.
* Controller will complete any current and actively pipelined transactions, and
* should halt within 16 ms of the run/stop bit being cleared.
* Read controller Halted bit in the status register to see when the
* controller is finished.
*/
int cdnsp_halt(struct cdnsp_device *pdev)
{
int ret;
u32 val;
cdnsp_quiesce(pdev);
ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
val & STS_HALT, 1,
CDNSP_MAX_HALT_USEC);
if (ret) {
dev_err(pdev->dev, "ERROR: Device halt failed\n");
return ret;
}
pdev->cdnsp_state |= CDNSP_STATE_HALTED;
return 0;
}
/*
* device controller died, register read returns 0xffffffff, or command never
* ends.
*/
void cdnsp_died(struct cdnsp_device *pdev)
{
dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
pdev->cdnsp_state |= CDNSP_STATE_DYING;
cdnsp_halt(pdev);
}
/*
* Set the run bit and wait for the device to be running.
*/
static int cdnsp_start(struct cdnsp_device *pdev)
{
u32 temp;
int ret;
temp = readl(&pdev->op_regs->command);
temp |= (CMD_R_S | CMD_DEVEN);
writel(temp, &pdev->op_regs->command);
pdev->cdnsp_state = 0;
/*
* Wait for the STS_HALT Status bit to be 0 to indicate the device is
* running.
*/
ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
!(temp & STS_HALT), 1,
CDNSP_MAX_HALT_USEC);
if (ret) {
pdev->cdnsp_state = CDNSP_STATE_DYING;
dev_err(pdev->dev, "ERROR: Controller run failed\n");
}
return ret;
}
/*
* Reset a halted controller.
*
* This resets pipelines, timers, counters, state machines, etc.
* Transactions will be terminated immediately, and operational registers
* will be set to their defaults.
*/
int cdnsp_reset(struct cdnsp_device *pdev)
{
u32 command;
u32 temp;
int ret;
temp = readl(&pdev->op_regs->status);
if (temp == ~(u32)0) {
dev_err(pdev->dev, "Device not accessible, reset failed.\n");
return -ENODEV;
}
if ((temp & STS_HALT) == 0) {
dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
return -EINVAL;
}
command = readl(&pdev->op_regs->command);
command |= CMD_RESET;
writel(command, &pdev->op_regs->command);
ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
!(temp & CMD_RESET), 1,
10 * 1000);
if (ret) {
dev_err(pdev->dev, "ERROR: Controller reset failed\n");
return ret;
}
/*
* CDNSP cannot write any doorbells or operational registers other
* than status until the "Controller Not Ready" flag is cleared.
*/
ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
!(temp & STS_CNR), 1,
10 * 1000);
if (ret) {
dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
return ret;
}
dev_dbg(pdev->dev, "Controller ready to work");
return ret;
}
/*
* cdnsp_get_endpoint_index - Find the index for an endpoint given its
* descriptor.Use the return value to right shift 1 for the bitmask.
*
* Index = (epnum * 2) + direction - 1,
* where direction = 0 for OUT, 1 for IN.
* For control endpoints, the IN index is used (OUT index is unused), so
* index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
*/
static unsigned int
cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
{
unsigned int index = (unsigned int)usb_endpoint_num(desc);
if (usb_endpoint_xfer_control(desc))
return index * 2;
return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
}
/*
* Find the flag for this endpoint (for use in the control context). Use the
* endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
* bit 1, etc.
*/
static unsigned int
cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
{
return 1 << (cdnsp_get_endpoint_index(desc) + 1);
}
int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
{
struct cdnsp_device *pdev = pep->pdev;
struct usb_request *request;
int ret;
if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
trace_cdnsp_request_enqueue_busy(preq);
return -EBUSY;
}
request = &preq->request;
request->actual = 0;
request->status = -EINPROGRESS;
preq->direction = pep->direction;
preq->epnum = pep->number;
preq->td.drbl = 0;
ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
if (ret) {
trace_cdnsp_request_enqueue_error(preq);
return ret;
}
list_add_tail(&preq->list, &pep->pending_list);
trace_cdnsp_request_enqueue(preq);
switch (usb_endpoint_type(pep->endpoint.desc)) {
case USB_ENDPOINT_XFER_CONTROL:
ret = cdnsp_queue_ctrl_tx(pdev, preq);
break;
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_INT:
ret = cdnsp_queue_bulk_tx(pdev, preq);
break;
case USB_ENDPOINT_XFER_ISOC:
ret = cdnsp_queue_isoc_tx_prepare(pdev, preq);
}
if (ret)
goto unmap;
return 0;
unmap:
usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
pep->direction);
list_del(&preq->list);
trace_cdnsp_request_enqueue_error(preq);
return ret;
}
/*
* Remove the request's TD from the endpoint ring. This may cause the
* controller to stop USB transfers, potentially stopping in the middle of a
* TRB buffer. The controller should pick up where it left off in the TD,
* unless a Set Transfer Ring Dequeue Pointer is issued.
*
* The TRBs that make up the buffers for the canceled request will be "removed"
* from the ring. Since the ring is a contiguous structure, they can't be
* physically removed. Instead, there are two options:
*
* 1) If the controller is in the middle of processing the request to be
* canceled, we simply move the ring's dequeue pointer past those TRBs
* using the Set Transfer Ring Dequeue Pointer command. This will be
* the common case, when drivers timeout on the last submitted request
* and attempt to cancel.
