| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2008 Michael Ellerman, IBM Corporation. |
| */ |
| |
| #include <linux/kprobes.h> |
| #include <linux/mmu_context.h> |
| #include <linux/random.h> |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/uaccess.h> |
| #include <linux/jump_label.h> |
| |
| #include <asm/debug.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include <asm/page.h> |
| #include <asm/code-patching.h> |
| #include <asm/inst.h> |
| |
| static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr) |
| { |
| if (!ppc_inst_prefixed(instr)) { |
| u32 val = ppc_inst_val(instr); |
| |
| __put_kernel_nofault(patch_addr, &val, u32, failed); |
| } else { |
| u64 val = ppc_inst_as_ulong(instr); |
| |
| __put_kernel_nofault(patch_addr, &val, u64, failed); |
| } |
| |
| asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr), |
| "r" (exec_addr)); |
| |
| return 0; |
| |
| failed: |
| mb(); /* sync */ |
| return -EPERM; |
| } |
| |
| int raw_patch_instruction(u32 *addr, ppc_inst_t instr) |
| { |
| return __patch_instruction(addr, instr, addr); |
| } |
| |
| struct patch_context { |
| union { |
| struct vm_struct *area; |
| struct mm_struct *mm; |
| }; |
| unsigned long addr; |
| pte_t *pte; |
| }; |
| |
| static DEFINE_PER_CPU(struct patch_context, cpu_patching_context); |
| |
| static int map_patch_area(void *addr, unsigned long text_poke_addr); |
| static void unmap_patch_area(unsigned long addr); |
| |
| static bool mm_patch_enabled(void) |
| { |
| return IS_ENABLED(CONFIG_SMP) && radix_enabled(); |
| } |
| |
| /* |
| * The following applies for Radix MMU. Hash MMU has different requirements, |
| * and so is not supported. |
| * |
| * Changing mm requires context synchronising instructions on both sides of |
| * the context switch, as well as a hwsync between the last instruction for |
| * which the address of an associated storage access was translated using |
| * the current context. |
| * |
| * switch_mm_irqs_off() performs an isync after the context switch. It is |
| * the responsibility of the caller to perform the CSI and hwsync before |
| * starting/stopping the temp mm. |
| */ |
| static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm) |
| { |
| struct mm_struct *orig_mm = current->active_mm; |
| |
| lockdep_assert_irqs_disabled(); |
| switch_mm_irqs_off(orig_mm, temp_mm, current); |
| |
| WARN_ON(!mm_is_thread_local(temp_mm)); |
| |
| suspend_breakpoints(); |
| return orig_mm; |
| } |
| |
| static void stop_using_temp_mm(struct mm_struct *temp_mm, |
| struct mm_struct *orig_mm) |
| { |
| lockdep_assert_irqs_disabled(); |
| switch_mm_irqs_off(temp_mm, orig_mm, current); |
| restore_breakpoints(); |
| } |
| |
| static int text_area_cpu_up(unsigned int cpu) |
| { |
| struct vm_struct *area; |
| unsigned long addr; |
| int err; |
| |
| area = get_vm_area(PAGE_SIZE, VM_ALLOC); |
| if (!area) { |
| WARN_ONCE(1, "Failed to create text area for cpu %d\n", |
| cpu); |
| return -1; |
| } |
| |
| // Map/unmap the area to ensure all page tables are pre-allocated |
| addr = (unsigned long)area->addr; |
| err = map_patch_area(empty_zero_page, addr); |
| if (err) |
| return err; |
| |
| unmap_patch_area(addr); |
| |
| this_cpu_write(cpu_patching_context.area, area); |
| this_cpu_write(cpu_patching_context.addr, addr); |
| this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr)); |
| |
| return 0; |
| } |
| |
| static int text_area_cpu_down(unsigned int cpu) |
| { |
| free_vm_area(this_cpu_read(cpu_patching_context.area)); |
| this_cpu_write(cpu_patching_context.area, NULL); |
