| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * HID support for Linux |
| * |
| * Copyright (c) 1999 Andreas Gal |
| * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> |
| * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc |
| * Copyright (c) 2006-2012 Jiri Kosina |
| */ |
| |
| /* |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <asm/unaligned.h> |
| #include <asm/byteorder.h> |
| #include <linux/input.h> |
| #include <linux/wait.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sched.h> |
| #include <linux/semaphore.h> |
| |
| #include <linux/hid.h> |
| #include <linux/hiddev.h> |
| #include <linux/hid-debug.h> |
| #include <linux/hidraw.h> |
| |
| #include "hid-ids.h" |
| |
| /* |
| * Version Information |
| */ |
| |
| #define DRIVER_DESC "HID core driver" |
| |
| static int hid_ignore_special_drivers = 0; |
| module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); |
| MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); |
| |
| /* |
| * Register a new report for a device. |
| */ |
| |
| struct hid_report *hid_register_report(struct hid_device *device, |
| enum hid_report_type type, unsigned int id, |
| unsigned int application) |
| { |
| struct hid_report_enum *report_enum = device->report_enum + type; |
| struct hid_report *report; |
| |
| if (id >= HID_MAX_IDS) |
| return NULL; |
| if (report_enum->report_id_hash[id]) |
| return report_enum->report_id_hash[id]; |
| |
| report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); |
| if (!report) |
| return NULL; |
| |
| if (id != 0) |
| report_enum->numbered = 1; |
| |
| report->id = id; |
| report->type = type; |
| report->size = 0; |
| report->device = device; |
| report->application = application; |
| report_enum->report_id_hash[id] = report; |
| |
| list_add_tail(&report->list, &report_enum->report_list); |
| INIT_LIST_HEAD(&report->field_entry_list); |
| |
| return report; |
| } |
| EXPORT_SYMBOL_GPL(hid_register_report); |
| |
| /* |
| * Register a new field for this report. |
| */ |
| |
| static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages) |
| { |
| struct hid_field *field; |
| |
| if (report->maxfield == HID_MAX_FIELDS) { |
| hid_err(report->device, "too many fields in report\n"); |
| return NULL; |
| } |
| |
| field = kvzalloc((sizeof(struct hid_field) + |
| usages * sizeof(struct hid_usage) + |
| 3 * usages * sizeof(unsigned int)), GFP_KERNEL); |
| if (!field) |
| return NULL; |
| |
| field->index = report->maxfield++; |
| report->field[field->index] = field; |
| field->usage = (struct hid_usage *)(field + 1); |
| field->value = (s32 *)(field->usage + usages); |
| field->new_value = (s32 *)(field->value + usages); |
| field->usages_priorities = (s32 *)(field->new_value + usages); |
| field->report = report; |
| |
| return field; |
| } |
| |
| /* |
| * Open a collection. The type/usage is pushed on the stack. |
| */ |
| |
| static int open_collection(struct hid_parser *parser, unsigned type) |
| { |
| struct hid_collection *collection; |
| unsigned usage; |
| int collection_index; |
| |
| usage = parser->local.usage[0]; |
| |
| if (parser->collection_stack_ptr == parser->collection_stack_size) { |
| unsigned int *collection_stack; |
| unsigned int new_size = parser->collection_stack_size + |
| HID_COLLECTION_STACK_SIZE; |
| |
| collection_stack = krealloc(parser->collection_stack, |
| new_size * sizeof(unsigned int), |
| GFP_KERNEL); |
| if (!collection_stack) |
| return -ENOMEM; |
| |
| parser->collection_stack = collection_stack; |
| parser->collection_stack_size = new_size; |
| } |
| |
| if (parser->device->maxcollection == parser->device->collection_size) { |
| collection = kmalloc( |
| array3_size(sizeof(struct hid_collection), |
| parser->device->collection_size, |
| 2), |
| GFP_KERNEL); |
| if (collection == NULL) { |
| hid_err(parser->device, "failed to reallocate collection array\n"); |
| return -ENOMEM; |
| } |
| memcpy(collection, parser->device->collection, |
| sizeof(struct hid_collection) * |
| parser->device->collection_size); |
| memset(collection + parser->device->collection_size, 0, |
| sizeof(struct hid_collection) * |
| parser->device->collection_size); |
| kfree(parser->device->collection); |
| parser->device->collection = collection; |
| parser->device->collection_size *= 2; |
| } |
| |
| parser->collection_stack[parser->collection_stack_ptr++] = |
| parser->device->maxcollection; |
| |
| collection_index = parser->device->maxcollection++; |
| collection = parser->device->collection + collection_index; |
| collection->type = type; |
| collection->usage = usage; |
| collection->level = parser->collection_stack_ptr - 1; |
| collection->parent_idx = (collection->level == 0) ? -1 : |
| parser->collection_stack[collection->level - 1]; |
| |
| if (type == HID_COLLECTION_APPLICATION) |
| parser->device->maxapplication++; |
| |
| return 0; |
| } |
| |
| /* |
| * Close a collection. |
| */ |
| |
| static int close_collection(struct hid_parser *parser) |
| { |
| if (!parser->collection_stack_ptr) { |
| hid_err(parser->device, "collection stack underflow\n"); |
| return -EINVAL; |
| } |
| parser->collection_stack_ptr--; |
| return 0; |
| } |
| |
| /* |
| * Climb up the stack, search for the specified collection type |
| * and return the usage. |
| */ |
| |
| static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) |
| { |
| struct hid_collection *collection = parser->device->collection; |
| int n; |
| |
| for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { |
| unsigned index = parser->collection_stack[n]; |
| if (collection[index].type == type) |
| return collection[index].usage; |
| } |
| return 0; /* we know nothing about this usage type */ |
| } |
| |
| /* |
| * Concatenate usage which defines 16 bits or less with the |
| * currently defined usage page to form a 32 bit usage |
| */ |
| |
| static void complete_usage(struct hid_parser *parser, unsigned int index) |
| { |
| parser->local.usage[index] &= 0xFFFF; |
| parser->local.usage[index] |= |
| (parser->global.usage_page & 0xFFFF) << 16; |
| } |
| |
| /* |
| * Add a usage to the temporary parser table. |
| */ |
| |
| static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) |
| { |
| if (parser->local.usage_index >= HID_MAX_USAGES) { |
| hid_err(parser->device, "usage index exceeded\n"); |
| return -1; |
| } |
| parser->local.usage[parser->local.usage_index] = usage; |
| |
| /* |
| * If Usage item only includes usage id, concatenate it with |
| * currently defined usage page |
| */ |
| if (size <= 2) |
| complete_usage(parser, parser->local.usage_index); |
| |
| parser->local.usage_size[parser->local.usage_index] = size; |
| parser->local.collection_index[parser->local.usage_index] = |
| parser->collection_stack_ptr ? |
| parser->collection_stack[parser->collection_stack_ptr - 1] : 0; |
| parser->local.usage_index++; |
| return 0; |
| } |
| |
| /* |
| * Register a new field for this report. |
| */ |
| |
| static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) |
| { |
| struct hid_report *report; |
| struct hid_field *field; |
| unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| unsigned int usages; |
| unsigned int offset; |
| unsigned int i; |
| unsigned int application; |
| |
| application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); |
| |
| report = hid_register_report(parser->device, report_type, |
| parser->global.report_id, application); |
| if (!report) { |
| hid_err(parser->device, "hid_register_report failed\n"); |
| return -1; |
| } |
| |
| /* Handle both signed and unsigned cases properly */ |
| if ((parser->global.logical_minimum < 0 && |
| parser->global.logical_maximum < |
| parser->global.logical_minimum) || |
| (parser->global.logical_minimum >= 0 && |
| (__u32)parser->global.logical_maximum < |
| (__u32)parser->global.logical_minimum)) { |
| dbg_hid("logical range invalid 0x%x 0x%x\n", |
| parser->global.logical_minimum, |
| parser->global.logical_maximum); |
| return -1; |
| } |
| |
| offset = report->size; |
| report->size += parser->global.report_size * parser->global.report_count; |
| |
| if (parser->device->ll_driver->max_buffer_size) |
| max_buffer_size = parser->device->ll_driver->max_buffer_size; |
| |
| /* Total size check: Allow for possible report index byte */ |
| if (report->size > (max_buffer_size - 1) << 3) { |
| hid_err(parser->device, "report is too long\n"); |
| return -1; |
| } |
| |
| if (!parser->local.usage_index) /* Ignore padding fields */ |
| return 0; |
| |
| usages = max_t(unsigned, parser->local.usage_index, |
| parser->global.report_count); |
| |
| field = hid_register_field(report, usages); |
| if (!field) |
| return 0; |
| |
| field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); |
| field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); |
| field->application = application; |
| |
| for (i = 0; i < usages; i++) { |
| unsigned j = i; |
| /* Duplicate the last usage we parsed if we have excess values */ |
| if (i >= parser->local.usage_index) |
| j = parser->local.usage_index - 1; |
| field->usage[i].hid = parser->local.usage[j]; |
| field->usage[i].collection_index = |
| parser->local.collection_index[j]; |
| field->usage[i].usage_index = i; |
| field->usage[i].resolution_multiplier = 1; |
| } |
| |
| field->maxusage = usages; |
| field->flags = flags; |
| field->report_offset = offset; |
| field->report_type = report_type; |
| field->report_size = parser->global.report_size; |
| field->report_count = parser->global.report_count; |
| field->logical_minimum = parser->global.logical_minimum; |
| field->logical_maximum = parser->global.logical_maximum; |
| field->physical_minimum = parser->global.physical_minimum; |
| field->physical_maximum = parser->global.physical_maximum; |
| field->unit_exponent = parser->global.unit_exponent; |
| field->unit = parser->global.unit; |
| |
| return 0; |
| } |
| |
| /* |
| * Read data value from item. |
| */ |
| |
| static u32 item_udata(struct hid_item *item) |
| { |
| switch (item->size) { |
| case 1: return item->data.u8; |
| case 2: return item->data.u16; |
| case 4: return item->data.u32; |
| } |
| return 0; |
| } |
| |
| static s32 item_sdata(struct hid_item *item) |
| { |
| switch (item->size) { |
| case 1: return item->data.s8; |
| case 2: return item->data.s16; |
| case 4: return item->data.s32; |
| } |
| return 0; |
| } |
| |
| /* |
| * Process a global item. |
| */ |
| |
| static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) |
| { |
| __s32 raw_value; |
| switch (item->tag) { |
| case HID_GLOBAL_ITEM_TAG_PUSH: |
| |