*
* 2) If the controller is in the middle of a different TD, we turn the TRBs
* into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
* The controller will need to invalidate the any TRBs it has cached after
* the stop endpoint command.
*
* 3) The TD may have completed by the time the Stop Endpoint Command
* completes, so software needs to handle that case too.
*
*/
int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
{
struct cdnsp_device *pdev = pep->pdev;
int ret_stop = 0;
int ret_rem;
trace_cdnsp_request_dequeue(preq);
if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
ret_rem = cdnsp_remove_request(pdev, preq, pep);
return ret_rem ? ret_rem : ret_stop;
}
static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
{
struct cdnsp_input_control_ctx *ctrl_ctx;
struct cdnsp_slot_ctx *slot_ctx;
struct cdnsp_ep_ctx *ep_ctx;
int i;
ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
/*
* When a device's add flag and drop flag are zero, any subsequent
* configure endpoint command will leave that endpoint's state
* untouched. Make sure we don't leave any old state in the input
* endpoint contexts.
*/
ctrl_ctx->drop_flags = 0;
ctrl_ctx->add_flags = 0;
slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
/* Endpoint 0 is always valid */
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = 0;
ep_ctx->deq = 0;
ep_ctx->tx_info = 0;
}
}
/* Issue a configure endpoint command and wait for it to finish. */
static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
{
int ret;
cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
if (ret) {
dev_err(pdev->dev,
"ERR: unexpected command completion code 0x%x.\n", ret);
return -EINVAL;
}
return ret;
}
static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
struct cdnsp_ep *pep)
{
struct cdnsp_segment *segment;
union cdnsp_trb *event;
u32 cycle_state;
u32 data;
event = pdev->event_ring->dequeue;
segment = pdev->event_ring->deq_seg;
cycle_state = pdev->event_ring->cycle_state;
while (1) {
data = le32_to_cpu(event->trans_event.flags);
/* Check the owner of the TRB. */
if ((data & TRB_CYCLE) != cycle_state)
break;
if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
TRB_TO_EP_ID(data) == (pep->idx + 1)) {
data |= TRB_EVENT_INVALIDATE;
event->trans_event.flags = cpu_to_le32(data);
}
if (cdnsp_last_trb_on_seg(segment, event)) {
cycle_state ^= 1;
segment = pdev->event_ring->deq_seg->next;
event = segment->trbs;
} else {
event++;
}
}
}
int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
{
struct cdnsp_segment *event_deq_seg;
union cdnsp_trb *cmd_trb;
dma_addr_t cmd_deq_dma;
union cdnsp_trb *event;
u32 cycle_state;
int ret, val;
u64 cmd_dma;
u32 flags;
cmd_trb = pdev->cmd.command_trb;
pdev->cmd.status = 0;
trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
!CMD_RING_BUSY(val), 1,
CDNSP_CMD_TIMEOUT);
if (ret) {
dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
pdev->cdnsp_state = CDNSP_STATE_DYING;
return -ETIMEDOUT;
}
event = pdev->event_ring->dequeue;
event_deq_seg = pdev->event_ring->deq_seg;
cycle_state = pdev->event_ring->cycle_state;
cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
if (!cmd_deq_dma)
return -EINVAL;
while (1) {
flags = le32_to_cpu(event->event_cmd.flags);
/* Check the owner of the TRB. */
if ((flags & TRB_CYCLE) != cycle_state)
return -EINVAL;
cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
/*
* Check whether the completion event is for last queued
* command.
*/
if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
cmd_dma != (u64)cmd_deq_dma) {
if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
event++;
continue;
}
if (cdnsp_last_trb_on_ring(pdev->event_ring,
event_deq_seg, event))
cycle_state ^= 1;
event_deq_seg = event_deq_seg->next;
event = event_deq_seg->trbs;
continue;
}
trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
if (pdev->cmd.status == COMP_SUCCESS)
return 0;
return -pdev->cmd.status;
}
}
int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
int value)
{
int ret;
trace_cdnsp_ep_halt(value ? "Set" : "Clear");
ret = cdnsp_cmd_stop_ep(pdev, pep);
if (ret)
return ret;
if (value) {
if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
cdnsp_queue_halt_endpoint(pdev, pep->idx);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
}
pep->ep_state |= EP_HALTED;
} else {
cdnsp_queue_reset_ep(pdev, pep->idx);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
if (ret)
return ret;
pep->ep_state &= ~EP_HALTED;
if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
cdnsp_ring_doorbell_for_active_rings(pdev, pep);
pep->ep_state &= ~EP_WEDGE;
}
return 0;
}
static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
struct cdnsp_ep *pep)
{
struct cdnsp_input_control_ctx *ctrl_ctx;
struct cdnsp_slot_ctx *slot_ctx;
int ret = 0;
u32 ep_sts;
int i;
ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
/* Don't issue the command if there's no endpoints to update. */
if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
return 0;
ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
__le32 le32 = cpu_to_le32(BIT(i));
if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
(ctrl_ctx->add_flags & le32) || i == 1) {
slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
break;
}
}
ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
ep_sts == EP_STATE_DISABLED) ||
(ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
ret = cdnsp_configure_endpoint(pdev);
trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
cdnsp_zero_in_ctx(pdev);
return ret;
}
/*
* This submits a Reset Device Command, which will set the device state to 0,
* set the device address to 0, and disable all the endpoints except the default
* control endpoint. The USB core should come back and call
* cdnsp_setup_device(), and then re-set up the configuration.