| this_cpu_write(cpu_patching_context.addr, 0); |
| this_cpu_write(cpu_patching_context.pte, NULL); |
| return 0; |
| } |
| |
| static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr) |
| { |
| struct mmu_gather tlb; |
| |
| tlb_gather_mmu(&tlb, mm); |
| free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0); |
| mmput(mm); |
| } |
| |
| static int text_area_cpu_up_mm(unsigned int cpu) |
| { |
| struct mm_struct *mm; |
| unsigned long addr; |
| pte_t *pte; |
| spinlock_t *ptl; |
| |
| mm = mm_alloc(); |
| if (WARN_ON(!mm)) |
| goto fail_no_mm; |
| |
| /* |
| * Choose a random page-aligned address from the interval |
| * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE]. |
| * The lower address bound is PAGE_SIZE to avoid the zero-page. |
| */ |
| addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT; |
| |
| /* |
| * PTE allocation uses GFP_KERNEL which means we need to |
| * pre-allocate the PTE here because we cannot do the |
| * allocation during patching when IRQs are disabled. |
| * |
| * Using get_locked_pte() to avoid open coding, the lock |
| * is unnecessary. |
| */ |
| pte = get_locked_pte(mm, addr, &ptl); |
| if (!pte) |
| goto fail_no_pte; |
| pte_unmap_unlock(pte, ptl); |
| |
| this_cpu_write(cpu_patching_context.mm, mm); |
| this_cpu_write(cpu_patching_context.addr, addr); |
| |
| return 0; |
| |
| fail_no_pte: |
| put_patching_mm(mm, addr); |
| fail_no_mm: |
| return -ENOMEM; |
| } |
| |
| static int text_area_cpu_down_mm(unsigned int cpu) |
| { |
| put_patching_mm(this_cpu_read(cpu_patching_context.mm), |
| this_cpu_read(cpu_patching_context.addr)); |
| |
| this_cpu_write(cpu_patching_context.mm, NULL); |
| this_cpu_write(cpu_patching_context.addr, 0); |
| |
| return 0; |
| } |
| |
| static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done); |
| |
| void __init poking_init(void) |
| { |
| int ret; |
| |
| if (mm_patch_enabled()) |
| ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, |
| "powerpc/text_poke_mm:online", |
| text_area_cpu_up_mm, |
| text_area_cpu_down_mm); |
| else |
| ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, |
| "powerpc/text_poke:online", |
| text_area_cpu_up, |
| text_area_cpu_down); |
| |
| /* cpuhp_setup_state returns >= 0 on success */ |
| if (WARN_ON(ret < 0)) |
| return; |
| |
| static_branch_enable(&poking_init_done); |
| } |
| |
| static unsigned long get_patch_pfn(void *addr) |
| { |
| if (IS_ENABLED(CONFIG_EXECMEM) && is_vmalloc_or_module_addr(addr)) |
| return vmalloc_to_pfn(addr); |
| else |
| return __pa_symbol(addr) >> PAGE_SHIFT; |
| } |
| |
| /* |
| * This can be called for kernel text or a module. |
| */ |
| static int map_patch_area(void *addr, unsigned long text_poke_addr) |
| { |
| unsigned long pfn = get_patch_pfn(addr); |
| |
| return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL); |
| } |
| |
| static void unmap_patch_area(unsigned long addr) |
| { |
| pte_t *ptep; |
| pmd_t *pmdp; |
| pud_t *pudp; |
| p4d_t *p4dp; |
| pgd_t *pgdp; |
| |
| pgdp = pgd_offset_k(addr); |
| if (WARN_ON(pgd_none(*pgdp))) |
| return; |
| |
| p4dp = p4d_offset(pgdp, addr); |
| if (WARN_ON(p4d_none(*p4dp))) |
| return; |
| |
| pudp = pud_offset(p4dp, addr); |
| if (WARN_ON(pud_none(*pudp))) |
| return; |
| |
| pmdp = pmd_offset(pudp, addr); |
| if (WARN_ON(pmd_none(*pmdp))) |
| return; |
| |
| ptep = pte_offset_kernel(pmdp, addr); |
| if (WARN_ON(pte_none(*ptep))) |
| return; |
| |
| /* |
| * In hash, pte_clear flushes the tlb, in radix, we have to |
| */ |
| pte_clear(&init_mm, addr, ptep); |
| flush_tlb_kernel_range(addr, addr + PAGE_SIZE); |