| if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { |
| hid_err(parser->device, "global environment stack overflow\n"); |
| return -1; |
| } |
| |
| memcpy(parser->global_stack + parser->global_stack_ptr++, |
| &parser->global, sizeof(struct hid_global)); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_POP: |
| |
| if (!parser->global_stack_ptr) { |
| hid_err(parser->device, "global environment stack underflow\n"); |
| return -1; |
| } |
| |
| memcpy(&parser->global, parser->global_stack + |
| --parser->global_stack_ptr, sizeof(struct hid_global)); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: |
| parser->global.usage_page = item_udata(item); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: |
| parser->global.logical_minimum = item_sdata(item); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: |
| if (parser->global.logical_minimum < 0) |
| parser->global.logical_maximum = item_sdata(item); |
| else |
| parser->global.logical_maximum = item_udata(item); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: |
| parser->global.physical_minimum = item_sdata(item); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: |
| if (parser->global.physical_minimum < 0) |
| parser->global.physical_maximum = item_sdata(item); |
| else |
| parser->global.physical_maximum = item_udata(item); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: |
| /* Many devices provide unit exponent as a two's complement |
| * nibble due to the common misunderstanding of HID |
| * specification 1.11, 6.2.2.7 Global Items. Attempt to handle |
| * both this and the standard encoding. */ |
| raw_value = item_sdata(item); |
| if (!(raw_value & 0xfffffff0)) |
| parser->global.unit_exponent = hid_snto32(raw_value, 4); |
| else |
| parser->global.unit_exponent = raw_value; |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_UNIT: |
| parser->global.unit = item_udata(item); |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: |
| parser->global.report_size = item_udata(item); |
| if (parser->global.report_size > 256) { |
| hid_err(parser->device, "invalid report_size %d\n", |
| parser->global.report_size); |
| return -1; |
| } |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: |
| parser->global.report_count = item_udata(item); |
| if (parser->global.report_count > HID_MAX_USAGES) { |
| hid_err(parser->device, "invalid report_count %d\n", |
| parser->global.report_count); |
| return -1; |
| } |
| return 0; |
| |
| case HID_GLOBAL_ITEM_TAG_REPORT_ID: |
| parser->global.report_id = item_udata(item); |
| if (parser->global.report_id == 0 || |
| parser->global.report_id >= HID_MAX_IDS) { |
| hid_err(parser->device, "report_id %u is invalid\n", |
| parser->global.report_id); |
| return -1; |
| } |
| return 0; |
| |
| default: |
| hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); |
| return -1; |
| } |
| } |
| |
| /* |
| * Process a local item. |
| */ |
| |
| static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) |
| { |
| __u32 data; |
| unsigned n; |
| __u32 count; |
| |
| data = item_udata(item); |
| |
| switch (item->tag) { |
| case HID_LOCAL_ITEM_TAG_DELIMITER: |
| |
| if (data) { |
| /* |
| * We treat items before the first delimiter |
| * as global to all usage sets (branch 0). |
| * In the moment we process only these global |
| * items and the first delimiter set. |
| */ |
| if (parser->local.delimiter_depth != 0) { |
| hid_err(parser->device, "nested delimiters\n"); |
| return -1; |
| } |
| parser->local.delimiter_depth++; |
| parser->local.delimiter_branch++; |
| } else { |
| if (parser->local.delimiter_depth < 1) { |
| hid_err(parser->device, "bogus close delimiter\n"); |
| return -1; |
| } |
| parser->local.delimiter_depth--; |
| } |
| return 0; |
| |
| case HID_LOCAL_ITEM_TAG_USAGE: |
| |
| if (parser->local.delimiter_branch > 1) { |
| dbg_hid("alternative usage ignored\n"); |
| return 0; |
| } |
| |
| return hid_add_usage(parser, data, item->size); |
| |
| case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: |
| |
| if (parser->local.delimiter_branch > 1) { |
| dbg_hid("alternative usage ignored\n"); |
| return 0; |
| } |
| |
| parser->local.usage_minimum = data; |
| return 0; |
| |
| case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: |
| |
| if (parser->local.delimiter_branch > 1) { |
| dbg_hid("alternative usage ignored\n"); |
| return 0; |
| } |
| |
| count = data - parser->local.usage_minimum; |
| if (count + parser->local.usage_index >= HID_MAX_USAGES) { |
| /* |
| * We do not warn if the name is not set, we are |
| * actually pre-scanning the device. |
| */ |
| if (dev_name(&parser->device->dev)) |
| hid_warn(parser->device, |
| "ignoring exceeding usage max\n"); |
| data = HID_MAX_USAGES - parser->local.usage_index + |
| parser->local.usage_minimum - 1; |
| if (data <= 0) { |
| hid_err(parser->device, |
| "no more usage index available\n"); |
| return -1; |
| } |
| } |
| |
| for (n = parser->local.usage_minimum; n <= data; n++) |
| if (hid_add_usage(parser, n, item->size)) { |
| dbg_hid("hid_add_usage failed\n"); |
| return -1; |
| } |
| return 0; |
| |
| default: |
| |
| dbg_hid("unknown local item tag 0x%x\n", item->tag); |
| return 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * Concatenate Usage Pages into Usages where relevant: |
| * As per specification, 6.2.2.8: "When the parser encounters a main item it |
| * concatenates the last declared Usage Page with a Usage to form a complete |
| * usage value." |
| */ |
| |
| static void hid_concatenate_last_usage_page(struct hid_parser *parser) |
| { |
| int i; |
| unsigned int usage_page; |
| unsigned int current_page; |
| |
| if (!parser->local.usage_index) |
| return; |
| |
| usage_page = parser->global.usage_page; |
| |
| /* |
| * Concatenate usage page again only if last declared Usage Page |
| * has not been already used in previous usages concatenation |
| */ |
| for (i = parser->local.usage_index - 1; i >= 0; i--) { |
| if (parser->local.usage_size[i] > 2) |
| /* Ignore extended usages */ |
| continue; |
| |
| current_page = parser->local.usage[i] >> 16; |
| if (current_page == usage_page) |
| break; |
| |
| complete_usage(parser, i); |
| } |
| } |
| |
| /* |
| * Process a main item. |
| */ |
| |
| static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) |
| { |
| __u32 data; |
| int ret; |
| |
| hid_concatenate_last_usage_page(parser); |
| |
| data = item_udata(item); |
| |
| switch (item->tag) { |
| case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: |
| ret = open_collection(parser, data & 0xff); |
| break; |
| case HID_MAIN_ITEM_TAG_END_COLLECTION: |
| ret = close_collection(parser); |
| break; |
| case HID_MAIN_ITEM_TAG_INPUT: |
| ret = hid_add_field(parser, HID_INPUT_REPORT, data); |
| break; |
| case HID_MAIN_ITEM_TAG_OUTPUT: |
| ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); |
| break; |
| case HID_MAIN_ITEM_TAG_FEATURE: |
| ret = hid_add_field(parser, HID_FEATURE_REPORT, data); |
| break; |
| default: |
| hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); |
| ret = 0; |
| } |
| |
| memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ |
| |
| return ret; |
| } |
| |
| /* |
| * Process a reserved item. |
| */ |
| |
| static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) |
| { |
| dbg_hid("reserved item type, tag 0x%x\n", item->tag); |
| return 0; |
| } |
| |
| /* |
| * Free a report and all registered fields. The field->usage and |
| * field->value table's are allocated behind the field, so we need |
| * only to free(field) itself. |
| */ |
| |
| static void hid_free_report(struct hid_report *report) |
| { |
| unsigned n; |
| |
| kfree(report->field_entries); |
| |
| for (n = 0; n < report->maxfield; n++) |
| kvfree(report->field[n]); |
| kfree(report); |
| } |
| |
| /* |
| * Close report. This function returns the device |
| * state to the point prior to hid_open_report(). |
| */ |
| static void hid_close_report(struct hid_device *device) |
| { |
| unsigned i, j; |
| |
| for (i = 0; i < HID_REPORT_TYPES; i++) { |
| struct hid_report_enum *report_enum = device->report_enum + i; |
| |
| for (j = 0; j < HID_MAX_IDS; j++) { |
| struct hid_report *report = report_enum->report_id_hash[j]; |
| if (report) |
| hid_free_report(report); |
| } |
| memset(report_enum, 0, sizeof(*report_enum)); |
| INIT_LIST_HEAD(&report_enum->report_list); |
| } |
| |
| kfree(device->rdesc); |
| device->rdesc = NULL; |
| device->rsize = 0; |
| |
| kfree(device->collection); |
| device->collection = NULL; |
| device->collection_size = 0; |
| device->maxcollection = 0; |
| device->maxapplication = 0; |
| |
| device->status &= ~HID_STAT_PARSED; |
| } |
| |
| /* |
| * Free a device structure, all reports, and all fields. |
| */ |
| |
| void hiddev_free(struct kref *ref) |
| { |
| struct hid_device *hid = container_of(ref, struct hid_device, ref); |
| |
| hid_close_report(hid); |
| kfree(hid->dev_rdesc); |
| kfree(hid); |
| } |
| |
| static void hid_device_release(struct device *dev) |
| { |
| struct hid_device *hid = to_hid_device(dev); |
| |
| kref_put(&hid->ref, hiddev_free); |
| } |
| |
| /* |
| * Fetch a report description item from the data stream. We support long |
| * items, though they are not used yet. |
| */ |
| |
| static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) |
| { |
| u8 b; |
| |
| if ((end - start) <= 0) |
| return NULL; |
| |
| b = *start++; |
| |
| item->type = (b >> 2) & 3; |
| item->tag = (b >> 4) & 15; |
| |
| if (item->tag == HID_ITEM_TAG_LONG) { |
| |
| item->format = HID_ITEM_FORMAT_LONG; |
| |
| if ((end - start) < 2) |
| return NULL; |
| |
| item->size = *start++; |
| item->tag = *start++; |
| |
| if ((end - start) < item->size) |
| return NULL; |
| |
| item->data.longdata = start; |
| start += item->size; |
| return start; |
| } |
| |
| item->format = HID_ITEM_FORMAT_SHORT; |
| item->size = b & 3; |
| |
| switch (item->size) { |
| case 0: |
| return start; |
| |
| case 1: |
| if ((end - start) < 1) |
| return NULL; |
| item->data.u8 = *start++; |
| return start; |
| |
| case 2: |
| if ((end - start) < 2) |
| return NULL; |
| item->data.u16 = get_unaligned_le16(start); |
| start = (__u8 *)((__le16 *)start + 1); |
| return start; |
| |
| case 3: |
| item->size++; |
| if ((end - start) < 4) |
| return NULL; |
| item->data.u32 = get_unaligned_le32(start); |
| start = (__u8 *)((__le32 *)start + 1); |
| return start; |
| } |
| |
| return NULL; |
| } |
| |
| static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) |
| { |
| struct hid_device *hid = parser->device; |
| |