*/
int cdnsp_reset_device(struct cdnsp_device *pdev)
{
struct cdnsp_slot_ctx *slot_ctx;
int slot_state;
int ret, i;
slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
slot_ctx->dev_info = 0;
pdev->device_address = 0;
/* If device is not setup, there is no point in resetting it. */
slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
trace_cdnsp_reset_device(slot_ctx);
if (slot_state <= SLOT_STATE_DEFAULT &&
pdev->eps[0].ep_state & EP_HALTED) {
cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
}
/*
* During Reset Device command controller shall transition the
* endpoint ep0 to the Running State.
*/
pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
pdev->eps[0].ep_state |= EP_ENABLED;
if (slot_state <= SLOT_STATE_DEFAULT)
return 0;
cdnsp_queue_reset_device(pdev);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
/*
* After Reset Device command all not default endpoints
* are in Disabled state.
*/
for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
if (ret)
dev_err(pdev->dev, "Reset device failed with error code %d",
ret);
return ret;
}
/*
* Sets the MaxPStreams field and the Linear Stream Array field.
* Sets the dequeue pointer to the stream context array.
*/
static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
struct cdnsp_ep_ctx *ep_ctx,
struct cdnsp_stream_info *stream_info)
{
u32 max_primary_streams;
/* MaxPStreams is the number of stream context array entries, not the
* number we're actually using. Must be in 2^(MaxPstreams + 1) format.
* fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
*/
max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
| EP_HAS_LSA);
ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
}
/*
* The drivers use this function to prepare a bulk endpoints to use streams.
*
* Don't allow the call to succeed if endpoint only supports one stream
* (which means it doesn't support streams at all).
*/
int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
unsigned int num_stream_ctxs;
int ret;
if (num_streams == 0)
return 0;
if (num_streams > STREAM_NUM_STREAMS)
return -EINVAL;
/*
* Add two to the number of streams requested to account for
* stream 0 that is reserved for controller usage and one additional
* for TASK SET FULL response.
*/
num_streams += 2;
/* The stream context array size must be a power of two */
num_stream_ctxs = roundup_pow_of_two(num_streams);
trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
if (ret)
return ret;
cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
pep->ep_state |= EP_HAS_STREAMS;
pep->stream_info.td_count = 0;
pep->stream_info.first_prime_det = 0;
/* Subtract 1 for stream 0, which drivers can't use. */
return num_streams - 1;
}
int cdnsp_disable_slot(struct cdnsp_device *pdev)
{
int ret;
cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
pdev->slot_id = 0;
pdev->active_port = NULL;
trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
return ret;
}
int cdnsp_enable_slot(struct cdnsp_device *pdev)
{
struct cdnsp_slot_ctx *slot_ctx;
int slot_state;
int ret;
/* If device is not setup, there is no point in resetting it */
slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
if (slot_state != SLOT_STATE_DISABLED)
return 0;
cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
if (ret)
goto show_trace;
pdev->slot_id = 1;
show_trace:
trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
return ret;
}
/*
* Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
* or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
*/
int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
{
struct cdnsp_input_control_ctx *ctrl_ctx;
struct cdnsp_slot_ctx *slot_ctx;
int dev_state = 0;
int ret;
if (!pdev->slot_id) {
trace_cdnsp_slot_id("incorrect");
return -EINVAL;
}
if (!pdev->active_port->port_num)
return -EINVAL;
slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
trace_cdnsp_slot_already_in_default(slot_ctx);
return 0;
}
slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
ret = cdnsp_setup_addressable_priv_dev(pdev);
if (ret)
return ret;
}
cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
ctrl_ctx->drop_flags = 0;
trace_cdnsp_setup_device_slot(slot_ctx);
cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
/* Zero the input context control for later use. */
ctrl_ctx->add_flags = 0;
ctrl_ctx->drop_flags = 0;
return ret;
}
void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
struct usb_request *req,
int enable)
{
if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
return;
trace_cdnsp_lpm(enable);
if (enable)
writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
&pdev->active_port->regs->portpmsc);
else
writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
}
static int cdnsp_get_frame(struct cdnsp_device *pdev)
{
return readl(&pdev->run_regs->microframe_index) >> 3;
}
static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct cdnsp_input_control_ctx *ctrl_ctx;
struct cdnsp_device *pdev;
struct cdnsp_ep *pep;
unsigned long flags;
u32 added_ctxs;
int ret;
if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
!desc->wMaxPacketSize)
return -EINVAL;
pep = to_cdnsp_ep(ep);
pdev = pep->pdev;
pep->ep_state &= ~EP_UNCONFIGURED;
if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
"%s is already enabled\n", pep->name))
return 0;
spin_lock_irqsave(&pdev->lock, flags);
added_ctxs = cdnsp_get_endpoint_flag(desc);