| } |
| |
| static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr) |
| { |
| int err; |
| u32 *patch_addr; |
| unsigned long text_poke_addr; |
| pte_t *pte; |
| unsigned long pfn = get_patch_pfn(addr); |
| struct mm_struct *patching_mm; |
| struct mm_struct *orig_mm; |
| spinlock_t *ptl; |
| |
| patching_mm = __this_cpu_read(cpu_patching_context.mm); |
| text_poke_addr = __this_cpu_read(cpu_patching_context.addr); |
| patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); |
| |
| pte = get_locked_pte(patching_mm, text_poke_addr, &ptl); |
| if (!pte) |
| return -ENOMEM; |
| |
| __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); |
| |
| /* order PTE update before use, also serves as the hwsync */ |
| asm volatile("ptesync": : :"memory"); |
| |
| /* order context switch after arbitrary prior code */ |
| isync(); |
| |
| orig_mm = start_using_temp_mm(patching_mm); |
| |
| err = __patch_instruction(addr, instr, patch_addr); |
| |
| /* context synchronisation performed by __patch_instruction (isync or exception) */ |
| stop_using_temp_mm(patching_mm, orig_mm); |
| |
| pte_clear(patching_mm, text_poke_addr, pte); |
| /* |
| * ptesync to order PTE update before TLB invalidation done |
| * by radix__local_flush_tlb_page_psize (in _tlbiel_va) |
| */ |
| local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize); |
| |
| pte_unmap_unlock(pte, ptl); |
| |
| return err; |
| } |
| |
| static int __do_patch_instruction(u32 *addr, ppc_inst_t instr) |
| { |
| int err; |
| u32 *patch_addr; |
| unsigned long text_poke_addr; |
| pte_t *pte; |
| unsigned long pfn = get_patch_pfn(addr); |
| |
| text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK; |
| patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); |
| |
| pte = __this_cpu_read(cpu_patching_context.pte); |
| __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); |
| /* See ptesync comment in radix__set_pte_at() */ |
| if (radix_enabled()) |
| asm volatile("ptesync": : :"memory"); |
| |
| err = __patch_instruction(addr, instr, patch_addr); |
| |
| pte_clear(&init_mm, text_poke_addr, pte); |
| flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE); |
| |
| return err; |
| } |
| |
| int patch_instruction(u32 *addr, ppc_inst_t instr) |
| { |
| int err; |
| unsigned long flags; |
| |
| /* |
| * During early early boot patch_instruction is called |
| * when text_poke_area is not ready, but we still need |
| * to allow patching. We just do the plain old patching |
| */ |
| if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) || |
| !static_branch_likely(&poking_init_done)) |
| return raw_patch_instruction(addr, instr); |
| |
| local_irq_save(flags); |
| if (mm_patch_enabled()) |
| err = __do_patch_instruction_mm(addr, instr); |
| else |
| err = __do_patch_instruction(addr, instr); |
| local_irq_restore(flags); |
| |
| return err; |
| } |
| NOKPROBE_SYMBOL(patch_instruction); |
| |
| static int patch_memset64(u64 *addr, u64 val, size_t count) |
| { |
| for (u64 *end = addr + count; addr < end; addr++) |
| __put_kernel_nofault(addr, &val, u64, failed); |
| |
| return 0; |
| |
| failed: |
| return -EPERM; |
| } |
| |
| static int patch_memset32(u32 *addr, u32 val, size_t count) |
| { |
| for (u32 *end = addr + count; addr < end; addr++) |
| __put_kernel_nofault(addr, &val, u32, failed); |
| |
| return 0; |
| |
| failed: |
| return -EPERM; |
| } |
| |
| static int __patch_instructions(u32 *patch_addr, u32 *code, size_t len, bool repeat_instr) |
| { |
| unsigned long start = (unsigned long)patch_addr; |
| int err; |
| |
| /* Repeat instruction */ |