| if (usage == HID_DG_CONTACTID) |
| hid->group = HID_GROUP_MULTITOUCH; |
| } |
| |
| static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) |
| { |
| if (usage == 0xff0000c5 && parser->global.report_count == 256 && |
| parser->global.report_size == 8) |
| parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; |
| |
| if (usage == 0xff0000c6 && parser->global.report_count == 1 && |
| parser->global.report_size == 8) |
| parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; |
| } |
| |
| static void hid_scan_collection(struct hid_parser *parser, unsigned type) |
| { |
| struct hid_device *hid = parser->device; |
| int i; |
| |
| if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && |
| (type == HID_COLLECTION_PHYSICAL || |
| type == HID_COLLECTION_APPLICATION)) |
| hid->group = HID_GROUP_SENSOR_HUB; |
| |
| if (hid->vendor == USB_VENDOR_ID_MICROSOFT && |
| hid->product == USB_DEVICE_ID_MS_POWER_COVER && |
| hid->group == HID_GROUP_MULTITOUCH) |
| hid->group = HID_GROUP_GENERIC; |
| |
| if ((parser->global.usage_page << 16) == HID_UP_GENDESK) |
| for (i = 0; i < parser->local.usage_index; i++) |
| if (parser->local.usage[i] == HID_GD_POINTER) |
| parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; |
| |
| if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) |
| parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; |
| |
| if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR) |
| for (i = 0; i < parser->local.usage_index; i++) |
| if (parser->local.usage[i] == |
| (HID_UP_GOOGLEVENDOR | 0x0001)) |
| parser->device->group = |
| HID_GROUP_VIVALDI; |
| } |
| |
| static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) |
| { |
| __u32 data; |
| int i; |
| |
| hid_concatenate_last_usage_page(parser); |
| |
| data = item_udata(item); |
| |
| switch (item->tag) { |
| case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: |
| hid_scan_collection(parser, data & 0xff); |
| break; |
| case HID_MAIN_ITEM_TAG_END_COLLECTION: |
| break; |
| case HID_MAIN_ITEM_TAG_INPUT: |
| /* ignore constant inputs, they will be ignored by hid-input */ |
| if (data & HID_MAIN_ITEM_CONSTANT) |
| break; |
| for (i = 0; i < parser->local.usage_index; i++) |
| hid_scan_input_usage(parser, parser->local.usage[i]); |
| break; |
| case HID_MAIN_ITEM_TAG_OUTPUT: |
| break; |
| case HID_MAIN_ITEM_TAG_FEATURE: |
| for (i = 0; i < parser->local.usage_index; i++) |
| hid_scan_feature_usage(parser, parser->local.usage[i]); |
| break; |
| } |
| |
| /* Reset the local parser environment */ |
| memset(&parser->local, 0, sizeof(parser->local)); |
| |
| return 0; |
| } |
| |
| /* |
| * Scan a report descriptor before the device is added to the bus. |
| * Sets device groups and other properties that determine what driver |
| * to load. |
| */ |
| static int hid_scan_report(struct hid_device *hid) |
| { |
| struct hid_parser *parser; |
| struct hid_item item; |
| __u8 *start = hid->dev_rdesc; |
| __u8 *end = start + hid->dev_rsize; |
| static int (*dispatch_type[])(struct hid_parser *parser, |
| struct hid_item *item) = { |
| hid_scan_main, |
| hid_parser_global, |
| hid_parser_local, |
| hid_parser_reserved |
| }; |
| |
| parser = vzalloc(sizeof(struct hid_parser)); |
| if (!parser) |
| return -ENOMEM; |
| |
| parser->device = hid; |
| hid->group = HID_GROUP_GENERIC; |
| |
| /* |
| * The parsing is simpler than the one in hid_open_report() as we should |
| * be robust against hid errors. Those errors will be raised by |
| * hid_open_report() anyway. |
| */ |
| while ((start = fetch_item(start, end, &item)) != NULL) |
| dispatch_type[item.type](parser, &item); |
| |
| /* |
| * Handle special flags set during scanning. |
| */ |
| if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && |
| (hid->group == HID_GROUP_MULTITOUCH)) |
| hid->group = HID_GROUP_MULTITOUCH_WIN_8; |
| |
| /* |
| * Vendor specific handlings |
| */ |
| switch (hid->vendor) { |
| case USB_VENDOR_ID_WACOM: |
| hid->group = HID_GROUP_WACOM; |
| break; |
| case USB_VENDOR_ID_SYNAPTICS: |
| if (hid->group == HID_GROUP_GENERIC) |
| if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) |
| && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) |
| /* |
| * hid-rmi should take care of them, |
| * not hid-generic |
| */ |
| hid->group = HID_GROUP_RMI; |
| break; |
| } |
| |
| kfree(parser->collection_stack); |
| vfree(parser); |
| return 0; |
| } |
| |
| /** |
| * hid_parse_report - parse device report |
| * |
| * @hid: hid device |
| * @start: report start |
| * @size: report size |
| * |
| * Allocate the device report as read by the bus driver. This function should |
| * only be called from parse() in ll drivers. |
| */ |
| int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) |
| { |
| hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); |
| if (!hid->dev_rdesc) |
| return -ENOMEM; |
| hid->dev_rsize = size; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_parse_report); |
| |
| static const char * const hid_report_names[] = { |
| "HID_INPUT_REPORT", |
| "HID_OUTPUT_REPORT", |
| "HID_FEATURE_REPORT", |
| }; |
| /** |
| * hid_validate_values - validate existing device report's value indexes |
| * |
| * @hid: hid device |
| * @type: which report type to examine |
| * @id: which report ID to examine (0 for first) |
| * @field_index: which report field to examine |
| * @report_counts: expected number of values |
| * |
| * Validate the number of values in a given field of a given report, after |
| * parsing. |
| */ |
| struct hid_report *hid_validate_values(struct hid_device *hid, |
| enum hid_report_type type, unsigned int id, |
| unsigned int field_index, |
| unsigned int report_counts) |
| { |
| struct hid_report *report; |
| |
| if (type > HID_FEATURE_REPORT) { |
| hid_err(hid, "invalid HID report type %u\n", type); |
| return NULL; |
| } |
| |
| if (id >= HID_MAX_IDS) { |
| hid_err(hid, "invalid HID report id %u\n", id); |
| return NULL; |
| } |
| |
| /* |
| * Explicitly not using hid_get_report() here since it depends on |
| * ->numbered being checked, which may not always be the case when |
| * drivers go to access report values. |
| */ |
| if (id == 0) { |
| /* |
| * Validating on id 0 means we should examine the first |
| * report in the list. |
| */ |
| report = list_first_entry_or_null( |
| &hid->report_enum[type].report_list, |
| struct hid_report, list); |
| } else { |
| report = hid->report_enum[type].report_id_hash[id]; |
| } |
| if (!report) { |
| hid_err(hid, "missing %s %u\n", hid_report_names[type], id); |
| return NULL; |
| } |
| if (report->maxfield <= field_index) { |
| hid_err(hid, "not enough fields in %s %u\n", |
| hid_report_names[type], id); |
| return NULL; |
| } |
| if (report->field[field_index]->report_count < report_counts) { |
| hid_err(hid, "not enough values in %s %u field %u\n", |
| hid_report_names[type], id, field_index); |
| return NULL; |
| } |
| return report; |
| } |
| EXPORT_SYMBOL_GPL(hid_validate_values); |
| |
| static int hid_calculate_multiplier(struct hid_device *hid, |
| struct hid_field *multiplier) |
| { |
| int m; |
| __s32 v = *multiplier->value; |
| __s32 lmin = multiplier->logical_minimum; |
| __s32 lmax = multiplier->logical_maximum; |
| __s32 pmin = multiplier->physical_minimum; |
| __s32 pmax = multiplier->physical_maximum; |
| |
| /* |
| * "Because OS implementations will generally divide the control's |
| * reported count by the Effective Resolution Multiplier, designers |
| * should take care not to establish a potential Effective |
| * Resolution Multiplier of zero." |
| * HID Usage Table, v1.12, Section 4.3.1, p31 |
| */ |
| if (lmax - lmin == 0) |
| return 1; |
| /* |
| * Handling the unit exponent is left as an exercise to whoever |
| * finds a device where that exponent is not 0. |
| */ |
| m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); |
| if (unlikely(multiplier->unit_exponent != 0)) { |
| hid_warn(hid, |
| "unsupported Resolution Multiplier unit exponent %d\n", |
| multiplier->unit_exponent); |
| } |
| |
| /* There are no devices with an effective multiplier > 255 */ |
| if (unlikely(m == 0 || m > 255 || m < -255)) { |
| hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); |
| m = 1; |
| } |
| |
| return m; |
| } |
| |
| static void hid_apply_multiplier_to_field(struct hid_device *hid, |
| struct hid_field *field, |
| struct hid_collection *multiplier_collection, |
| int effective_multiplier) |
| { |
| struct hid_collection *collection; |
| struct hid_usage *usage; |
| int i; |
| |
| /* |
| * If multiplier_collection is NULL, the multiplier applies |
| * to all fields in the report. |
| * Otherwise, it is the Logical Collection the multiplier applies to |
| * but our field may be in a subcollection of that collection. |
| */ |
| for (i = 0; i < field->maxusage; i++) { |
| usage = &field->usage[i]; |
| |
| collection = &hid->collection[usage->collection_index]; |
| while (collection->parent_idx != -1 && |
| collection != multiplier_collection) |
| collection = &hid->collection[collection->parent_idx]; |
| |
| if (collection->parent_idx != -1 || |
| multiplier_collection == NULL) |
| usage->resolution_multiplier = effective_multiplier; |
| |
| } |
| } |
| |
| static void hid_apply_multiplier(struct hid_device *hid, |
| struct hid_field *multiplier) |
| { |
| struct hid_report_enum *rep_enum; |
| struct hid_report *rep; |
| struct hid_field *field; |
| struct hid_collection *multiplier_collection; |
| int effective_multiplier; |
| int i; |
| |
| /* |
| * "The Resolution Multiplier control must be contained in the same |
| * Logical Collection as the control(s) to which it is to be applied. |
| * If no Resolution Multiplier is defined, then the Resolution |
| * Multiplier defaults to 1. If more than one control exists in a |
| * Logical Collection, the Resolution Multiplier is associated with |
| * all controls in the collection. If no Logical Collection is |
| * defined, the Resolution Multiplier is associated with all |
| * controls in the report." |
| * HID Usage Table, v1.12, Section 4.3.1, p30 |
| * |
| * Thus, search from the current collection upwards until we find a |
| * logical collection. Then search all fields for that same parent |
| * collection. Those are the fields the multiplier applies to. |
| * |
| * If we have more than one multiplier, it will overwrite the |
| * applicable fields later. |
| */ |
| multiplier_collection = &hid->collection[multiplier->usage->collection_index]; |
| while (multiplier_collection->parent_idx != -1 && |
| multiplier_collection->type != HID_COLLECTION_LOGICAL) |
| multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; |
| |
| effective_multiplier = hid_calculate_multiplier(hid, multiplier); |
| |
| rep_enum = &hid->report_enum[HID_INPUT_REPORT]; |
| list_for_each_entry(rep, &rep_enum->report_list, list) { |
| for (i = 0; i < rep->maxfield; i++) { |
| field = rep->field[i]; |
| hid_apply_multiplier_to_field(hid, field, |
| multiplier_collection, |
| effective_multiplier); |
| } |
| } |
| } |
| |
| /* |
| * hid_setup_resolution_multiplier - set up all resolution multipliers |
| * |
| * @device: hid device |
| * |
| * Search for all Resolution Multiplier Feature Reports and apply their |
| * value to all matching Input items. This only updates the internal struct |
| * fields. |
| * |
| * The Resolution Multiplier is applied by the hardware. If the multiplier |
| * is anything other than 1, the hardware will send pre-multiplied events |
| * so that the same physical interaction generates an accumulated |
| * accumulated_value = value * * multiplier |
| * This may be achieved by sending |
| * - "value * multiplier" for each event, or |
| * - "value" but "multiplier" times as frequently, or |
| * - a combination of the above |
| * The only guarantee is that the same physical interaction always generates |
| * an accumulated 'value * multiplier'. |
| * |
| * This function must be called before any event processing and after |
| * any SetRequest to the Resolution Multiplier. |
| */ |
| void hid_setup_resolution_multiplier(struct hid_device *hid) |
| { |
| struct hid_report_enum *rep_enum; |
| struct hid_report *rep; |
| struct hid_usage *usage; |
| int i, j; |
| |
| rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; |
| list_for_each_entry(rep, &rep_enum->report_list, list) { |
| for (i = 0; i < rep->maxfield; i++) { |
| /* Ignore if report count is out of bounds. */ |
| if (rep->field[i]->report_count < 1) |
| continue; |
| |
| for (j = 0; j < rep->field[i]->maxusage; j++) { |
| usage = &rep->field[i]->usage[j]; |
| if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) |
| hid_apply_multiplier(hid, |
| rep->field[i]); |
| } |
| } |
| } |
| } |
| EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); |
| |
| /** |
| * hid_open_report - open a driver-specific device report |
| * |
| * @device: hid device |
| * |
| * Parse a report description into a hid_device structure. Reports are |
| * enumerated, fields are attached to these reports. |
| * 0 returned on success, otherwise nonzero error value. |
| * |
| * This function (or the equivalent hid_parse() macro) should only be |
| * called from probe() in drivers, before starting the device. |
| */ |
| int hid_open_report(struct hid_device *device) |
| { |
| struct hid_parser *parser; |
| struct hid_item item; |
| unsigned int size; |
| __u8 *start; |
| __u8 *buf; |
| __u8 *end; |
| __u8 *next; |
| int ret; |
| int i; |
| static int (*dispatch_type[])(struct hid_parser *parser, |
| struct hid_item *item) = { |
| hid_parser_main, |
| hid_parser_global, |
| hid_parser_local, |
| hid_parser_reserved |
| }; |
| |
| if (WARN_ON(device->status & HID_STAT_PARSED)) |
| return -EBUSY; |
| |
| start = device->dev_rdesc; |
| if (WARN_ON(!start)) |
| return -ENODEV; |
| size = device->dev_rsize; |
| |
| /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */ |
| buf = call_hid_bpf_rdesc_fixup(device, start, &size); |
| if (buf == NULL) |
| return -ENOMEM; |
| |
| if (device->driver->report_fixup) |
| start = device->driver->report_fixup(device, buf, &size); |
| else |
| start = buf; |
| |
| start = kmemdup(start, size, GFP_KERNEL); |
| kfree(buf); |
| if (start == NULL) |
| return -ENOMEM; |
| |
| device->rdesc = start; |
| device->rsize = size; |
| |
| parser = vzalloc(sizeof(struct hid_parser)); |
| if (!parser) { |
| ret = -ENOMEM; |
| goto alloc_err; |
| } |
| |
| parser->device = device; |
| |
| end = start + size; |
| |
| device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, |
| sizeof(struct hid_collection), GFP_KERNEL); |
| if (!device->collection) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; |
| for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++) |
| device->collection[i].parent_idx = -1; |
| |
| ret = -EINVAL; |
| while ((next = fetch_item(start, end, &item)) != NULL) { |
| start = next; |
| |
| if (item.format != HID_ITEM_FORMAT_SHORT) { |
| hid_err(device, "unexpected long global item\n"); |
| goto err; |
| } |
| |
| if (dispatch_type[item.type](parser, &item)) { |
| hid_err(device, "item %u %u %u %u parsing failed\n", |
| item.format, (unsigned)item.size, |
| (unsigned)item.type, (unsigned)item.tag); |
| goto err; |
| } |
| |
| if (start == end) { |
| if (parser->collection_stack_ptr) { |
| hid_err(device, "unbalanced collection at end of report description\n"); |
| goto err; |
| } |
| if (parser->local.delimiter_depth) { |
| hid_err(device, "unbalanced delimiter at end of report description\n"); |
| goto err; |
| } |
| |
| /* |
| * fetch initial values in case the device's |
| * default multiplier isn't the recommended 1 |
| */ |
| hid_setup_resolution_multiplier(device); |
| |
| kfree(parser->collection_stack); |
| vfree(parser); |
| device->status |= HID_STAT_PARSED; |
| |
| return 0; |
| } |
| } |
| |
| hid_err(device, "item fetching failed at offset %u/%u\n", |
| size - (unsigned int)(end - start), size); |
| err: |
| kfree(parser->collection_stack); |
| alloc_err: |
| vfree(parser); |
| hid_close_report(device); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(hid_open_report); |
| |
| /* |
| * Convert a signed n-bit integer to signed 32-bit integer. Common |
| * cases are done through the compiler, the screwed things has to be |
| * done by hand. |
| */ |
| |
| static s32 snto32(__u32 value, unsigned n) |
| { |
| if (!value || !n) |
| return 0; |
| |
| if (n > 32) |
| n = 32; |
| |
| switch (n) { |
| case 8: return ((__s8)value); |
| case 16: return ((__s16)value); |
| case 32: return ((__s32)value); |
| } |
| return value & (1 << (n - 1)) ? value | (~0U << n) : value; |
| } |
| |
| s32 hid_snto32(__u32 value, unsigned n) |
| { |
| return snto32(value, n); |
| } |
| EXPORT_SYMBOL_GPL(hid_snto32); |
| |
| /* |
| * Convert a signed 32-bit integer to a signed n-bit integer. |
| */ |
| |
| static u32 s32ton(__s32 value, unsigned n) |
| { |
| s32 a = value >> (n - 1); |
| if (a && a != -1) |
| return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; |
| return value & ((1 << n) - 1); |
| } |
| |
| /* |
| * Extract/implement a data field from/to a little endian report (bit array). |
| * |
| * Code sort-of follows HID spec: |
| * http://www.usb.org/developers/hidpage/HID1_11.pdf |
| * |
| * While the USB HID spec allows unlimited length bit fields in "report |
| * descriptors", most devices never use more than 16 bits. |
| * One model of UPS is claimed to report "LINEV" as a 32-bit field. |
| * Search linux-kernel and linux-usb-devel archives for "hid-core extract". |
| */ |
| |
| static u32 __extract(u8 *report, unsigned offset, int n) |
| { |
| unsigned int idx = offset / 8; |
| unsigned int bit_nr = 0; |
| unsigned int bit_shift = offset % 8; |
| int bits_to_copy = 8 - bit_shift; |
| u32 value = 0; |
| u32 mask = n < 32 ? (1U << n) - 1 : ~0U; |
| |
| while (n > 0) { |
| value |= ((u32)report[idx] >> bit_shift) << bit_nr; |
| n -= bits_to_copy; |
| bit_nr += bits_to_copy; |
| bits_to_copy = 8; |
| bit_shift = 0; |
| idx++; |
| } |
| |
| return value & mask; |
| } |
| |
| u32 hid_field_extract(const struct hid_device *hid, u8 *report, |
| unsigned offset, unsigned n) |
| { |
| if (n > 32) { |
| hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", |
| __func__, n, current->comm); |
| n = 32; |
| } |
| |
| return __extract(report, offset, n); |
| } |
| EXPORT_SYMBOL_GPL(hid_field_extract); |
| |
| /* |
| * "implement" : set bits in a little endian bit stream. |
| * Same concepts as "extract" (see comments above). |
| * The data mangled in the bit stream remains in little endian |
| * order the whole time. It make more sense to talk about |
| * endianness of register values by considering a register |
| * a "cached" copy of the little endian bit stream. |
| */ |
| |
| static void __implement(u8 *report, unsigned offset, int n, u32 value) |
| { |
| unsigned int idx = offset / 8; |
| unsigned int bit_shift = offset % 8; |
| int bits_to_set = 8 - bit_shift; |
| |
| while (n - bits_to_set >= 0) { |
| report[idx] &= ~(0xff << bit_shift); |
| report[idx] |= value << bit_shift; |
| value >>= bits_to_set; |
| n -= bits_to_set; |
| bits_to_set = 8; |
| bit_shift = 0; |
| idx++; |
| } |
| |
| /* last nibble */ |
| if (n) { |
| u8 bit_mask = ((1U << n) - 1); |
| report[idx] &= ~(bit_mask << bit_shift); |
| report[idx] |= value << bit_shift; |
| } |
| } |
| |
| static void implement(const struct hid_device *hid, u8 *report, |
| unsigned offset, unsigned n, u32 value) |
| { |
| if (unlikely(n > 32)) { |
| hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", |
| __func__, n, current->comm); |
| n = 32; |
| } else if (n < 32) { |
| u32 m = (1U << n) - 1; |
| |
| if (unlikely(value > m)) { |
| hid_warn(hid, |
| "%s() called with too large value %d (n: %d)! (%s)\n", |
| __func__, value, n, current->comm); |
| value &= m; |
| } |
| } |
| |
| __implement(report, offset, n, value); |
| } |
| |
| /* |
| * Search an array for a value. |
| */ |
| |
| static int search(__s32 *array, __s32 value, unsigned n) |
| { |
| while (n--) { |
| if (*array++ == value) |
| return 0; |
| } |
| return -1; |
| } |
| |
| /** |
| * hid_match_report - check if driver's raw_event should be called |
| * |
| * @hid: hid device |
| * @report: hid report to match against |
| * |
| * compare hid->driver->report_table->report_type to report->type |
| */ |
| static int hid_match_report(struct hid_device *hid, struct hid_report *report) |
| { |
| const struct hid_report_id *id = hid->driver->report_table; |
| |
| if (!id) /* NULL means all */ |
| return 1; |
| |
| for (; id->report_type != HID_TERMINATOR; id++) |
| if (id->report_type == HID_ANY_ID || |
| id->report_type == report->type) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * hid_match_usage - check if driver's event should be called |
| * |
| * @hid: hid device |
| * @usage: usage to match against |
| * |
| * compare hid->driver->usage_table->usage_{type,code} to |
| * usage->usage_{type,code} |
| */ |
| static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) |
| { |
| const struct hid_usage_id *id = hid->driver->usage_table; |
| |
| if (!id) /* NULL means all */ |
| return 1; |
| |
