| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * TI K3 R5F (MCU) Remote Processor driver |
| * |
| * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/ |
| * Suman Anna <s-anna@ti.com> |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/mailbox_client.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/of_platform.h> |
| #include <linux/omap-mailbox.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/remoteproc.h> |
| #include <linux/reset.h> |
| #include <linux/slab.h> |
| |
| #include "omap_remoteproc.h" |
| #include "remoteproc_internal.h" |
| #include "ti_sci_proc.h" |
| |
| /* This address can either be for ATCM or BTCM with the other at address 0x0 */ |
| #define K3_R5_TCM_DEV_ADDR 0x41010000 |
| |
| /* R5 TI-SCI Processor Configuration Flags */ |
| #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 |
| #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 |
| #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 |
| #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 |
| #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 |
| #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 |
| #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 |
| #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 |
| /* Available from J7200 SoCs onwards */ |
| #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 |
| /* Applicable to only AM64x SoCs */ |
| #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000 |
| |
| /* R5 TI-SCI Processor Control Flags */ |
| #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 |
| |
| /* R5 TI-SCI Processor Status Flags */ |
| #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 |
| #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 |
| #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 |
| #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 |
| /* Applicable to only AM64x SoCs */ |
| #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200 |
| |
| /** |
| * struct k3_r5_mem - internal memory structure |
| * @cpu_addr: MPU virtual address of the memory region |
| * @bus_addr: Bus address used to access the memory region |
| * @dev_addr: Device address from remoteproc view |
| * @size: Size of the memory region |
| */ |
| struct k3_r5_mem { |
| void __iomem *cpu_addr; |
| phys_addr_t bus_addr; |
| u32 dev_addr; |
| size_t size; |
| }; |
| |
| /* |
| * All cluster mode values are not applicable on all SoCs. The following |
| * are the modes supported on various SoCs: |
| * Split mode : AM65x, J721E, J7200 and AM64x SoCs |
| * LockStep mode : AM65x, J721E and J7200 SoCs |
| * Single-CPU mode : AM64x SoCs only |
| * Single-Core mode : AM62x, AM62A SoCs |
| */ |
| enum cluster_mode { |
| CLUSTER_MODE_SPLIT = 0, |
| CLUSTER_MODE_LOCKSTEP, |
| CLUSTER_MODE_SINGLECPU, |
| CLUSTER_MODE_SINGLECORE |
| }; |
| |
| /** |
| * struct k3_r5_soc_data - match data to handle SoC variations |
| * @tcm_is_double: flag to denote the larger unified TCMs in certain modes |
| * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC |
| * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode |
| * @is_single_core: flag to denote if SoC/IP has only single core R5 |
| */ |
| struct k3_r5_soc_data { |
| bool tcm_is_double; |
| bool tcm_ecc_autoinit; |
| bool single_cpu_mode; |
| bool is_single_core; |
| }; |
| |
| /** |
| * struct k3_r5_cluster - K3 R5F Cluster structure |
| * @dev: cached device pointer |
| * @mode: Mode to configure the Cluster - Split or LockStep |
| * @cores: list of R5 cores within the cluster |
| * @core_transition: wait queue to sync core state changes |
| * @soc_data: SoC-specific feature data for a R5FSS |
| */ |
| struct k3_r5_cluster { |
| struct device *dev; |
| enum cluster_mode mode; |
| struct list_head cores; |
| wait_queue_head_t core_transition; |
| const struct k3_r5_soc_data *soc_data; |
| }; |
| |
| /** |
| * struct k3_r5_core - K3 R5 core structure |
| * @elem: linked list item |
| * @dev: cached device pointer |
| * @rproc: rproc handle representing this core |
| * @mem: internal memory regions data |
| * @sram: on-chip SRAM memory regions data |
| * @num_mems: number of internal memory regions |
| * @num_sram: number of on-chip SRAM memory regions |
| * @reset: reset control handle |
