blob: f3738b2c8bcd92a29725ee08f7e43f4b525027e3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2005,2006,2007,2008 IBM Corporation
*
* Authors:
* Mimi Zohar <zohar@us.ibm.com>
* Kylene Hall <kjhall@us.ibm.com>
*
* File: ima_crypto.c
* Calculates md5/sha1 file hash, template hash, boot-aggreate hash
*/
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/ratelimit.h>
#include <linux/file.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <crypto/hash.h>
#include "ima.h"
/* minimum file size for ahash use */
static unsigned long ima_ahash_minsize;
module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
/* default is 0 - 1 page. */
static int ima_maxorder;
static unsigned int ima_bufsize = PAGE_SIZE;
static int param_set_bufsize(const char *val, const struct kernel_param *kp)
{
unsigned long long size;
int order;
size = memparse(val, NULL);
order = get_order(size);
if (order > MAX_PAGE_ORDER)
return -EINVAL;
ima_maxorder = order;
ima_bufsize = PAGE_SIZE << order;
return 0;
}
static const struct kernel_param_ops param_ops_bufsize = {
.set = param_set_bufsize,
.get = param_get_uint,
};
#define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
static struct crypto_shash *ima_shash_tfm;
static struct crypto_ahash *ima_ahash_tfm;
struct ima_algo_desc {
struct crypto_shash *tfm;
enum hash_algo algo;
};
int ima_sha1_idx __ro_after_init;
int ima_hash_algo_idx __ro_after_init;
/*
* Additional number of slots reserved, as needed, for SHA1
* and IMA default algo.
*/
int ima_extra_slots __ro_after_init;
static struct ima_algo_desc *ima_algo_array;
static int __init ima_init_ima_crypto(void)
{
long rc;
ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
if (IS_ERR(ima_shash_tfm)) {
rc = PTR_ERR(ima_shash_tfm);
pr_err("Can not allocate %s (reason: %ld)\n",
hash_algo_name[ima_hash_algo], rc);
return rc;
}
pr_info("Allocated hash algorithm: %s\n",
hash_algo_name[ima_hash_algo]);
return 0;
}
static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
{
struct crypto_shash *tfm = ima_shash_tfm;
int rc, i;
if (algo < 0 || algo >= HASH_ALGO__LAST)
algo = ima_hash_algo;
if (algo == ima_hash_algo)
return tfm;
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo)
return ima_algo_array[i].tfm;
tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
if (IS_ERR(tfm)) {
rc = PTR_ERR(tfm);
pr_err("Can not allocate %s (reason: %d)\n",
hash_algo_name[algo], rc);
}
return tfm;
}
int __init ima_init_crypto(void)
{
enum hash_algo algo;
long rc;
int i;
rc = ima_init_ima_crypto();
if (rc)
return rc;
ima_sha1_idx = -1;
ima_hash_algo_idx = -1;
for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
algo = ima_tpm_chip->allocated_banks[i].crypto_id;
if (algo == HASH_ALGO_SHA1)
ima_sha1_idx = i;
if (algo == ima_hash_algo)
ima_hash_algo_idx = i;
}
if (ima_sha1_idx < 0) {
ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
if (ima_hash_algo == HASH_ALGO_SHA1)
ima_hash_algo_idx = ima_sha1_idx;
}
if (ima_hash_algo_idx < 0)
ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots,
sizeof(*ima_algo_array), GFP_KERNEL);
if (!ima_algo_array) {
rc = -ENOMEM;
goto out;
}
for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
algo = ima_tpm_chip->allocated_banks[i].crypto_id;
ima_algo_array[i].algo = algo;
/* unknown TPM algorithm */
if (algo == HASH_ALGO__LAST)
continue;
if (algo == ima_hash_algo) {
ima_algo_array[i].tfm = ima_shash_tfm;
continue;
}
ima_algo_array[i].tfm = ima_alloc_tfm(algo);
if (IS_ERR(ima_algo_array[i].tfm)) {
if (algo == HASH_ALGO_SHA1) {
rc = PTR_ERR(ima_algo_array[i].tfm);
ima_algo_array[i].tfm = NULL;
goto out_array;
}
ima_algo_array[i].tfm = NULL;
}
}
if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) {
if (ima_hash_algo == HASH_ALGO_SHA1) {
ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm;
} else {
ima_algo_array[ima_sha1_idx].tfm =
ima_alloc_tfm(HASH_ALGO_SHA1);
if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) {
rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm);
goto out_array;
}
}
ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1;
}
if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) &&
ima_hash_algo_idx != ima_sha1_idx) {
ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm;
ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo;
}
return 0;
out_array:
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
if (!ima_algo_array[i].tfm ||
ima_algo_array[i].tfm == ima_shash_tfm)
continue;
crypto_free_shash(ima_algo_array[i].tfm);
}
kfree(ima_algo_array);
out:
crypto_free_shash(ima_shash_tfm);
return rc;
}
static void ima_free_tfm(struct crypto_shash *tfm)
{
int i;
if (tfm == ima_shash_tfm)
return;
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
if (ima_algo_array[i].tfm == tfm)
return;
crypto_free_shash(tfm);
}
/**
* ima_alloc_pages() - Allocate contiguous pages.