| for (; id->usage_type != HID_ANY_ID - 1; id++) |
| if ((id->usage_hid == HID_ANY_ID || |
| id->usage_hid == usage->hid) && |
| (id->usage_type == HID_ANY_ID || |
| id->usage_type == usage->type) && |
| (id->usage_code == HID_ANY_ID || |
| id->usage_code == usage->code)) |
| return 1; |
| return 0; |
| } |
| |
| static void hid_process_event(struct hid_device *hid, struct hid_field *field, |
| struct hid_usage *usage, __s32 value, int interrupt) |
| { |
| struct hid_driver *hdrv = hid->driver; |
| int ret; |
| |
| if (!list_empty(&hid->debug_list)) |
| hid_dump_input(hid, usage, value); |
| |
| if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { |
| ret = hdrv->event(hid, field, usage, value); |
| if (ret != 0) { |
| if (ret < 0) |
| hid_err(hid, "%s's event failed with %d\n", |
| hdrv->name, ret); |
| return; |
| } |
| } |
| |
| if (hid->claimed & HID_CLAIMED_INPUT) |
| hidinput_hid_event(hid, field, usage, value); |
| if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) |
| hid->hiddev_hid_event(hid, field, usage, value); |
| } |
| |
| /* |
| * Checks if the given value is valid within this field |
| */ |
| static inline int hid_array_value_is_valid(struct hid_field *field, |
| __s32 value) |
| { |
| __s32 min = field->logical_minimum; |
| |
| /* |
| * Value needs to be between logical min and max, and |
| * (value - min) is used as an index in the usage array. |
| * This array is of size field->maxusage |
| */ |
| return value >= min && |
| value <= field->logical_maximum && |
| value - min < field->maxusage; |
| } |
| |
| /* |
| * Fetch the field from the data. The field content is stored for next |
| * report processing (we do differential reporting to the layer). |
| */ |
| static void hid_input_fetch_field(struct hid_device *hid, |
| struct hid_field *field, |
| __u8 *data) |
| { |
| unsigned n; |
| unsigned count = field->report_count; |
| unsigned offset = field->report_offset; |
| unsigned size = field->report_size; |
| __s32 min = field->logical_minimum; |
| __s32 *value; |
| |
| value = field->new_value; |
| memset(value, 0, count * sizeof(__s32)); |
| field->ignored = false; |
| |
| for (n = 0; n < count; n++) { |
| |
| value[n] = min < 0 ? |
| snto32(hid_field_extract(hid, data, offset + n * size, |
| size), size) : |
| hid_field_extract(hid, data, offset + n * size, size); |
| |
| /* Ignore report if ErrorRollOver */ |
| if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && |
| hid_array_value_is_valid(field, value[n]) && |
| field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) { |
| field->ignored = true; |
| return; |
| } |
| } |
| } |
| |
| /* |
| * Process a received variable field. |
| */ |
| |
| static void hid_input_var_field(struct hid_device *hid, |
| struct hid_field *field, |
| int interrupt) |
| { |
| unsigned int count = field->report_count; |
| __s32 *value = field->new_value; |
| unsigned int n; |
| |
| for (n = 0; n < count; n++) |
| hid_process_event(hid, |
| field, |
| &field->usage[n], |
| value[n], |
| interrupt); |
| |
| memcpy(field->value, value, count * sizeof(__s32)); |
| } |
| |
| /* |
| * Process a received array field. The field content is stored for |
| * next report processing (we do differential reporting to the layer). |
| */ |
| |
| static void hid_input_array_field(struct hid_device *hid, |
| struct hid_field *field, |
| int interrupt) |
| { |
| unsigned int n; |
| unsigned int count = field->report_count; |
| __s32 min = field->logical_minimum; |
| __s32 *value; |
| |
| value = field->new_value; |
| |
| /* ErrorRollOver */ |
| if (field->ignored) |
| return; |
| |
| for (n = 0; n < count; n++) { |
| if (hid_array_value_is_valid(field, field->value[n]) && |
| search(value, field->value[n], count)) |
| hid_process_event(hid, |
| field, |
| &field->usage[field->value[n] - min], |
| 0, |
| interrupt); |
| |
| if (hid_array_value_is_valid(field, value[n]) && |
| search(field->value, value[n], count)) |
| hid_process_event(hid, |
| field, |
| &field->usage[value[n] - min], |
| 1, |
| interrupt); |
| } |
| |
| memcpy(field->value, value, count * sizeof(__s32)); |
| } |
| |
| /* |
| * Analyse a received report, and fetch the data from it. The field |
| * content is stored for next report processing (we do differential |
| * reporting to the layer). |
| */ |
| static void hid_process_report(struct hid_device *hid, |
| struct hid_report *report, |
| __u8 *data, |
| int interrupt) |
| { |
| unsigned int a; |
| struct hid_field_entry *entry; |
| struct hid_field *field; |
| |
| /* first retrieve all incoming values in data */ |
| for (a = 0; a < report->maxfield; a++) |
| hid_input_fetch_field(hid, report->field[a], data); |
| |
| if (!list_empty(&report->field_entry_list)) { |
| /* INPUT_REPORT, we have a priority list of fields */ |
| list_for_each_entry(entry, |
| &report->field_entry_list, |
| list) { |
| field = entry->field; |
| |
| if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| hid_process_event(hid, |
| field, |
| &field->usage[entry->index], |
| field->new_value[entry->index], |
| interrupt); |
| else |
| hid_input_array_field(hid, field, interrupt); |
| } |
| |
| /* we need to do the memcpy at the end for var items */ |
| for (a = 0; a < report->maxfield; a++) { |
| field = report->field[a]; |
| |
| if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| memcpy(field->value, field->new_value, |
| field->report_count * sizeof(__s32)); |
| } |
| } else { |
| /* FEATURE_REPORT, regular processing */ |
| for (a = 0; a < report->maxfield; a++) { |
| field = report->field[a]; |
| |
| if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| hid_input_var_field(hid, field, interrupt); |
| else |
| hid_input_array_field(hid, field, interrupt); |
| } |
| } |
| } |
| |
| /* |
| * Insert a given usage_index in a field in the list |
| * of processed usages in the report. |
| * |
| * The elements of lower priority score are processed |
| * first. |
| */ |
| static void __hid_insert_field_entry(struct hid_device *hid, |
| struct hid_report *report, |
| struct hid_field_entry *entry, |
| struct hid_field *field, |
| unsigned int usage_index) |
| { |
| struct hid_field_entry *next; |
| |
| entry->field = field; |
| entry->index = usage_index; |
| entry->priority = field->usages_priorities[usage_index]; |
| |
| /* insert the element at the correct position */ |
| list_for_each_entry(next, |
| &report->field_entry_list, |
| list) { |
| /* |
| * the priority of our element is strictly higher |
| * than the next one, insert it before |
| */ |
| if (entry->priority > next->priority) { |
| list_add_tail(&entry->list, &next->list); |
| return; |
| } |
| } |
| |
| /* lowest priority score: insert at the end */ |
| list_add_tail(&entry->list, &report->field_entry_list); |
| } |
| |
| static void hid_report_process_ordering(struct hid_device *hid, |
| struct hid_report *report) |
| { |
| struct hid_field *field; |
| struct hid_field_entry *entries; |
| unsigned int a, u, usages; |
| unsigned int count = 0; |
| |
| /* count the number of individual fields in the report */ |
| for (a = 0; a < report->maxfield; a++) { |
| field = report->field[a]; |
| |
| if (field->flags & HID_MAIN_ITEM_VARIABLE) |
| count += field->report_count; |
| else |
| count++; |
| } |
| |
| /* allocate the memory to process the fields */ |
| entries = kcalloc(count, sizeof(*entries), GFP_KERNEL); |
| if (!entries) |
| return; |
| |
| report->field_entries = entries; |
| |
| /* |
| * walk through all fields in the report and |
| * store them by priority order in report->field_entry_list |
| * |
| * - Var elements are individualized (field + usage_index) |
| * - Arrays are taken as one, we can not chose an order for them |
| */ |
| usages = 0; |
| for (a = 0; a < report->maxfield; a++) { |
| field = report->field[a]; |
| |
| if (field->flags & HID_MAIN_ITEM_VARIABLE) { |
| for (u = 0; u < field->report_count; u++) { |
| __hid_insert_field_entry(hid, report, |
| &entries[usages], |
| field, u); |
| usages++; |
| } |
| } else { |
| __hid_insert_field_entry(hid, report, &entries[usages], |
| field, 0); |
| usages++; |
| } |
| } |
| } |
| |
| static void hid_process_ordering(struct hid_device *hid) |
| { |
| struct hid_report *report; |
| struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT]; |
| |
| list_for_each_entry(report, &report_enum->report_list, list) |
| hid_report_process_ordering(hid, report); |
| } |
| |
| /* |
| * Output the field into the report. |
| */ |
| |
| static void hid_output_field(const struct hid_device *hid, |
| struct hid_field *field, __u8 *data) |
| { |
| unsigned count = field->report_count; |
| unsigned offset = field->report_offset; |
| unsigned size = field->report_size; |
| unsigned n; |
| |
| for (n = 0; n < count; n++) { |
| if (field->logical_minimum < 0) /* signed values */ |
| implement(hid, data, offset + n * size, size, |
| s32ton(field->value[n], size)); |
| else /* unsigned values */ |
| implement(hid, data, offset + n * size, size, |
| field->value[n]); |
| } |
| } |
| |
| /* |
| * Compute the size of a report. |
| */ |
| static size_t hid_compute_report_size(struct hid_report *report) |
| { |
| if (report->size) |
| return ((report->size - 1) >> 3) + 1; |
| |
| return 0; |
| } |
| |
| /* |
| * Create a report. 'data' has to be allocated using |
| * hid_alloc_report_buf() so that it has proper size. |
| */ |
| |
| void hid_output_report(struct hid_report *report, __u8 *data) |
| { |
| unsigned n; |
| |
| if (report->id > 0) |
| *data++ = report->id; |
| |
| memset(data, 0, hid_compute_report_size(report)); |
| for (n = 0; n < report->maxfield; n++) |
| hid_output_field(report->device, report->field[n], data); |
| } |
| EXPORT_SYMBOL_GPL(hid_output_report); |
| |
| /* |
| * Allocator for buffer that is going to be passed to hid_output_report() |
| */ |
| u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) |
| { |
| /* |
| * 7 extra bytes are necessary to achieve proper functionality |
| * of implement() working on 8 byte chunks |
| */ |
| |
| u32 len = hid_report_len(report) + 7; |
| |
| return kmalloc(len, flags); |
| } |
| EXPORT_SYMBOL_GPL(hid_alloc_report_buf); |
| |
| /* |
| * Set a field value. The report this field belongs to has to be |
| * created and transferred to the device, to set this value in the |
| * device. |
| */ |
| |
| int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) |
| { |
| unsigned size; |
| |
| if (!field) |
| return -1; |
| |
| size = field->report_size; |
| |
| hid_dump_input(field->report->device, field->usage + offset, value); |
| |