| * @tsp: TI-SCI processor control handle |
| * @ti_sci: TI-SCI handle |
| * @ti_sci_id: TI-SCI device identifier |
| * @atcm_enable: flag to control ATCM enablement |
| * @btcm_enable: flag to control BTCM enablement |
| * @loczrama: flag to dictate which TCM is at device address 0x0 |
| * @released_from_reset: flag to signal when core is out of reset |
| */ |
| struct k3_r5_core { |
| struct list_head elem; |
| struct device *dev; |
| struct rproc *rproc; |
| struct k3_r5_mem *mem; |
| struct k3_r5_mem *sram; |
| int num_mems; |
| int num_sram; |
| struct reset_control *reset; |
| struct ti_sci_proc *tsp; |
| const struct ti_sci_handle *ti_sci; |
| u32 ti_sci_id; |
| u32 atcm_enable; |
| u32 btcm_enable; |
| u32 loczrama; |
| bool released_from_reset; |
| }; |
| |
| /** |
| * struct k3_r5_rproc - K3 remote processor state |
| * @dev: cached device pointer |
| * @cluster: cached pointer to parent cluster structure |
| * @mbox: mailbox channel handle |
| * @client: mailbox client to request the mailbox channel |
| * @rproc: rproc handle |
| * @core: cached pointer to r5 core structure being used |
| * @rmem: reserved memory regions data |
| * @num_rmems: number of reserved memory regions |
| */ |
| struct k3_r5_rproc { |
| struct device *dev; |
| struct k3_r5_cluster *cluster; |
| struct mbox_chan *mbox; |
| struct mbox_client client; |
| struct rproc *rproc; |
| struct k3_r5_core *core; |
| struct k3_r5_mem *rmem; |
| int num_rmems; |
| }; |
| |
| /** |
| * k3_r5_rproc_mbox_callback() - inbound mailbox message handler |
| * @client: mailbox client pointer used for requesting the mailbox channel |
| * @data: mailbox payload |
| * |
| * This handler is invoked by the OMAP mailbox driver whenever a mailbox |
| * message is received. Usually, the mailbox payload simply contains |
| * the index of the virtqueue that is kicked by the remote processor, |
| * and we let remoteproc core handle it. |
| * |
| * In addition to virtqueue indices, we also have some out-of-band values |
| * that indicate different events. Those values are deliberately very |
| * large so they don't coincide with virtqueue indices. |
| */ |
| static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) |
| { |
| struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, |
| client); |
| struct device *dev = kproc->rproc->dev.parent; |
| const char *name = kproc->rproc->name; |
| u32 msg = omap_mbox_message(data); |
| |
| dev_dbg(dev, "mbox msg: 0x%x\n", msg); |
| |
| switch (msg) { |
| case RP_MBOX_CRASH: |
| /* |
| * remoteproc detected an exception, but error recovery is not |
| * supported. So, just log this for now |
| */ |
| dev_err(dev, "K3 R5F rproc %s crashed\n", name); |
| break; |
| case RP_MBOX_ECHO_REPLY: |
| dev_info(dev, "received echo reply from %s\n", name); |
| break; |
| default: |
| /* silently handle all other valid messages */ |
| if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) |
| return; |
| if (msg > kproc->rproc->max_notifyid) { |
| dev_dbg(dev, "dropping unknown message 0x%x", msg); |
| return; |
| } |
| /* msg contains the index of the triggered vring */ |
| if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) |
| dev_dbg(dev, "no message was found in vqid %d\n", msg); |
| } |
| } |
| |
| /* kick a virtqueue */ |
| static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct device *dev = rproc->dev.parent; |
| mbox_msg_t msg = (mbox_msg_t)vqid; |
| int ret; |
| |
| /* send the index of the triggered virtqueue in the mailbox payload */ |
| ret = mbox_send_message(kproc->mbox, (void *)msg); |
| if (ret < 0) |
| dev_err(dev, "failed to send mailbox message, status = %d\n", |
| ret); |
| } |
| |
| static int k3_r5_split_reset(struct k3_r5_core *core) |
| { |
| int ret; |
| |
| ret = reset_control_assert(core->reset); |
| if (ret) { |
| dev_err(core->dev, "local-reset assert failed, ret = %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| core->ti_sci_id); |
| if (ret) { |
| dev_err(core->dev, "module-reset assert failed, ret = %d\n", |
| ret); |
| if (reset_control_deassert(core->reset)) |
| dev_warn(core->dev, "local-reset deassert back failed\n"); |
| } |
| |
| return ret; |
| } |
| |
| static int k3_r5_split_release(struct k3_r5_core *core) |