* @max_size: Maximum amount of memory to allocate.
* @allocated_size: Returned size of actual allocation.
* @last_warn: Should the min_size allocation warn or not.
*
* Tries to do opportunistic allocation for memory first trying to allocate
* max_size amount of memory and then splitting that until zero order is
* reached. Allocation is tried without generating allocation warnings unless
* last_warn is set. Last_warn set affects only last allocation of zero order.
*
* By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
*
* Return pointer to allocated memory, or NULL on failure.
*/
static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
int last_warn)
{
void *ptr;
int order = ima_maxorder;
gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
if (order)
order = min(get_order(max_size), order);
for (; order; order--) {
ptr = (void *)__get_free_pages(gfp_mask, order);
if (ptr) {
*allocated_size = PAGE_SIZE << order;
return ptr;
}
}
/* order is zero - one page */
gfp_mask = GFP_KERNEL;
if (!last_warn)
gfp_mask |= __GFP_NOWARN;
ptr = (void *)__get_free_pages(gfp_mask, 0);
if (ptr) {
*allocated_size = PAGE_SIZE;
return ptr;
}
*allocated_size = 0;
return NULL;
}
/**
* ima_free_pages() - Free pages allocated by ima_alloc_pages().
* @ptr: Pointer to allocated pages.
* @size: Size of allocated buffer.
*/
static void ima_free_pages(void *ptr, size_t size)
{
if (!ptr)
return;
free_pages((unsigned long)ptr, get_order(size));
}
static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
{
struct crypto_ahash *tfm = ima_ahash_tfm;
int rc;
if (algo < 0 || algo >= HASH_ALGO__LAST)
algo = ima_hash_algo;
if (algo != ima_hash_algo || !tfm) {
tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
if (!IS_ERR(tfm)) {
if (algo == ima_hash_algo)
ima_ahash_tfm = tfm;
} else {
rc = PTR_ERR(tfm);
pr_err("Can not allocate %s (reason: %d)\n",
hash_algo_name[algo], rc);
}
}
return tfm;
}
static void ima_free_atfm(struct crypto_ahash *tfm)
{
if (tfm != ima_ahash_tfm)
crypto_free_ahash(tfm);
}
static inline int ahash_wait(int err, struct crypto_wait *wait)
{
err = crypto_wait_req(err, wait);
if (err)
pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
return err;
}
static int ima_calc_file_hash_atfm(struct file *file,
struct ima_digest_data *hash,
struct crypto_ahash *tfm)
{
loff_t i_size, offset;
char *rbuf[2] = { NULL, };
int rc, rbuf_len, active = 0, ahash_rc = 0;
struct ahash_request *req;
struct scatterlist sg[1];
struct crypto_wait wait;
size_t rbuf_size[2];
hash->length = crypto_ahash_digestsize(tfm);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
crypto_init_wait(&wait);
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
rc = ahash_wait(crypto_ahash_init(req), &wait);
if (rc)
goto out1;
i_size = i_size_read(file_inode(file));
if (i_size == 0)
goto out2;
/*
* Try to allocate maximum size of memory.