| if (offset >= field->report_count) { |
| hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", |
| offset, field->report_count); |
| return -1; |
| } |
| if (field->logical_minimum < 0) { |
| if (value != snto32(s32ton(value, size), size)) { |
| hid_err(field->report->device, "value %d is out of range\n", value); |
| return -1; |
| } |
| } |
| field->value[offset] = value; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_set_field); |
| |
| static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, |
| const u8 *data) |
| { |
| struct hid_report *report; |
| unsigned int n = 0; /* Normally report number is 0 */ |
| |
| /* Device uses numbered reports, data[0] is report number */ |
| if (report_enum->numbered) |
| n = *data; |
| |
| report = report_enum->report_id_hash[n]; |
| if (report == NULL) |
| dbg_hid("undefined report_id %u received\n", n); |
| |
| return report; |
| } |
| |
| /* |
| * Implement a generic .request() callback, using .raw_request() |
| * DO NOT USE in hid drivers directly, but through hid_hw_request instead. |
| */ |
| int __hid_request(struct hid_device *hid, struct hid_report *report, |
| enum hid_class_request reqtype) |
| { |
| char *buf; |
| int ret; |
| u32 len; |
| |
| buf = hid_alloc_report_buf(report, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| len = hid_report_len(report); |
| |
| if (reqtype == HID_REQ_SET_REPORT) |
| hid_output_report(report, buf); |
| |
| ret = hid->ll_driver->raw_request(hid, report->id, buf, len, |
| report->type, reqtype); |
| if (ret < 0) { |
| dbg_hid("unable to complete request: %d\n", ret); |
| goto out; |
| } |
| |
| if (reqtype == HID_REQ_GET_REPORT) |
| hid_input_report(hid, report->type, buf, ret, 0); |
| |
| ret = 0; |
| |
| out: |
| kfree(buf); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(__hid_request); |
| |
| int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, |
| int interrupt) |
| { |
| struct hid_report_enum *report_enum = hid->report_enum + type; |
| struct hid_report *report; |
| struct hid_driver *hdrv; |
| int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| u32 rsize, csize = size; |
| u8 *cdata = data; |
| int ret = 0; |
| |
| report = hid_get_report(report_enum, data); |
| if (!report) |
| goto out; |
| |
| if (report_enum->numbered) { |
| cdata++; |
| csize--; |
| } |
| |
| rsize = hid_compute_report_size(report); |
| |
| if (hid->ll_driver->max_buffer_size) |
| max_buffer_size = hid->ll_driver->max_buffer_size; |
| |
| if (report_enum->numbered && rsize >= max_buffer_size) |
| rsize = max_buffer_size - 1; |
| else if (rsize > max_buffer_size) |
| rsize = max_buffer_size; |
| |
| if (csize < rsize) { |
| dbg_hid("report %d is too short, (%d < %d)\n", report->id, |
| csize, rsize); |
| memset(cdata + csize, 0, rsize - csize); |
| } |
| |
| if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) |
| hid->hiddev_report_event(hid, report); |
| if (hid->claimed & HID_CLAIMED_HIDRAW) { |
| ret = hidraw_report_event(hid, data, size); |
| if (ret) |
| goto out; |
| } |
| |
| if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { |
| hid_process_report(hid, report, cdata, interrupt); |
| hdrv = hid->driver; |
| if (hdrv && hdrv->report) |
| hdrv->report(hid, report); |
| } |
| |
| if (hid->claimed & HID_CLAIMED_INPUT) |
| hidinput_report_event(hid, report); |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(hid_report_raw_event); |
| |
| |
| static int __hid_input_report(struct hid_device *hid, enum hid_report_type type, |
| u8 *data, u32 size, int interrupt, u64 source, bool from_bpf, |
| bool lock_already_taken) |
| { |
| struct hid_report_enum *report_enum; |
| struct hid_driver *hdrv; |
| struct hid_report *report; |
| int ret = 0; |
| |
| if (!hid) |
| return -ENODEV; |
| |
| ret = down_trylock(&hid->driver_input_lock); |
| if (lock_already_taken && !ret) { |
| up(&hid->driver_input_lock); |
| return -EINVAL; |
| } else if (!lock_already_taken && ret) { |
| return -EBUSY; |
| } |
| |
| if (!hid->driver) { |
| ret = -ENODEV; |
| goto unlock; |
| } |
| report_enum = hid->report_enum + type; |
| hdrv = hid->driver; |
| |
| data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf); |
| if (IS_ERR(data)) { |
| ret = PTR_ERR(data); |
| goto unlock; |
| } |
| |
| if (!size) { |
| dbg_hid("empty report\n"); |
| ret = -1; |
| goto unlock; |
| } |
| |
| /* Avoid unnecessary overhead if debugfs is disabled */ |
| if (!list_empty(&hid->debug_list)) |
| hid_dump_report(hid, type, data, size); |
| |
| report = hid_get_report(report_enum, data); |
| |
| if (!report) { |
| ret = -1; |
| goto unlock; |
| } |
| |
| if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { |
| ret = hdrv->raw_event(hid, report, data, size); |
| if (ret < 0) |
| goto unlock; |
| } |
| |
| ret = hid_report_raw_event(hid, type, data, size, interrupt); |
| |
| unlock: |
| if (!lock_already_taken) |
| up(&hid->driver_input_lock); |
| return ret; |
| } |
| |
| /** |
| * hid_input_report - report data from lower layer (usb, bt...) |
| * |
| * @hid: hid device |
| * @type: HID report type (HID_*_REPORT) |
| * @data: report contents |
| * @size: size of data parameter |
| * @interrupt: distinguish between interrupt and control transfers |
| * |
| * This is data entry for lower layers. |
| */ |
| int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, |
| int interrupt) |
| { |
| return __hid_input_report(hid, type, data, size, interrupt, 0, |
| false, /* from_bpf */ |
| false /* lock_already_taken */); |
| } |
| EXPORT_SYMBOL_GPL(hid_input_report); |
| |
| bool hid_match_one_id(const struct hid_device *hdev, |
| const struct hid_device_id *id) |
| { |
| return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && |
| (id->group == HID_GROUP_ANY || id->group == hdev->group) && |
| (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && |
| (id->product == HID_ANY_ID || id->product == hdev->product); |
| } |
| |
| const struct hid_device_id *hid_match_id(const struct hid_device *hdev, |
| const struct hid_device_id *id) |
| { |
| for (; id->bus; id++) |
| if (hid_match_one_id(hdev, id)) |
| return id; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(hid_match_id); |
| |
| static const struct hid_device_id hid_hiddev_list[] = { |
| { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, |
| { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, |
| { } |
| }; |
| |
| static bool hid_hiddev(struct hid_device *hdev) |
| { |
| return !!hid_match_id(hdev, hid_hiddev_list); |
| } |
| |
| |
| static ssize_t |
| read_report_descriptor(struct file *filp, struct kobject *kobj, |
| struct bin_attribute *attr, |
| char *buf, loff_t off, size_t count) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct hid_device *hdev = to_hid_device(dev); |
| |
| if (off >= hdev->rsize) |
| return 0; |
| |
| if (off + count > hdev->rsize) |
| count = hdev->rsize - off; |
| |
| memcpy(buf, hdev->rdesc + off, count); |
| |
| return count; |
| } |
| |
| static ssize_t |
| show_country(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct hid_device *hdev = to_hid_device(dev); |
| |
| return sprintf(buf, "%02x\n", hdev->country & 0xff); |
| } |
| |
| static struct bin_attribute dev_bin_attr_report_desc = { |
| .attr = { .name = "report_descriptor", .mode = 0444 }, |
| .read = read_report_descriptor, |
| .size = HID_MAX_DESCRIPTOR_SIZE, |
| }; |
| |
| static const struct device_attribute dev_attr_country = { |
| .attr = { .name = "country", .mode = 0444 }, |
| .show = show_country, |
| }; |
| |
| int hid_connect(struct hid_device *hdev, unsigned int connect_mask) |
| { |
| static const char *types[] = { "Device", "Pointer", "Mouse", "Device", |
| "Joystick", "Gamepad", "Keyboard", "Keypad", |
| "Multi-Axis Controller" |
| }; |
| const char *type, *bus; |
| char buf[64] = ""; |
| unsigned int i; |
| int len; |
| int ret; |
| |
| ret = hid_bpf_connect_device(hdev); |
| if (ret) |
| return ret; |
| |
| if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) |
| connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); |
| if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) |
| connect_mask |= HID_CONNECT_HIDINPUT_FORCE; |
| if (hdev->bus != BUS_USB) |
| connect_mask &= ~HID_CONNECT_HIDDEV; |
| if (hid_hiddev(hdev)) |
| connect_mask |= HID_CONNECT_HIDDEV_FORCE; |
| |
| if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, |
| connect_mask & HID_CONNECT_HIDINPUT_FORCE)) |
| hdev->claimed |= HID_CLAIMED_INPUT; |
| |
| if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && |
| !hdev->hiddev_connect(hdev, |
| connect_mask & HID_CONNECT_HIDDEV_FORCE)) |
| hdev->claimed |= HID_CLAIMED_HIDDEV; |
| if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) |
| hdev->claimed |= HID_CLAIMED_HIDRAW; |
| |
| if (connect_mask & HID_CONNECT_DRIVER) |
| hdev->claimed |= HID_CLAIMED_DRIVER; |
| |
| /* Drivers with the ->raw_event callback set are not required to connect |
| * to any other listener. */ |
| if (!hdev->claimed && !hdev->driver->raw_event) { |
| hid_err(hdev, "device has no listeners, quitting\n"); |
| return -ENODEV; |
| } |
| |
| hid_process_ordering(hdev); |
| |
| if ((hdev->claimed & HID_CLAIMED_INPUT) && |
| (connect_mask & HID_CONNECT_FF) && hdev->ff_init) |
| hdev->ff_init(hdev); |
| |
| len = 0; |
| if (hdev->claimed & HID_CLAIMED_INPUT) |
| len += sprintf(buf + len, "input"); |
| if (hdev->claimed & HID_CLAIMED_HIDDEV) |
| len += sprintf(buf + len, "%shiddev%d", len ? "," : "", |
| ((struct hiddev *)hdev->hiddev)->minor); |
| if (hdev->claimed & HID_CLAIMED_HIDRAW) |
| len += sprintf(buf + len, "%shidraw%d", len ? "," : "", |
| ((struct hidraw *)hdev->hidraw)->minor); |
| |
| type = "Device"; |
| for (i = 0; i < hdev->maxcollection; i++) { |
| struct hid_collection *col = &hdev->collection[i]; |
| if (col->type == HID_COLLECTION_APPLICATION && |
| (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && |
| (col->usage & 0xffff) < ARRAY_SIZE(types)) { |
| type = types[col->usage & 0xffff]; |
| break; |
| } |
| } |
| |
| switch (hdev->bus) { |
| case BUS_USB: |
| bus = "USB"; |
| break; |
| case BUS_BLUETOOTH: |
| bus = "BLUETOOTH"; |
| break; |
| case BUS_I2C: |
| bus = "I2C"; |
| break; |
| case BUS_VIRTUAL: |
| bus = "VIRTUAL"; |
| break; |
| case BUS_INTEL_ISHTP: |
| case BUS_AMD_SFH: |
| bus = "SENSOR HUB"; |
| break; |
| default: |
| bus = "<UNKNOWN>"; |
| } |
| |
| ret = device_create_file(&hdev->dev, &dev_attr_country); |
| if (ret) |
| hid_warn(hdev, |
| "can't create sysfs country code attribute err: %d\n", ret); |
| |
| hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", |