| { |
| int ret; |
| |
| ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, |
| core->ti_sci_id); |
| if (ret) { |
| dev_err(core->dev, "module-reset deassert failed, ret = %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = reset_control_deassert(core->reset); |
| if (ret) { |
| dev_err(core->dev, "local-reset deassert failed, ret = %d\n", |
| ret); |
| if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| core->ti_sci_id)) |
| dev_warn(core->dev, "module-reset assert back failed\n"); |
| } |
| |
| return ret; |
| } |
| |
| static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) |
| { |
| struct k3_r5_core *core; |
| int ret; |
| |
| /* assert local reset on all applicable cores */ |
| list_for_each_entry(core, &cluster->cores, elem) { |
| ret = reset_control_assert(core->reset); |
| if (ret) { |
| dev_err(core->dev, "local-reset assert failed, ret = %d\n", |
| ret); |
| core = list_prev_entry(core, elem); |
| goto unroll_local_reset; |
| } |
| } |
| |
| /* disable PSC modules on all applicable cores */ |
| list_for_each_entry(core, &cluster->cores, elem) { |
| ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| core->ti_sci_id); |
| if (ret) { |
| dev_err(core->dev, "module-reset assert failed, ret = %d\n", |
| ret); |
| goto unroll_module_reset; |
| } |
| } |
| |
| return 0; |
| |
| unroll_module_reset: |
| list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { |
| if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| core->ti_sci_id)) |
| dev_warn(core->dev, "module-reset assert back failed\n"); |
| } |
| core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); |
| unroll_local_reset: |
| list_for_each_entry_from_reverse(core, &cluster->cores, elem) { |
| if (reset_control_deassert(core->reset)) |
| dev_warn(core->dev, "local-reset deassert back failed\n"); |
| } |
| |
| return ret; |
| } |
| |
| static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) |
| { |
| struct k3_r5_core *core; |
| int ret; |
| |
| /* enable PSC modules on all applicable cores */ |
| list_for_each_entry_reverse(core, &cluster->cores, elem) { |
| ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, |
| core->ti_sci_id); |
| if (ret) { |
| dev_err(core->dev, "module-reset deassert failed, ret = %d\n", |
| ret); |
| core = list_next_entry(core, elem); |
| goto unroll_module_reset; |
| } |
| } |
| |
| /* deassert local reset on all applicable cores */ |
| list_for_each_entry_reverse(core, &cluster->cores, elem) { |
| ret = reset_control_deassert(core->reset); |
| if (ret) { |
| dev_err(core->dev, "module-reset deassert failed, ret = %d\n", |
| ret); |
| goto unroll_local_reset; |
| } |
| } |
| |
| return 0; |
| |
| unroll_local_reset: |
| list_for_each_entry_continue(core, &cluster->cores, elem) { |
| if (reset_control_assert(core->reset)) |
| dev_warn(core->dev, "local-reset assert back failed\n"); |
| } |
| core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); |
| unroll_module_reset: |
| list_for_each_entry_from(core, &cluster->cores, elem) { |
| if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| core->ti_sci_id)) |
| dev_warn(core->dev, "module-reset assert back failed\n"); |
| } |
| |
| return ret; |
| } |
| |
| static inline int k3_r5_core_halt(struct k3_r5_core *core) |
| { |
| return ti_sci_proc_set_control(core->tsp, |
| PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); |
| } |
| |
| static inline int k3_r5_core_run(struct k3_r5_core *core) |
| { |
| return ti_sci_proc_set_control(core->tsp, |
| 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); |
| } |
| |
| static int k3_r5_rproc_request_mbox(struct rproc *rproc) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct mbox_client *client = &kproc->client; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| client->dev = dev; |
| client->tx_done = NULL; |
| client->rx_callback = k3_r5_rproc_mbox_callback; |
| client->tx_block = false; |
| client->knows_txdone = false; |
| |
| kproc->mbox = mbox_request_channel(client, 0); |
| if (IS_ERR(kproc->mbox)) { |
| ret = -EBUSY; |
| dev_err(dev, "mbox_request_channel failed: %ld\n", |
| PTR_ERR(kproc->mbox)); |
| return ret; |
| } |
| |
| /* |
| * Ping the remote processor, this is only for sanity-sake for now; |