* Fail if even a single page cannot be allocated.
*/
rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
if (!rbuf[0]) {
rc = -ENOMEM;
goto out1;
}
/* Only allocate one buffer if that is enough. */
if (i_size > rbuf_size[0]) {
/*
* Try to allocate secondary buffer. If that fails fallback to
* using single buffering. Use previous memory allocation size
* as baseline for possible allocation size.
*/
rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
&rbuf_size[1], 0);
}
for (offset = 0; offset < i_size; offset += rbuf_len) {
if (!rbuf[1] && offset) {
/* Not using two buffers, and it is not the first
* read/request, wait for the completion of the
* previous ahash_update() request.
*/
rc = ahash_wait(ahash_rc, &wait);
if (rc)
goto out3;
}
/* read buffer */
rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
rc = integrity_kernel_read(file, offset, rbuf[active],
rbuf_len);
if (rc != rbuf_len) {
if (rc >= 0)
rc = -EINVAL;
/*
* Forward current rc, do not overwrite with return value
* from ahash_wait()
*/
ahash_wait(ahash_rc, &wait);
goto out3;
}
if (rbuf[1] && offset) {
/* Using two buffers, and it is not the first
* read/request, wait for the completion of the
* previous ahash_update() request.
*/
rc = ahash_wait(ahash_rc, &wait);
if (rc)
goto out3;
}
sg_init_one(&sg[0], rbuf[active], rbuf_len);
ahash_request_set_crypt(req, sg, NULL, rbuf_len);
ahash_rc = crypto_ahash_update(req);
if (rbuf[1])
active = !active; /* swap buffers, if we use two */
}
/* wait for the last update request to complete */
rc = ahash_wait(ahash_rc, &wait);
out3:
ima_free_pages(rbuf[0], rbuf_size[0]);
ima_free_pages(rbuf[1], rbuf_size[1]);
out2:
if (!rc) {
ahash_request_set_crypt(req, NULL, hash->digest, 0);
rc = ahash_wait(crypto_ahash_final(req), &wait);
}
out1:
ahash_request_free(req);
return rc;
}
static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
{
struct crypto_ahash *tfm;
int rc;
tfm = ima_alloc_atfm(hash->algo);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
rc = ima_calc_file_hash_atfm(file, hash, tfm);
ima_free_atfm(tfm);
return rc;
}
static int ima_calc_file_hash_tfm(struct file *file,
struct ima_digest_data *hash,
struct crypto_shash *tfm)
{
loff_t i_size, offset = 0;
char *rbuf;
int rc;
SHASH_DESC_ON_STACK(shash, tfm);
shash->tfm = tfm;
hash->length = crypto_shash_digestsize(tfm);
rc = crypto_shash_init(shash);
if (rc != 0)
return rc;
i_size = i_size_read(file_inode(file));
if (i_size == 0)
goto out;
rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!rbuf)
return -ENOMEM;
while (offset < i_size) {
int rbuf_len;
rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
if (rbuf_len < 0) {
rc = rbuf_len;
break;
}
if (rbuf_len == 0) { /* unexpected EOF */
rc = -EINVAL;
break;
}
offset += rbuf_len;
rc = crypto_shash_update(shash, rbuf, rbuf_len);
if (rc)
break;
}
kfree(rbuf);
out:
if (!rc)
rc = crypto_shash_final(shash, hash->digest);
return rc;
}
static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
{
struct crypto_shash *tfm;
int rc;
tfm = ima_alloc_tfm(hash->algo);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
rc = ima_calc_file_hash_tfm(file, hash, tfm);
ima_free_tfm(tfm);
return rc;
}
/*
* ima_calc_file_hash - calculate file hash
*
* Asynchronous hash (ahash) allows using HW acceleration for calculating
* a hash. ahash performance varies for different data sizes on different
* crypto accelerators. shash performance might be better for smaller files.