| buf, bus, hdev->version >> 8, hdev->version & 0xff, |
| type, hdev->name, hdev->phys); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_connect); |
| |
| void hid_disconnect(struct hid_device *hdev) |
| { |
| device_remove_file(&hdev->dev, &dev_attr_country); |
| if (hdev->claimed & HID_CLAIMED_INPUT) |
| hidinput_disconnect(hdev); |
| if (hdev->claimed & HID_CLAIMED_HIDDEV) |
| hdev->hiddev_disconnect(hdev); |
| if (hdev->claimed & HID_CLAIMED_HIDRAW) |
| hidraw_disconnect(hdev); |
| hdev->claimed = 0; |
| |
| hid_bpf_disconnect_device(hdev); |
| } |
| EXPORT_SYMBOL_GPL(hid_disconnect); |
| |
| /** |
| * hid_hw_start - start underlying HW |
| * @hdev: hid device |
| * @connect_mask: which outputs to connect, see HID_CONNECT_* |
| * |
| * Call this in probe function *after* hid_parse. This will setup HW |
| * buffers and start the device (if not defeirred to device open). |
| * hid_hw_stop must be called if this was successful. |
| */ |
| int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) |
| { |
| int error; |
| |
| error = hdev->ll_driver->start(hdev); |
| if (error) |
| return error; |
| |
| if (connect_mask) { |
| error = hid_connect(hdev, connect_mask); |
| if (error) { |
| hdev->ll_driver->stop(hdev); |
| return error; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_hw_start); |
| |
| /** |
| * hid_hw_stop - stop underlying HW |
| * @hdev: hid device |
| * |
| * This is usually called from remove function or from probe when something |
| * failed and hid_hw_start was called already. |
| */ |
| void hid_hw_stop(struct hid_device *hdev) |
| { |
| hid_disconnect(hdev); |
| hdev->ll_driver->stop(hdev); |
| } |
| EXPORT_SYMBOL_GPL(hid_hw_stop); |
| |
| /** |
| * hid_hw_open - signal underlying HW to start delivering events |
| * @hdev: hid device |
| * |
| * Tell underlying HW to start delivering events from the device. |
| * This function should be called sometime after successful call |
| * to hid_hw_start(). |
| */ |
| int hid_hw_open(struct hid_device *hdev) |
| { |
| int ret; |
| |
| ret = mutex_lock_killable(&hdev->ll_open_lock); |
| if (ret) |
| return ret; |
| |
| if (!hdev->ll_open_count++) { |
| ret = hdev->ll_driver->open(hdev); |
| if (ret) |
| hdev->ll_open_count--; |
| } |
| |
| mutex_unlock(&hdev->ll_open_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(hid_hw_open); |
| |
| /** |
| * hid_hw_close - signal underlaying HW to stop delivering events |
| * |
| * @hdev: hid device |
| * |
| * This function indicates that we are not interested in the events |
| * from this device anymore. Delivery of events may or may not stop, |
| * depending on the number of users still outstanding. |
| */ |
| void hid_hw_close(struct hid_device *hdev) |
| { |
| mutex_lock(&hdev->ll_open_lock); |
| if (!--hdev->ll_open_count) |
| hdev->ll_driver->close(hdev); |
| mutex_unlock(&hdev->ll_open_lock); |
| } |
| EXPORT_SYMBOL_GPL(hid_hw_close); |
| |
| /** |
| * hid_hw_request - send report request to device |
| * |
| * @hdev: hid device |
| * @report: report to send |
| * @reqtype: hid request type |
| */ |
| void hid_hw_request(struct hid_device *hdev, |
| struct hid_report *report, enum hid_class_request reqtype) |
| { |
| if (hdev->ll_driver->request) |
| return hdev->ll_driver->request(hdev, report, reqtype); |
| |
| __hid_request(hdev, report, reqtype); |
| } |
| EXPORT_SYMBOL_GPL(hid_hw_request); |
| |
| int __hid_hw_raw_request(struct hid_device *hdev, |
| unsigned char reportnum, __u8 *buf, |
| size_t len, enum hid_report_type rtype, |
| enum hid_class_request reqtype, |
| u64 source, bool from_bpf) |
| { |
| unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| int ret; |
| |
| if (hdev->ll_driver->max_buffer_size) |
| max_buffer_size = hdev->ll_driver->max_buffer_size; |
| |
| if (len < 1 || len > max_buffer_size || !buf) |
| return -EINVAL; |
| |
| ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype, |
| reqtype, source, from_bpf); |
| if (ret) |
| return ret; |
| |
| return hdev->ll_driver->raw_request(hdev, reportnum, buf, len, |
| rtype, reqtype); |
| } |
| |
| /** |
| * hid_hw_raw_request - send report request to device |
| * |
| * @hdev: hid device |
| * @reportnum: report ID |
| * @buf: in/out data to transfer |
| * @len: length of buf |
| * @rtype: HID report type |
| * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT |
| * |
| * Return: count of data transferred, negative if error |
| * |
| * Same behavior as hid_hw_request, but with raw buffers instead. |
| */ |
| int hid_hw_raw_request(struct hid_device *hdev, |
| unsigned char reportnum, __u8 *buf, |
| size_t len, enum hid_report_type rtype, enum hid_class_request reqtype) |
| { |
| return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false); |
| } |
| EXPORT_SYMBOL_GPL(hid_hw_raw_request); |
| |
| int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source, |
| bool from_bpf) |
| { |
| unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; |
| int ret; |
| |
| if (hdev->ll_driver->max_buffer_size) |
| max_buffer_size = hdev->ll_driver->max_buffer_size; |
| |
| if (len < 1 || len > max_buffer_size || !buf) |
| return -EINVAL; |
| |
| ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf); |
| if (ret) |
| return ret; |
| |
| if (hdev->ll_driver->output_report) |
| return hdev->ll_driver->output_report(hdev, buf, len); |
| |
| return -ENOSYS; |
| } |
| |
| /** |
| * hid_hw_output_report - send output report to device |
| * |
| * @hdev: hid device |
| * @buf: raw data to transfer |
| * @len: length of buf |
| * |
| * Return: count of data transferred, negative if error |
| */ |
| int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len) |
| { |
| return __hid_hw_output_report(hdev, buf, len, 0, false); |
| } |
| EXPORT_SYMBOL_GPL(hid_hw_output_report); |
| |
| #ifdef CONFIG_PM |
| int hid_driver_suspend(struct hid_device *hdev, pm_message_t state) |
| { |
| if (hdev->driver && hdev->driver->suspend) |
| return hdev->driver->suspend(hdev, state); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_driver_suspend); |
| |
| int hid_driver_reset_resume(struct hid_device *hdev) |
| { |
| if (hdev->driver && hdev->driver->reset_resume) |
| return hdev->driver->reset_resume(hdev); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_driver_reset_resume); |
| |
| int hid_driver_resume(struct hid_device *hdev) |
| { |
| if (hdev->driver && hdev->driver->resume) |
| return hdev->driver->resume(hdev); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_driver_resume); |
| #endif /* CONFIG_PM */ |
| |
| struct hid_dynid { |
| struct list_head list; |
| struct hid_device_id id; |
| }; |
| |
| /** |
| * new_id_store - add a new HID device ID to this driver and re-probe devices |
| * @drv: target device driver |
| * @buf: buffer for scanning device ID data |
| * @count: input size |
| * |
| * Adds a new dynamic hid device ID to this driver, |
| * and causes the driver to probe for all devices again. |
| */ |
| static ssize_t new_id_store(struct device_driver *drv, const char *buf, |
| size_t count) |
| { |
| struct hid_driver *hdrv = to_hid_driver(drv); |
| struct hid_dynid *dynid; |
| __u32 bus, vendor, product; |
| unsigned long driver_data = 0; |
| int ret; |
| |
| ret = sscanf(buf, "%x %x %x %lx", |
| &bus, &vendor, &product, &driver_data); |
| if (ret < 3) |
| return -EINVAL; |
| |
| dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); |
| if (!dynid) |
| return -ENOMEM; |
| |
| dynid->id.bus = bus; |
| dynid->id.group = HID_GROUP_ANY; |
| dynid->id.vendor = vendor; |
| dynid->id.product = product; |
| dynid->id.driver_data = driver_data; |
| |
| spin_lock(&hdrv->dyn_lock); |
| list_add_tail(&dynid->list, &hdrv->dyn_list); |
| spin_unlock(&hdrv->dyn_lock); |
| |
| ret = driver_attach(&hdrv->driver); |
| |
| return ret ? : count; |
| } |
| static DRIVER_ATTR_WO(new_id); |
| |
| static struct attribute *hid_drv_attrs[] = { |
| &driver_attr_new_id.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(hid_drv); |
| |
| static void hid_free_dynids(struct hid_driver *hdrv) |
| { |
| struct hid_dynid *dynid, *n; |
| |
| spin_lock(&hdrv->dyn_lock); |
| list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { |
| list_del(&dynid->list); |
| kfree(dynid); |
| } |
| spin_unlock(&hdrv->dyn_lock); |
| } |
| |
| const struct hid_device_id *hid_match_device(struct hid_device *hdev, |
| struct hid_driver *hdrv) |
| { |
| struct hid_dynid *dynid; |
| |
| spin_lock(&hdrv->dyn_lock); |
| list_for_each_entry(dynid, &hdrv->dyn_list, list) { |
| if (hid_match_one_id(hdev, &dynid->id)) { |
| spin_unlock(&hdrv->dyn_lock); |
| return &dynid->id; |
| } |
| } |
| spin_unlock(&hdrv->dyn_lock); |
| |
| return hid_match_id(hdev, hdrv->id_table); |
| } |
| EXPORT_SYMBOL_GPL(hid_match_device); |
| |
| static int hid_bus_match(struct device *dev, struct device_driver *drv) |
| { |
| struct hid_driver *hdrv = to_hid_driver(drv); |
| struct hid_device *hdev = to_hid_device(dev); |
| |
| return hid_match_device(hdev, hdrv) != NULL; |
| } |
| |
| /** |
| * hid_compare_device_paths - check if both devices share the same path |
| * @hdev_a: hid device |
| * @hdev_b: hid device |
| * @separator: char to use as separator |
| * |
| * Check if two devices share the same path up to the last occurrence of |
| * the separator char. Both paths must exist (i.e., zero-length paths |
| * don't match). |
| */ |
| bool hid_compare_device_paths(struct hid_device *hdev_a, |
| struct hid_device *hdev_b, char separator) |
| { |
| int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; |
| int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; |
| |
| if (n1 != n2 || n1 <= 0 || n2 <= 0) |
| return false; |
| |
| return !strncmp(hdev_a->phys, hdev_b->phys, n1); |
| } |
| EXPORT_SYMBOL_GPL(hid_compare_device_paths); |
| |
| static bool hid_check_device_match(struct hid_device *hdev, |
| struct hid_driver *hdrv, |
| const struct hid_device_id **id) |
| { |
| *id = hid_match_device(hdev, hdrv); |
| if (!*id) |
| return false; |
| |
| if (hdrv->match) |
| return hdrv->match(hdev, hid_ignore_special_drivers); |
| |
| /* |
| * hid-generic implements .match(), so we must be dealing with a |
| * different HID driver here, and can simply check if |
| * hid_ignore_special_drivers is set or not. |
| */ |
| return !hid_ignore_special_drivers; |
| } |
| |
| static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv) |
| { |
| const struct hid_device_id *id; |
| int ret; |
| |
| if (!hid_check_device_match(hdev, hdrv, &id)) |
| return -ENODEV; |
| |
| hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL); |