| * there is no functional effect whatsoever. |
| * |
| * Note that the reply will _not_ arrive immediately: this message |
| * will wait in the mailbox fifo until the remote processor is booted. |
| */ |
| ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); |
| if (ret < 0) { |
| dev_err(dev, "mbox_send_message failed: %d\n", ret); |
| mbox_free_channel(kproc->mbox); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The R5F cores have controls for both a reset and a halt/run. The code |
| * execution from DDR requires the initial boot-strapping code to be run |
| * from the internal TCMs. This function is used to release the resets on |
| * applicable cores to allow loading into the TCMs. The .prepare() ops is |
| * invoked by remoteproc core before any firmware loading, and is followed |
| * by the .start() ops after loading to actually let the R5 cores run. |
| * |
| * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to |
| * execute code, but combines the TCMs from both cores. The resets for both |
| * cores need to be released to make this possible, as the TCMs are in general |
| * private to each core. Only Core0 needs to be unhalted for running the |
| * cluster in this mode. The function uses the same reset logic as LockStep |
| * mode for this (though the behavior is agnostic of the reset release order). |
| * This callback is invoked only in remoteproc mode. |
| */ |
| static int k3_r5_rproc_prepare(struct rproc *rproc) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct k3_r5_cluster *cluster = kproc->cluster; |
| struct k3_r5_core *core = kproc->core; |
| struct device *dev = kproc->dev; |
| u32 ctrl = 0, cfg = 0, stat = 0; |
| u64 boot_vec = 0; |
| bool mem_init_dis; |
| int ret; |
| |
| ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); |
| if (ret < 0) |
| return ret; |
| mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); |
| |
| /* Re-use LockStep-mode reset logic for Single-CPU mode */ |
| ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || |
| cluster->mode == CLUSTER_MODE_SINGLECPU) ? |
| k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); |
| if (ret) { |
| dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", |
| ret); |
| return ret; |
| } |
| core->released_from_reset = true; |
| wake_up_interruptible(&cluster->core_transition); |
| |
| /* |
| * Newer IP revisions like on J7200 SoCs support h/w auto-initialization |
| * of TCMs, so there is no need to perform the s/w memzero. This bit is |
| * configurable through System Firmware, the default value does perform |
| * auto-init, but account for it in case it is disabled |
| */ |
| if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { |
| dev_dbg(dev, "leveraging h/w init for TCM memories\n"); |
| return 0; |
| } |
| |
| /* |
| * Zero out both TCMs unconditionally (access from v8 Arm core is not |
| * affected by ATCM & BTCM enable configuration values) so that ECC |
| * can be effective on all TCM addresses. |
| */ |
| dev_dbg(dev, "zeroing out ATCM memory\n"); |
| memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); |
| |
| dev_dbg(dev, "zeroing out BTCM memory\n"); |
| memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); |
| |
| return 0; |
| } |
| |
| /* |
| * This function implements the .unprepare() ops and performs the complimentary |
| * operations to that of the .prepare() ops. The function is used to assert the |
| * resets on all applicable cores for the rproc device (depending on LockStep |
| * or Split mode). This completes the second portion of powering down the R5F |
| * cores. The cores themselves are only halted in the .stop() ops, and the |
| * .unprepare() ops is invoked by the remoteproc core after the remoteproc is |
| * stopped. |
| * |
| * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from |
| * both cores. The access is made possible only with releasing the resets for |
| * both cores, but with only Core0 unhalted. This function re-uses the same |
| * reset assert logic as LockStep mode for this mode (though the behavior is |
| * agnostic of the reset assert order). This callback is invoked only in |
| * remoteproc mode. |
| */ |
| static int k3_r5_rproc_unprepare(struct rproc *rproc) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct k3_r5_cluster *cluster = kproc->cluster; |