* The 'ima.ahash_minsize' module parameter allows specifying the best
* minimum file size for using ahash on the system.
*
* If the ima.ahash_minsize parameter is not specified, this function uses
* shash for the hash calculation. If ahash fails, it falls back to using
* shash.
*/
int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
{
loff_t i_size;
int rc;
struct file *f = file;
bool new_file_instance = false;
/*
* For consistency, fail file's opened with the O_DIRECT flag on
* filesystems mounted with/without DAX option.
*/
if (file->f_flags & O_DIRECT) {
hash->length = hash_digest_size[ima_hash_algo];
hash->algo = ima_hash_algo;
return -EINVAL;
}
/* Open a new file instance in O_RDONLY if we cannot read */
if (!(file->f_mode & FMODE_READ)) {
int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
flags |= O_RDONLY;
f = dentry_open(&file->f_path, flags, file->f_cred);
if (IS_ERR(f))
return PTR_ERR(f);
new_file_instance = true;
}
i_size = i_size_read(file_inode(f));
if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
rc = ima_calc_file_ahash(f, hash);
if (!rc)
goto out;
}
rc = ima_calc_file_shash(f, hash);
out:
if (new_file_instance)
fput(f);
return rc;
}
/*
* Calculate the hash of template data
*/
static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
struct ima_template_entry *entry,
int tfm_idx)
{
SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm);
struct ima_template_desc *td = entry->template_desc;
int num_fields = entry->template_desc->num_fields;
int rc, i;
shash->tfm = ima_algo_array[tfm_idx].tfm;
rc = crypto_shash_init(shash);
if (rc != 0)
return rc;
for (i = 0; i < num_fields; i++) {
u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
u8 *data_to_hash = field_data[i].data;
u32 datalen = field_data[i].len;
u32 datalen_to_hash = !ima_canonical_fmt ?
datalen : (__force u32)cpu_to_le32(datalen);
if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
rc = crypto_shash_update(shash,
(const u8 *) &datalen_to_hash,
sizeof(datalen_to_hash));
if (rc)
break;
} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
memcpy(buffer, data_to_hash, datalen);
data_to_hash = buffer;
datalen = IMA_EVENT_NAME_LEN_MAX + 1;
}
rc = crypto_shash_update(shash, data_to_hash, datalen);
if (rc)
break;
}
if (!rc)
rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest);
return rc;
}
int ima_calc_field_array_hash(struct ima_field_data *field_data,
struct ima_template_entry *entry)
{
u16 alg_id;
int rc, i;
rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx);
if (rc)
return rc;
entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1;
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
if (i == ima_sha1_idx)
continue;
if (i < NR_BANKS(ima_tpm_chip)) {
alg_id = ima_tpm_chip->allocated_banks[i].alg_id;
entry->digests[i].alg_id = alg_id;
}
/* for unmapped TPM algorithms digest is still a padded SHA1 */
if (!ima_algo_array[i].tfm) {
memcpy(entry->digests[i].digest,
entry->digests[ima_sha1_idx].digest,
TPM_DIGEST_SIZE);
continue;
}
rc = ima_calc_field_array_hash_tfm(field_data, entry, i);
if (rc)
return rc;
}
return rc;
}
static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
struct ima_digest_data *hash,
struct crypto_ahash *tfm)
{
struct ahash_request *req;
struct scatterlist sg;
struct crypto_wait wait;
int rc, ahash_rc = 0;
hash->length = crypto_ahash_digestsize(tfm);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
crypto_init_wait(&wait);
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
rc = ahash_wait(crypto_ahash_init(req), &wait);
if (rc)
goto out;
sg_init_one(&sg, buf, len);
ahash_request_set_crypt(req, &sg, NULL, len);
ahash_rc = crypto_ahash_update(req);
/* wait for the update request to complete */
rc = ahash_wait(ahash_rc, &wait);
if (!rc) {
ahash_request_set_crypt(req, NULL, hash->digest, 0);
rc = ahash_wait(crypto_ahash_final(req), &wait);