| if (!hdev->devres_group_id) |
| return -ENOMEM; |
| |
| /* reset the quirks that has been previously set */ |
| hdev->quirks = hid_lookup_quirk(hdev); |
| hdev->driver = hdrv; |
| |
| if (hdrv->probe) { |
| ret = hdrv->probe(hdev, id); |
| } else { /* default probe */ |
| ret = hid_open_report(hdev); |
| if (!ret) |
| ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); |
| } |
| |
| /* |
| * Note that we are not closing the devres group opened above so |
| * even resources that were attached to the device after probe is |
| * run are released when hid_device_remove() is executed. This is |
| * needed as some drivers would allocate additional resources, |
| * for example when updating firmware. |
| */ |
| |
| if (ret) { |
| devres_release_group(&hdev->dev, hdev->devres_group_id); |
| hid_close_report(hdev); |
| hdev->driver = NULL; |
| } |
| |
| return ret; |
| } |
| |
| static int hid_device_probe(struct device *dev) |
| { |
| struct hid_device *hdev = to_hid_device(dev); |
| struct hid_driver *hdrv = to_hid_driver(dev->driver); |
| int ret = 0; |
| |
| if (down_interruptible(&hdev->driver_input_lock)) |
| return -EINTR; |
| |
| hdev->io_started = false; |
| clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); |
| |
| if (!hdev->driver) |
| ret = __hid_device_probe(hdev, hdrv); |
| |
| if (!hdev->io_started) |
| up(&hdev->driver_input_lock); |
| |
| return ret; |
| } |
| |
| static void hid_device_remove(struct device *dev) |
| { |
| struct hid_device *hdev = to_hid_device(dev); |
| struct hid_driver *hdrv; |
| |
| down(&hdev->driver_input_lock); |
| hdev->io_started = false; |
| |
| hdrv = hdev->driver; |
| if (hdrv) { |
| if (hdrv->remove) |
| hdrv->remove(hdev); |
| else /* default remove */ |
| hid_hw_stop(hdev); |
| |
| /* Release all devres resources allocated by the driver */ |
| devres_release_group(&hdev->dev, hdev->devres_group_id); |
| |
| hid_close_report(hdev); |
| hdev->driver = NULL; |
| } |
| |
| if (!hdev->io_started) |
| up(&hdev->driver_input_lock); |
| } |
| |
| static ssize_t modalias_show(struct device *dev, struct device_attribute *a, |
| char *buf) |
| { |
| struct hid_device *hdev = container_of(dev, struct hid_device, dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", |
| hdev->bus, hdev->group, hdev->vendor, hdev->product); |
| } |
| static DEVICE_ATTR_RO(modalias); |
| |
| static struct attribute *hid_dev_attrs[] = { |
| &dev_attr_modalias.attr, |
| NULL, |
| }; |
| static struct bin_attribute *hid_dev_bin_attrs[] = { |
| &dev_bin_attr_report_desc, |
| NULL |
| }; |
| static const struct attribute_group hid_dev_group = { |
| .attrs = hid_dev_attrs, |
| .bin_attrs = hid_dev_bin_attrs, |
| }; |
| __ATTRIBUTE_GROUPS(hid_dev); |
| |
| static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env) |
| { |
| const struct hid_device *hdev = to_hid_device(dev); |
| |
| if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", |
| hdev->bus, hdev->vendor, hdev->product)) |
| return -ENOMEM; |
| |
| if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) |
| return -ENOMEM; |
| |
| if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) |
| return -ENOMEM; |
| |
| if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) |
| return -ENOMEM; |
| |
| if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", |
| hdev->bus, hdev->group, hdev->vendor, hdev->product)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| const struct bus_type hid_bus_type = { |
| .name = "hid", |
| .dev_groups = hid_dev_groups, |
| .drv_groups = hid_drv_groups, |
| .match = hid_bus_match, |
| .probe = hid_device_probe, |
| .remove = hid_device_remove, |
| .uevent = hid_uevent, |
| }; |
| EXPORT_SYMBOL(hid_bus_type); |
| |
| int hid_add_device(struct hid_device *hdev) |
| { |
| static atomic_t id = ATOMIC_INIT(0); |
| int ret; |
| |
| if (WARN_ON(hdev->status & HID_STAT_ADDED)) |
| return -EBUSY; |
| |
| hdev->quirks = hid_lookup_quirk(hdev); |
| |
| /* we need to kill them here, otherwise they will stay allocated to |
| * wait for coming driver */ |
| if (hid_ignore(hdev)) |
| return -ENODEV; |
| |
| /* |
| * Check for the mandatory transport channel. |
| */ |
| if (!hdev->ll_driver->raw_request) { |
| hid_err(hdev, "transport driver missing .raw_request()\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Read the device report descriptor once and use as template |
| * for the driver-specific modifications. |
| */ |
| ret = hdev->ll_driver->parse(hdev); |
| if (ret) |
| return ret; |
| if (!hdev->dev_rdesc) |
| return -ENODEV; |
| |
| /* |
| * Scan generic devices for group information |
| */ |
| if (hid_ignore_special_drivers) { |
| hdev->group = HID_GROUP_GENERIC; |
| } else if (!hdev->group && |
| !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { |
| ret = hid_scan_report(hdev); |
| if (ret) |
| hid_warn(hdev, "bad device descriptor (%d)\n", ret); |
| } |
| |
| hdev->id = atomic_inc_return(&id); |
| |
| /* XXX hack, any other cleaner solution after the driver core |
| * is converted to allow more than 20 bytes as the device name? */ |
| dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, |
| hdev->vendor, hdev->product, hdev->id); |
| |
| hid_debug_register(hdev, dev_name(&hdev->dev)); |
| ret = device_add(&hdev->dev); |
| if (!ret) |
| hdev->status |= HID_STAT_ADDED; |
| else |
| hid_debug_unregister(hdev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(hid_add_device); |
| |
| /** |
| * hid_allocate_device - allocate new hid device descriptor |
| * |
| * Allocate and initialize hid device, so that hid_destroy_device might be |
| * used to free it. |
| * |
| * New hid_device pointer is returned on success, otherwise ERR_PTR encoded |
| * error value. |
| */ |
| struct hid_device *hid_allocate_device(void) |
| { |
| struct hid_device *hdev; |
| int ret = -ENOMEM; |
| |
| hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); |
| if (hdev == NULL) |
| return ERR_PTR(ret); |
| |
| device_initialize(&hdev->dev); |
| hdev->dev.release = hid_device_release; |
| hdev->dev.bus = &hid_bus_type; |
| device_enable_async_suspend(&hdev->dev); |
| |
| hid_close_report(hdev); |
| |
| init_waitqueue_head(&hdev->debug_wait); |
| INIT_LIST_HEAD(&hdev->debug_list); |
| spin_lock_init(&hdev->debug_list_lock); |
| sema_init(&hdev->driver_input_lock, 1); |
| mutex_init(&hdev->ll_open_lock); |
| kref_init(&hdev->ref); |
| |
| ret = hid_bpf_device_init(hdev); |
| if (ret) |
| goto out_err; |
| |
| return hdev; |
| |
| out_err: |
| hid_destroy_device(hdev); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(hid_allocate_device); |
| |
| static void hid_remove_device(struct hid_device *hdev) |
| { |
| if (hdev->status & HID_STAT_ADDED) { |
| device_del(&hdev->dev); |
| hid_debug_unregister(hdev); |
| hdev->status &= ~HID_STAT_ADDED; |
| } |
| kfree(hdev->dev_rdesc); |
| hdev->dev_rdesc = NULL; |
| hdev->dev_rsize = 0; |
| } |
| |
| /** |
| * hid_destroy_device - free previously allocated device |
| * |
| * @hdev: hid device |
| * |
| * If you allocate hid_device through hid_allocate_device, you should ever |
| * free by this function. |
| */ |
| void hid_destroy_device(struct hid_device *hdev) |
| { |
| hid_bpf_destroy_device(hdev); |
| hid_remove_device(hdev); |
| put_device(&hdev->dev); |
| } |
| EXPORT_SYMBOL_GPL(hid_destroy_device); |
| |
| |
| static int __hid_bus_reprobe_drivers(struct device *dev, void *data) |
| { |
| struct hid_driver *hdrv = data; |
| struct hid_device *hdev = to_hid_device(dev); |
| |
| if (hdev->driver == hdrv && |
| !hdrv->match(hdev, hid_ignore_special_drivers) && |
| !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) |
| return device_reprobe(dev); |
| |
| return 0; |
| } |
| |
| static int __hid_bus_driver_added(struct device_driver *drv, void *data) |
| { |
| struct hid_driver *hdrv = to_hid_driver(drv); |
| |
| if (hdrv->match) { |
| bus_for_each_dev(&hid_bus_type, NULL, hdrv, |
| __hid_bus_reprobe_drivers); |
| } |
| |
| return 0; |
| } |
| |
| static int __bus_removed_driver(struct device_driver *drv, void *data) |
| { |
| return bus_rescan_devices(&hid_bus_type); |
| } |
| |
| int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, |
| const char *mod_name) |
| { |
| int ret; |
| |
| hdrv->driver.name = hdrv->name; |
| hdrv->driver.bus = &hid_bus_type; |
| hdrv->driver.owner = owner; |
| hdrv->driver.mod_name = mod_name; |
| |
| INIT_LIST_HEAD(&hdrv->dyn_list); |
| spin_lock_init(&hdrv->dyn_lock); |
| |
| ret = driver_register(&hdrv->driver); |
| |
| if (ret == 0) |
| bus_for_each_drv(&hid_bus_type, NULL, NULL, |
| __hid_bus_driver_added); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(__hid_register_driver); |
| |
| void hid_unregister_driver(struct hid_driver *hdrv) |
| { |
| driver_unregister(&hdrv->driver); |
| hid_free_dynids(hdrv); |
| |
| bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); |
| } |
| EXPORT_SYMBOL_GPL(hid_unregister_driver); |
| |
| int hid_check_keys_pressed(struct hid_device *hid) |
| { |
| struct hid_input *hidinput; |
| int i; |
| |
| if (!(hid->claimed & HID_CLAIMED_INPUT)) |
| return 0; |
| |
| list_for_each_entry(hidinput, &hid->inputs, list) { |
| for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) |
| if (hidinput->input->key[i]) |
| return 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hid_check_keys_pressed); |
| |
| #ifdef CONFIG_HID_BPF |
| static struct hid_ops __hid_ops = { |
| .hid_get_report = hid_get_report, |
| .hid_hw_raw_request = __hid_hw_raw_request, |
| .hid_hw_output_report = __hid_hw_output_report, |
| .hid_input_report = __hid_input_report, |
| .owner = THIS_MODULE, |
| .bus_type = &hid_bus_type, |
| }; |
| #endif |
| |
| static int __init hid_init(void) |
| { |
| int ret; |
| |
| ret = bus_register(&hid_bus_type); |
| if (ret) { |
| pr_err("can't register hid bus\n"); |
| goto err; |
| } |
| |
| #ifdef CONFIG_HID_BPF |
| hid_ops = &__hid_ops; |
| #endif |
| |
| ret = hidraw_init(); |
| if (ret) |
| goto err_bus; |
| |
| hid_debug_init(); |
| |
| return 0; |
| err_bus: |
| bus_unregister(&hid_bus_type); |
| err: |
| return ret; |
| } |
| |
| static void __exit hid_exit(void) |
| { |
| #ifdef CONFIG_HID_BPF |
| hid_ops = NULL; |
| #endif |
| hid_debug_exit(); |
| hidraw_exit(); |
| bus_unregister(&hid_bus_type); |
| hid_quirks_exit(HID_BUS_ANY); |
| } |
| |
| module_init(hid_init); |
| module_exit(hid_exit); |
| |
| MODULE_AUTHOR("Andreas Gal"); |
| MODULE_AUTHOR("Vojtech Pavlik"); |
| MODULE_AUTHOR("Jiri Kosina"); |
| MODULE_DESCRIPTION("HID support for Linux"); |
| MODULE_LICENSE("GPL"); |