if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
ret = -EINVAL;
goto unlock;
}
pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
if (pdev->gadget.speed == USB_SPEED_FULL) {
if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
pep->interval = desc->bInterval << 3;
if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
pep->interval = BIT(desc->bInterval - 1) << 3;
}
if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
if (pep->interval > BIT(12)) {
dev_err(pdev->dev, "bInterval %d not supported\n",
desc->bInterval);
ret = -EINVAL;
goto unlock;
}
cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
}
ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
if (ret)
goto unlock;
ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
ctrl_ctx->drop_flags = 0;
ret = cdnsp_update_eps_configuration(pdev, pep);
if (ret) {
cdnsp_free_endpoint_rings(pdev, pep);
goto unlock;
}
pep->ep_state |= EP_ENABLED;
pep->ep_state &= ~EP_STOPPED;
unlock:
trace_cdnsp_ep_enable_end(pep, 0);
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
{
struct cdnsp_input_control_ctx *ctrl_ctx;
struct cdnsp_request *preq;
struct cdnsp_device *pdev;
struct cdnsp_ep *pep;
unsigned long flags;
u32 drop_flag;
int ret = 0;
if (!ep)
return -EINVAL;
pep = to_cdnsp_ep(ep);
pdev = pep->pdev;
spin_lock_irqsave(&pdev->lock, flags);
if (!(pep->ep_state & EP_ENABLED)) {
dev_err(pdev->dev, "%s is already disabled\n", pep->name);
ret = -EINVAL;
goto finish;
}
pep->ep_state |= EP_DIS_IN_RROGRESS;
/* Endpoint was unconfigured by Reset Device command. */
if (!(pep->ep_state & EP_UNCONFIGURED)) {
cdnsp_cmd_stop_ep(pdev, pep);
cdnsp_cmd_flush_ep(pdev, pep);
}
/* Remove all queued USB requests. */
while (!list_empty(&pep->pending_list)) {
preq = next_request(&pep->pending_list);
cdnsp_ep_dequeue(pep, preq);
}
cdnsp_invalidate_ep_events(pdev, pep);
pep->ep_state &= ~EP_DIS_IN_RROGRESS;
drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
ctrl_ctx->add_flags = 0;
cdnsp_endpoint_zero(pdev, pep);
if (!(pep->ep_state & EP_UNCONFIGURED))
ret = cdnsp_update_eps_configuration(pdev, pep);
cdnsp_free_endpoint_rings(pdev, pep);
pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
pep->ep_state |= EP_STOPPED;
finish:
trace_cdnsp_ep_disable_end(pep, 0);
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
gfp_t gfp_flags)
{
struct cdnsp_ep *pep = to_cdnsp_ep(ep);
struct cdnsp_request *preq;
preq = kzalloc(sizeof(*preq), gfp_flags);
if (!preq)
return NULL;
preq->epnum = pep->number;
preq->pep = pep;
trace_cdnsp_alloc_request(preq);
return &preq->request;
}
static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
struct usb_request *request)
{
struct cdnsp_request *preq = to_cdnsp_request(request);
trace_cdnsp_free_request(preq);
kfree(preq);
}
static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
struct usb_request *request,
gfp_t gfp_flags)
{
struct cdnsp_request *preq;
struct cdnsp_device *pdev;
struct cdnsp_ep *pep;
unsigned long flags;
int ret;
if (!request || !ep)
return -EINVAL;
pep = to_cdnsp_ep(ep);
pdev = pep->pdev;
if (!(pep->ep_state & EP_ENABLED)) {
dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
pep->name);
return -EINVAL;
}
preq = to_cdnsp_request(request);
spin_lock_irqsave(&pdev->lock, flags);
ret = cdnsp_ep_enqueue(pep, preq);
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
struct usb_request *request)
{
struct cdnsp_ep *pep = to_cdnsp_ep(ep);
struct cdnsp_device *pdev = pep->pdev;
unsigned long flags;
int ret;
if (!pep->endpoint.desc) {
dev_err(pdev->dev,
"%s: can't dequeue to disabled endpoint\n",
pep->name);
return -ESHUTDOWN;
}
/* Requests has been dequeued during disabling endpoint. */
if (!(pep->ep_state & EP_ENABLED))
return 0;
spin_lock_irqsave(&pdev->lock, flags);
ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
{
struct cdnsp_ep *pep = to_cdnsp_ep(ep);
struct cdnsp_device *pdev = pep->pdev;
struct cdnsp_request *preq;
unsigned long flags;
int ret;
spin_lock_irqsave(&pdev->lock, flags);
preq = next_request(&pep->pending_list);
if (value) {
if (preq) {
trace_cdnsp_ep_busy_try_halt_again(pep, 0);
ret = -EAGAIN;
goto done;
}
}
ret = cdnsp_halt_endpoint(pdev, pep, value);
done:
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
{
struct cdnsp_ep *pep = to_cdnsp_ep(ep);
struct cdnsp_device *pdev = pep->pdev;
unsigned long flags;
int ret;
spin_lock_irqsave(&pdev->lock, flags);
pep->ep_state |= EP_WEDGE;
ret = cdnsp_halt_endpoint(pdev, pep, 1);
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
.enable = cdnsp_gadget_ep_enable,
.disable = cdnsp_gadget_ep_disable,
.alloc_request = cdnsp_gadget_ep_alloc_request,
.free_request = cdnsp_gadget_ep_free_request,
.queue = cdnsp_gadget_ep_queue,
.dequeue = cdnsp_gadget_ep_dequeue,
.set_halt = cdnsp_gadget_ep_set_halt,
.set_wedge = cdnsp_gadget_ep_set_wedge,
};
static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
.enable = cdnsp_gadget_ep_enable,
.disable = cdnsp_gadget_ep_disable,
.alloc_request = cdnsp_gadget_ep_alloc_request,
.free_request = cdnsp_gadget_ep_free_request,
.queue = cdnsp_gadget_ep_queue,
.dequeue = cdnsp_gadget_ep_dequeue,
.set_halt = cdnsp_gadget_ep_set_halt,
.set_wedge = cdnsp_gadget_ep_set_wedge,
};
void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
struct cdnsp_request *preq,
int status)
{
struct cdnsp_device *pdev = pep->pdev;
list_del(&preq->list);
if (preq->request.status == -EINPROGRESS)