| if (repeat_instr) { |
| ppc_inst_t instr = ppc_inst_read(code); |
| |
| if (ppc_inst_prefixed(instr)) { |
| u64 val = ppc_inst_as_ulong(instr); |
| |
| err = patch_memset64((u64 *)patch_addr, val, len / 8); |
| } else { |
| u32 val = ppc_inst_val(instr); |
| |
| err = patch_memset32(patch_addr, val, len / 4); |
| } |
| } else { |
| err = copy_to_kernel_nofault(patch_addr, code, len); |
| } |
| |
| smp_wmb(); /* smp write barrier */ |
| flush_icache_range(start, start + len); |
| return err; |
| } |
| |
| /* |
| * A page is mapped and instructions that fit the page are patched. |
| * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below. |
| */ |
| static int __do_patch_instructions_mm(u32 *addr, u32 *code, size_t len, bool repeat_instr) |
| { |
| struct mm_struct *patching_mm, *orig_mm; |
| unsigned long pfn = get_patch_pfn(addr); |
| unsigned long text_poke_addr; |
| spinlock_t *ptl; |
| u32 *patch_addr; |
| pte_t *pte; |
| int err; |
| |
| patching_mm = __this_cpu_read(cpu_patching_context.mm); |
| text_poke_addr = __this_cpu_read(cpu_patching_context.addr); |
| patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); |
| |
| pte = get_locked_pte(patching_mm, text_poke_addr, &ptl); |
| if (!pte) |
| return -ENOMEM; |
| |
| __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); |
| |
| /* order PTE update before use, also serves as the hwsync */ |
| asm volatile("ptesync" ::: "memory"); |
| |
| /* order context switch after arbitrary prior code */ |
| isync(); |
| |
| orig_mm = start_using_temp_mm(patching_mm); |
| |
| err = __patch_instructions(patch_addr, code, len, repeat_instr); |
| |
| /* context synchronisation performed by __patch_instructions */ |
| stop_using_temp_mm(patching_mm, orig_mm); |
| |
| pte_clear(patching_mm, text_poke_addr, pte); |
| /* |
| * ptesync to order PTE update before TLB invalidation done |
| * by radix__local_flush_tlb_page_psize (in _tlbiel_va) |
| */ |
| local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize); |
| |
| pte_unmap_unlock(pte, ptl); |
| |
| return err; |
| } |
| |
| /* |
| * A page is mapped and instructions that fit the page are patched. |
| * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below. |
| */ |
| static int __do_patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr) |
| { |
| unsigned long pfn = get_patch_pfn(addr); |
| unsigned long text_poke_addr; |
| u32 *patch_addr; |
| pte_t *pte; |
| int err; |
| |
| text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK; |
| patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); |
| |
| pte = __this_cpu_read(cpu_patching_context.pte); |
| __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); |
| /* See ptesync comment in radix__set_pte_at() */ |
| if (radix_enabled()) |
| asm volatile("ptesync" ::: "memory"); |
| |
| err = __patch_instructions(patch_addr, code, len, repeat_instr); |
| |
| pte_clear(&init_mm, text_poke_addr, pte); |
| flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE); |
| |
| return err; |
| } |
| |
| /* |
| * Patch 'addr' with 'len' bytes of instructions from 'code'. |
| * |
| * If repeat_instr is true, the same instruction is filled for |
| * 'len' bytes. |
| */ |
| int patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr) |
| { |
| while (len > 0) { |
| unsigned long flags; |
| size_t plen; |
| int err; |
| |
| plen = min_t(size_t, PAGE_SIZE - offset_in_page(addr), len); |
| |
| local_irq_save(flags); |
| if (mm_patch_enabled()) |
| err = __do_patch_instructions_mm(addr, code, plen, repeat_instr); |
| else |