}
out:
ahash_request_free(req);
return rc;
}
static int calc_buffer_ahash(const void *buf, loff_t len,
struct ima_digest_data *hash)
{
struct crypto_ahash *tfm;
int rc;
tfm = ima_alloc_atfm(hash->algo);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
ima_free_atfm(tfm);
return rc;
}
static int calc_buffer_shash_tfm(const void *buf, loff_t size,
struct ima_digest_data *hash,
struct crypto_shash *tfm)
{
SHASH_DESC_ON_STACK(shash, tfm);
unsigned int len;
int rc;
shash->tfm = tfm;
hash->length = crypto_shash_digestsize(tfm);
rc = crypto_shash_init(shash);
if (rc != 0)
return rc;
while (size) {
len = size < PAGE_SIZE ? size : PAGE_SIZE;
rc = crypto_shash_update(shash, buf, len);
if (rc)
break;
buf += len;
size -= len;
}
if (!rc)
rc = crypto_shash_final(shash, hash->digest);
return rc;
}
static int calc_buffer_shash(const void *buf, loff_t len,
struct ima_digest_data *hash)
{
struct crypto_shash *tfm;
int rc;
tfm = ima_alloc_tfm(hash->algo);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
ima_free_tfm(tfm);
return rc;
}
int ima_calc_buffer_hash(const void *buf, loff_t len,
struct ima_digest_data *hash)
{
int rc;
if (ima_ahash_minsize && len >= ima_ahash_minsize) {
rc = calc_buffer_ahash(buf, len, hash);
if (!rc)
return 0;
}
return calc_buffer_shash(buf, len, hash);
}
static void ima_pcrread(u32 idx, struct tpm_digest *d)
{
if (!ima_tpm_chip)
return;
if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
pr_err("Error Communicating to TPM chip\n");
}
/*
* The boot_aggregate is a cumulative hash over TPM registers 0 - 7. With
* TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
* TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
* allowing firmware to configure and enable different banks.
*
* Knowing which TPM bank is read to calculate the boot_aggregate digest
* needs to be conveyed to a verifier. For this reason, use the same
* hash algorithm for reading the TPM PCRs as for calculating the boot
* aggregate digest as stored in the measurement list.
*/
static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
struct crypto_shash *tfm)
{
struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
int rc;
u32 i;
SHASH_DESC_ON_STACK(shash, tfm);
shash->tfm = tfm;
pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
d.alg_id);
rc = crypto_shash_init(shash);
if (rc != 0)
return rc;
/* cumulative digest over TPM registers 0-7 */
for (i = TPM_PCR0; i < TPM_PCR8; i++) {
ima_pcrread(i, &d);
/* now accumulate with current aggregate */
rc = crypto_shash_update(shash, d.digest,
crypto_shash_digestsize(tfm));
if (rc != 0)
return rc;
}
/*
* Extend cumulative digest over TPM registers 8-9, which contain
* measurement for the kernel command line (reg. 8) and image (reg. 9)
* in a typical PCR allocation. Registers 8-9 are only included in
* non-SHA1 boot_aggregate digests to avoid ambiguity.
*/
if (alg_id != TPM_ALG_SHA1) {
for (i = TPM_PCR8; i < TPM_PCR10; i++) {
ima_pcrread(i, &d);
rc = crypto_shash_update(shash, d.digest,
crypto_shash_digestsize(tfm));
}
}
if (!rc)
crypto_shash_final(shash, digest);
return rc;
}
int ima_calc_boot_aggregate(struct ima_digest_data *hash)
{
struct crypto_shash *tfm;
u16 crypto_id, alg_id;
int rc, i, bank_idx = -1;
for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
if (crypto_id == hash->algo) {
bank_idx = i;
break;
}
if (crypto_id == HASH_ALGO_SHA256)
bank_idx = i;
if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
bank_idx = i;
}
if (bank_idx == -1) {
pr_err("No suitable TPM algorithm for boot aggregate\n");
return 0;
}
hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;
tfm = ima_alloc_tfm(hash->algo);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
hash->length = crypto_shash_digestsize(tfm);
alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);
ima_free_tfm(tfm);
return rc;
}