preq->request.status = status;
usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
preq->direction);
trace_cdnsp_request_giveback(preq);
if (preq != &pdev->ep0_preq) {
spin_unlock(&pdev->lock);
usb_gadget_giveback_request(&pep->endpoint, &preq->request);
spin_lock(&pdev->lock);
}
}
static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
};
static int cdnsp_run(struct cdnsp_device *pdev,
enum usb_device_speed speed)
{
u32 fs_speed = 0;
u32 temp;
int ret;
temp = readl(&pdev->ir_set->irq_control);
temp &= ~IMOD_INTERVAL_MASK;
temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
writel(temp, &pdev->ir_set->irq_control);
temp = readl(&pdev->port3x_regs->mode_addr);
switch (speed) {
case USB_SPEED_SUPER_PLUS:
temp |= CFG_3XPORT_SSP_SUPPORT;
break;
case USB_SPEED_SUPER:
temp &= ~CFG_3XPORT_SSP_SUPPORT;
break;
case USB_SPEED_HIGH:
break;
case USB_SPEED_FULL:
fs_speed = PORT_REG6_FORCE_FS;
break;
default:
dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
speed);
fallthrough;
case USB_SPEED_UNKNOWN:
/* Default to superspeed. */
speed = USB_SPEED_SUPER;
break;
}
if (speed >= USB_SPEED_SUPER) {
writel(temp, &pdev->port3x_regs->mode_addr);
cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
XDEV_RXDETECT);
} else {
cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
}
cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
XDEV_RXDETECT);
cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
ret = cdnsp_start(pdev);
if (ret) {
ret = -ENODEV;
goto err;
}
temp = readl(&pdev->op_regs->command);
temp |= (CMD_INTE);
writel(temp, &pdev->op_regs->command);
temp = readl(&pdev->ir_set->irq_pending);
writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
trace_cdnsp_init("Controller ready to work");
return 0;
err:
cdnsp_halt(pdev);
return ret;
}
static int cdnsp_gadget_udc_start(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
enum usb_device_speed max_speed = driver->max_speed;
struct cdnsp_device *pdev = gadget_to_cdnsp(g);
unsigned long flags;
int ret;
spin_lock_irqsave(&pdev->lock, flags);
pdev->gadget_driver = driver;
/* limit speed if necessary */
max_speed = min(driver->max_speed, g->max_speed);
ret = cdnsp_run(pdev, max_speed);
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
/*
* Update Event Ring Dequeue Pointer:
* - When all events have finished
* - To avoid "Event Ring Full Error" condition
*/
void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
union cdnsp_trb *event_ring_deq,
u8 clear_ehb)
{
u64 temp_64;
dma_addr_t deq;
temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
/* If necessary, update the HW's version of the event ring deq ptr. */
if (event_ring_deq != pdev->event_ring->dequeue) {
deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
pdev->event_ring->dequeue);
temp_64 &= ERST_PTR_MASK;
temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
}
/* Clear the event handler busy flag (RW1C). */
if (clear_ehb)
temp_64 |= ERST_EHB;
else
temp_64 &= ~ERST_EHB;
cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
}
static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
{
struct cdnsp_segment *seg;
u64 val_64;
int i;
cdnsp_initialize_ring_info(pdev->cmd_ring);
seg = pdev->cmd_ring->first_seg;
for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
memset(seg->trbs, 0,
sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
seg = seg->next;
}
/* Set the address in the Command Ring Control register. */
val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
(pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
pdev->cmd_ring->cycle_state;
cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
}
static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
{
struct cdnsp_segment *event_deq_seg;
union cdnsp_trb *event_ring_deq;
union cdnsp_trb *event;
u32 cycle_bit;
event_ring_deq = pdev->event_ring->dequeue;
event_deq_seg = pdev->event_ring->deq_seg;
event = pdev->event_ring->dequeue;
/* Update ring dequeue pointer. */
while (1) {
cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
/* Does the controller or driver own the TRB? */
if (cycle_bit != pdev->event_ring->cycle_state)
break;
cdnsp_inc_deq(pdev, pdev->event_ring);
if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
event++;
continue;
}
if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
event))
cycle_bit ^= 1;
event_deq_seg = event_deq_seg->next;
event = event_deq_seg->trbs;
}
cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
}
static void cdnsp_stop(struct cdnsp_device *pdev)
{
u32 temp;
cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]);
/* Remove internally queued request for ep0. */
if (!list_empty(&pdev->eps[0].pending_list)) {
struct cdnsp_request *req;
req = next_request(&pdev->eps[0].pending_list);
if (req == &pdev->ep0_preq)
cdnsp_ep_dequeue(&pdev->eps[0], req);
}
cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
cdnsp_disable_slot(pdev);
cdnsp_halt(pdev);
temp = readl(&pdev->op_regs->status);
writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
temp = readl(&pdev->ir_set->irq_pending);
writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
/* Clear interrupt line */
temp = readl(&pdev->ir_set->irq_pending);
temp |= IMAN_IP;
writel(temp, &pdev->ir_set->irq_pending);
cdnsp_consume_all_events(pdev);
cdnsp_clear_cmd_ring(pdev);
trace_cdnsp_exit("Controller stopped.");
}
/*
* Stop controller.