| err = __do_patch_instructions(addr, code, plen, repeat_instr); |
| local_irq_restore(flags); |
| if (err) |
| return err; |
| |
| len -= plen; |
| addr = (u32 *)((unsigned long)addr + plen); |
| if (!repeat_instr) |
| code = (u32 *)((unsigned long)code + plen); |
| } |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(patch_instructions); |
| |
| int patch_branch(u32 *addr, unsigned long target, int flags) |
| { |
| ppc_inst_t instr; |
| |
| if (create_branch(&instr, addr, target, flags)) |
| return -ERANGE; |
| |
| return patch_instruction(addr, instr); |
| } |
| |
| /* |
| * Helper to check if a given instruction is a conditional branch |
| * Derived from the conditional checks in analyse_instr() |
| */ |
| bool is_conditional_branch(ppc_inst_t instr) |
| { |
| unsigned int opcode = ppc_inst_primary_opcode(instr); |
| |
| if (opcode == 16) /* bc, bca, bcl, bcla */ |
| return true; |
| if (opcode == 19) { |
| switch ((ppc_inst_val(instr) >> 1) & 0x3ff) { |
| case 16: /* bclr, bclrl */ |
| case 528: /* bcctr, bcctrl */ |
| case 560: /* bctar, bctarl */ |
| return true; |
| } |
| } |
| return false; |
| } |
| NOKPROBE_SYMBOL(is_conditional_branch); |
| |
| int create_cond_branch(ppc_inst_t *instr, const u32 *addr, |
| unsigned long target, int flags) |
| { |
| long offset; |
| |
| offset = target; |
| if (! (flags & BRANCH_ABSOLUTE)) |
| offset = offset - (unsigned long)addr; |
| |
| /* Check we can represent the target in the instruction format */ |
| if (!is_offset_in_cond_branch_range(offset)) |
| return 1; |
| |
| /* Mask out the flags and target, so they don't step on each other. */ |
| *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC)); |
| |
| return 0; |
| } |
| |
| int instr_is_relative_branch(ppc_inst_t instr) |
| { |
| if (ppc_inst_val(instr) & BRANCH_ABSOLUTE) |
| return 0; |
| |
| return instr_is_branch_iform(instr) || instr_is_branch_bform(instr); |
| } |
| |
| int instr_is_relative_link_branch(ppc_inst_t instr) |
| { |
| return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK); |
| } |
| |
| static unsigned long branch_iform_target(const u32 *instr) |
| { |
| signed long imm; |
| |
| imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC; |
| |
| /* If the top bit of the immediate value is set this is negative */ |
| if (imm & 0x2000000) |
| imm -= 0x4000000; |
| |
| if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0) |
| imm += (unsigned long)instr; |
| |
| return (unsigned long)imm; |
| } |
| |
| static unsigned long branch_bform_target(const u32 *instr) |
| { |
| signed long imm; |
| |
| imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC; |
| |
| /* If the top bit of the immediate value is set this is negative */ |
| if (imm & 0x8000) |
| imm -= 0x10000; |
| |
| if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0) |
| imm += (unsigned long)instr; |
| |
| return (unsigned long)imm; |
| } |
| |
| unsigned long branch_target(const u32 *instr) |
| { |
| if (instr_is_branch_iform(ppc_inst_read(instr))) |
| return branch_iform_target(instr); |
| else if (instr_is_branch_bform(ppc_inst_read(instr))) |
| return branch_bform_target(instr); |
| |
| return 0; |
| } |
| |
| int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src) |
| { |
| unsigned long target; |
| target = branch_target(src); |
| |
| if (instr_is_branch_iform(ppc_inst_read(src))) |
| return create_branch(instr, dest, target, |
| ppc_inst_val(ppc_inst_read(src))); |
| else if (instr_is_branch_bform(ppc_inst_read(src))) |
| return create_cond_branch(instr, dest, target, |
| ppc_inst_val(ppc_inst_read(src))); |
| |
| return 1; |
| } |