* This function is called by the gadget core when the driver is removed.
* Disable slot, disable IRQs, and quiesce the controller.
*/
static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
{
struct cdnsp_device *pdev = gadget_to_cdnsp(g);
unsigned long flags;
spin_lock_irqsave(&pdev->lock, flags);
cdnsp_stop(pdev);
pdev->gadget_driver = NULL;
spin_unlock_irqrestore(&pdev->lock, flags);
return 0;
}
static int cdnsp_gadget_get_frame(struct usb_gadget *g)
{
struct cdnsp_device *pdev = gadget_to_cdnsp(g);
return cdnsp_get_frame(pdev);
}
static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
{
struct cdnsp_port_regs __iomem *port_regs;
u32 portpm, portsc;
port_regs = pdev->active_port->regs;
portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
/* Remote wakeup feature is not enabled by host. */
if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
portpm = readl(&port_regs->portpmsc);
if (!(portpm & PORT_RWE))
return;
}
if (portsc == XDEV_U3 && !pdev->may_wakeup)
return;
cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
}
static int cdnsp_gadget_wakeup(struct usb_gadget *g)
{
struct cdnsp_device *pdev = gadget_to_cdnsp(g);
unsigned long flags;
spin_lock_irqsave(&pdev->lock, flags);
__cdnsp_gadget_wakeup(pdev);
spin_unlock_irqrestore(&pdev->lock, flags);
return 0;
}
static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
int is_selfpowered)
{
struct cdnsp_device *pdev = gadget_to_cdnsp(g);
unsigned long flags;
spin_lock_irqsave(&pdev->lock, flags);
g->is_selfpowered = !!is_selfpowered;
spin_unlock_irqrestore(&pdev->lock, flags);
return 0;
}
static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
{
struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
struct cdns *cdns = dev_get_drvdata(pdev->dev);
unsigned long flags;
trace_cdnsp_pullup(is_on);
/*
* Disable events handling while controller is being
* enabled/disabled.
*/
disable_irq(cdns->dev_irq);
spin_lock_irqsave(&pdev->lock, flags);
if (!is_on) {
cdnsp_reset_device(pdev);
cdns_clear_vbus(cdns);
} else {
cdns_set_vbus(cdns);
}
spin_unlock_irqrestore(&pdev->lock, flags);
enable_irq(cdns->dev_irq);
return 0;
}
static const struct usb_gadget_ops cdnsp_gadget_ops = {
.get_frame = cdnsp_gadget_get_frame,
.wakeup = cdnsp_gadget_wakeup,
.set_selfpowered = cdnsp_gadget_set_selfpowered,
.pullup = cdnsp_gadget_pullup,
.udc_start = cdnsp_gadget_udc_start,
.udc_stop = cdnsp_gadget_udc_stop,
};
static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
struct cdnsp_ep *pep)
{
void __iomem *reg = &pdev->cap_regs->hc_capbase;
int endpoints;
reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
if (!pep->direction) {
pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
pep->buffering = (pep->buffering + 1) / 2;
pep->buffering_period = (pep->buffering_period + 1) / 2;
return;
}
endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
/* Set to XBUF_TX_TAG_MASK_0 register. */
reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
/* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
reg += pep->number * sizeof(u32) * 2;
pep->buffering = (readl(reg) + 1) / 2;
pep->buffering_period = pep->buffering;
}
static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
{
int max_streams = HCC_MAX_PSA(pdev->hcc_params);
struct cdnsp_ep *pep;
int i;
INIT_LIST_HEAD(&pdev->gadget.ep_list);
if (max_streams < STREAM_LOG_STREAMS) {
dev_err(pdev->dev, "Stream size %d not supported\n",
max_streams);
return -EINVAL;
}
max_streams = STREAM_LOG_STREAMS;
for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
bool direction = !(i & 1); /* Start from OUT endpoint. */
u8 epnum = ((i + 1) >> 1);
if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
continue;
pep = &pdev->eps[i];
pep->pdev = pdev;
pep->number = epnum;
pep->direction = direction; /* 0 for OUT, 1 for IN. */
/*
* Ep0 is bidirectional, so ep0in and ep0out are represented by
* pdev->eps[0]
*/
if (epnum == 0) {
snprintf(pep->name, sizeof(pep->name), "ep%d%s",
epnum, "BiDir");
pep->idx = 0;
usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
pep->endpoint.maxburst = 1;
pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
pep->endpoint.comp_desc = NULL;
pep->endpoint.caps.type_control = true;
pep->endpoint.caps.dir_in = true;
pep->endpoint.caps.dir_out = true;
pdev->ep0_preq.epnum = pep->number;
pdev->ep0_preq.pep = pep;
pdev->gadget.ep0 = &pep->endpoint;
} else {
snprintf(pep->name, sizeof(pep->name), "ep%d%s",
epnum, (pep->direction) ? "in" : "out");
pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1;
usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
pep->endpoint.max_streams = max_streams;
pep->endpoint.ops = &cdnsp_gadget_ep_ops;
list_add_tail(&pep->endpoint.ep_list,
&pdev->gadget.ep_list);
pep->endpoint.caps.type_iso = true;
pep->endpoint.caps.type_bulk = true;
pep->endpoint.caps.type_int = true;
pep->endpoint.caps.dir_in = direction;
pep->endpoint.caps.dir_out = !direction;
}
pep->endpoint.name = pep->name;
pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
cdnsp_get_ep_buffering(pdev, pep);
dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
"CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
"SupDir IN: %s, OUT: %s\n",
pep->name, 1024,
(pep->endpoint.caps.type_control) ? "yes" : "no",
(pep->endpoint.caps.type_int) ? "yes" : "no",
(pep->endpoint.caps.type_bulk) ? "yes" : "no",
(pep->endpoint.caps.type_iso) ? "yes" : "no",
(pep->endpoint.caps.dir_in) ? "yes" : "no",
(pep->endpoint.caps.dir_out) ? "yes" : "no");
INIT_LIST_HEAD(&pep->pending_list);
}
return 0;
}
static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
{
struct cdnsp_ep *pep;
int i;
for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
pep = &pdev->eps[i];
if (pep->number != 0 && pep->out_ctx)
list_del(&pep->endpoint.ep_list);
}
}
void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
{
pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
spin_unlock(&pdev->lock);
pdev->gadget_driver->disconnect(&pdev->gadget);
spin_lock(&pdev->lock);
}
pdev->gadget.speed = USB_SPEED_UNKNOWN;
usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
}
void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
{
if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
spin_unlock(&pdev->lock);
pdev->gadget_driver->suspend(&pdev->gadget);
spin_lock(&pdev->lock);
}
}
void cdnsp_resume_gadget(struct cdnsp_device *pdev)
{
if (pdev->gadget_driver && pdev->gadget_driver->resume) {
spin_unlock(&pdev->lock);
pdev->gadget_driver->resume(&pdev->gadget);
spin_lock(&pdev->lock);
}
}
void cdnsp_irq_reset(struct cdnsp_device *pdev)
{
struct cdnsp_port_regs __iomem *port_regs;
cdnsp_reset_device(pdev);
port_regs = pdev->active_port->regs;
pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
spin_unlock(&pdev->lock);
usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
spin_lock(&pdev->lock);
switch (pdev->gadget.speed) {
case USB_SPEED_SUPER_PLUS:
case USB_SPEED_SUPER:
cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
pdev->gadget.ep0->maxpacket = 512;
break;
case USB_SPEED_HIGH:
case USB_SPEED_FULL:
cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
pdev->gadget.ep0->maxpacket = 64;
break;
default:
/* Low speed is not supported. */
dev_err(pdev->dev, "Unknown device speed\n");
break;
}
cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
}
static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
{
void __iomem *reg = &pdev->cap_regs->hc_capbase;
reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
pdev->rev_cap = reg;
dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
readl(&pdev->rev_cap->ctrl_revision),
readl(&pdev->rev_cap->rtl_revision),
readl(&pdev->rev_cap->ep_supported),
readl(&pdev->rev_cap->rx_buff_size),
readl(&pdev->rev_cap->tx_buff_size));
}
static int cdnsp_gen_setup(struct cdnsp_device *pdev)
{
int ret;
u32 reg;
pdev->cap_regs = pdev->regs;
pdev->op_regs = pdev->regs +
HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
pdev->run_regs = pdev->regs +
(readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
/* Cache read-only capability registers */
pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
pdev->hci_version = HC_VERSION(pdev->hcc_params);
pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
cdnsp_get_rev_cap(pdev);
/* Make sure the Device Controller is halted. */
ret = cdnsp_halt(pdev);
if (ret)
return ret;
/* Reset the internal controller memory state and registers. */
ret = cdnsp_reset(pdev);
if (ret)
return ret;
/*
* Set dma_mask and coherent_dma_mask to 64-bits,
* if controller supports 64-bit addressing.
*/
if (HCC_64BIT_ADDR(pdev->hcc_params) &&
!dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
} else {
/*
* This is to avoid error in cases where a 32-bit USB
* controller is used on a 64-bit capable system.
*/
ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
}
spin_lock_init(&pdev->lock);
ret = cdnsp_mem_init(pdev);
if (ret)
return ret;
/*
* Software workaround for U1: after transition
* to U1 the controller starts gating clock, and in some cases,
* it causes that controller stack.
*/
reg = readl(&pdev->port3x_regs->mode_2);
reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
writel(reg, &pdev->port3x_regs->mode_2);
return 0;
}
static int __cdnsp_gadget_init(struct cdns *cdns)
{
struct cdnsp_device *pdev;
u32 max_speed;
int ret = -ENOMEM;
cdns_drd_gadget_on(cdns);
pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
if (!pdev)
return -ENOMEM;
pm_runtime_get_sync(cdns->dev);
cdns->gadget_dev = pdev;
pdev->dev = cdns->dev;
pdev->regs = cdns->dev_regs;
max_speed = usb_get_maximum_speed(cdns->dev);
switch (max_speed) {
case USB_SPEED_FULL:
case USB_SPEED_HIGH:
case USB_SPEED_SUPER:
case USB_SPEED_SUPER_PLUS:
break;
default:
dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
fallthrough;
case USB_SPEED_UNKNOWN:
/* Default to SSP */
max_speed = USB_SPEED_SUPER_PLUS;
break;
}
pdev->gadget.ops = &cdnsp_gadget_ops;
pdev->gadget.name = "cdnsp-gadget";
pdev->gadget.speed = USB_SPEED_UNKNOWN;
pdev->gadget.sg_supported = 1;
pdev->gadget.max_speed = max_speed;
pdev->gadget.lpm_capable = 1;
pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
if (!pdev->setup_buf)
goto free_pdev;
/*
* Controller supports not aligned buffer but it should improve
* performance.
*/
pdev->gadget.quirk_ep_out_aligned_size = true;
ret = cdnsp_gen_setup(pdev);
if (ret) {
dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
goto free_setup;
}
ret = cdnsp_gadget_init_endpoints(pdev);
if (ret) {
dev_err(pdev->dev, "failed to initialize endpoints\n");
goto halt_pdev;
}
ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
if (ret) {
dev_err(pdev->dev, "failed to register udc\n");
goto free_endpoints;
}
ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
cdnsp_irq_handler,
cdnsp_thread_irq_handler, IRQF_SHARED,
dev_name(pdev->dev), pdev);
if (ret)
goto del_gadget;
return 0;
del_gadget:
usb_del_gadget_udc(&pdev->gadget);
free_endpoints:
cdnsp_gadget_free_endpoints(pdev);
halt_pdev:
cdnsp_halt(pdev);
cdnsp_reset(pdev);
cdnsp_mem_cleanup(pdev);
free_setup:
kfree(pdev->setup_buf);
free_pdev:
kfree(pdev);
return ret;
}
static void cdnsp_gadget_exit(struct cdns *cdns)
{
struct cdnsp_device *pdev = cdns->gadget_dev;
devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
pm_runtime_mark_last_busy(cdns->dev);
pm_runtime_put_autosuspend(cdns->dev);
usb_del_gadget_udc(&pdev->gadget);
cdnsp_gadget_free_endpoints(pdev);
cdnsp_mem_cleanup(pdev);
kfree(pdev);
cdns->gadget_dev = NULL;
cdns_drd_gadget_off(cdns);
}
static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
{
struct cdnsp_device *pdev = cdns->gadget_dev;
unsigned long flags;
if (pdev->link_state == XDEV_U3)
return 0;
spin_lock_irqsave(&pdev->lock, flags);
cdnsp_disconnect_gadget(pdev);
cdnsp_stop(pdev);
spin_unlock_irqrestore(&pdev->lock, flags);
return 0;
}
static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated)
{
struct cdnsp_device *pdev = cdns->gadget_dev;
enum usb_device_speed max_speed;
unsigned long flags;
int ret;
if (!pdev->gadget_driver)
return 0;
spin_lock_irqsave(&pdev->lock, flags);
max_speed = pdev->gadget_driver->max_speed;
/* Limit speed if necessary. */
max_speed = min(max_speed, pdev->gadget.max_speed);
ret = cdnsp_run(pdev, max_speed);
if (pdev->link_state == XDEV_U3)
__cdnsp_gadget_wakeup(pdev);
spin_unlock_irqrestore(&pdev->lock, flags);
return ret;
}
/**
* cdnsp_gadget_init - initialize device structure
* @cdns: cdnsp instance
*
* This function initializes the gadget.
*/
int cdnsp_gadget_init(struct cdns *cdns)
{
struct cdns_role_driver *rdrv;
rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
if (!rdrv)
return -ENOMEM;
rdrv->start = __cdnsp_gadget_init;
rdrv->stop = cdnsp_gadget_exit;
rdrv->suspend = cdnsp_gadget_suspend;
rdrv->resume = cdnsp_gadget_resume;
rdrv->state = CDNS_ROLE_STATE_INACTIVE;
rdrv->name = "gadget";
cdns->roles[USB_ROLE_DEVICE] = rdrv;
return 0;
}