| struct k3_r5_core *core = kproc->core; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| /* Re-use LockStep-mode reset logic for Single-CPU mode */ |
| ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || |
| cluster->mode == CLUSTER_MODE_SINGLECPU) ? |
| k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); |
| if (ret) |
| dev_err(dev, "unable to disable cores, ret = %d\n", ret); |
| |
| return ret; |
| } |
| |
| /* |
| * The R5F start sequence includes two different operations |
| * 1. Configure the boot vector for R5F core(s) |
| * 2. Unhalt/Run the R5F core(s) |
| * |
| * The sequence is different between LockStep and Split modes. The LockStep |
| * mode requires the boot vector to be configured only for Core0, and then |
| * unhalt both the cores to start the execution - Core1 needs to be unhalted |
| * first followed by Core0. The Split-mode requires that Core0 to be maintained |
| * always in a higher power state that Core1 (implying Core1 needs to be started |
| * always only after Core0 is started). |
| * |
| * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute |
| * code, so only Core0 needs to be unhalted. The function uses the same logic |
| * flow as Split-mode for this. This callback is invoked only in remoteproc |
| * mode. |
| */ |
| static int k3_r5_rproc_start(struct rproc *rproc) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct k3_r5_cluster *cluster = kproc->cluster; |
| struct device *dev = kproc->dev; |
| struct k3_r5_core *core0, *core; |
| u32 boot_addr; |
| int ret; |
| |
| ret = k3_r5_rproc_request_mbox(rproc); |
| if (ret) |
| return ret; |
| |
| boot_addr = rproc->bootaddr; |
| /* TODO: add boot_addr sanity checking */ |
| dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); |
| |
| /* boot vector need not be programmed for Core1 in LockStep mode */ |
| core = kproc->core; |
| ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); |
| if (ret) |
| goto put_mbox; |
| |
| /* unhalt/run all applicable cores */ |
| if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| list_for_each_entry_reverse(core, &cluster->cores, elem) { |
| ret = k3_r5_core_run(core); |
| if (ret) |
| goto unroll_core_run; |
| } |
| } else { |
| /* do not allow core 1 to start before core 0 */ |
| core0 = list_first_entry(&cluster->cores, struct k3_r5_core, |
| elem); |
| if (core != core0 && core0->rproc->state == RPROC_OFFLINE) { |
| dev_err(dev, "%s: can not start core 1 before core 0\n", |
| __func__); |
| ret = -EPERM; |
| goto put_mbox; |
| } |
| |
| ret = k3_r5_core_run(core); |
| if (ret) |
| goto put_mbox; |
| } |
| |
| return 0; |
| |
| unroll_core_run: |
| list_for_each_entry_continue(core, &cluster->cores, elem) { |
| if (k3_r5_core_halt(core)) |
| dev_warn(core->dev, "core halt back failed\n"); |
| } |
| put_mbox: |
| mbox_free_channel(kproc->mbox); |
| return ret; |
| } |
| |
| /* |
| * The R5F stop function includes the following operations |
| * 1. Halt R5F core(s) |
| * |
| * The sequence is different between LockStep and Split modes, and the order |
| * of cores the operations are performed are also in general reverse to that |
| * of the start function. The LockStep mode requires each operation to be |
| * performed first on Core0 followed by Core1. The Split-mode requires that |
| * Core0 to be maintained always in a higher power state that Core1 (implying |
| * Core1 needs to be stopped first before Core0). |
| * |
| * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute |
| * code, so only Core0 needs to be halted. The function uses the same logic |
| * flow as Split-mode for this. |
| * |
| * Note that the R5F halt operation in general is not effective when the R5F |
| * core is running, but is needed to make sure the core won't run after |
| * deasserting the reset the subsequent time. The asserting of reset can |
| * be done here, but is preferred to be done in the .unprepare() ops - this |
| * maintains the symmetric behavior between the .start(), .stop(), .prepare() |
| * and .unprepare() ops, and also balances them well between sysfs 'state' |
| * flow and device bind/unbind or module removal. This callback is invoked |
| * only in remoteproc mode. |
| */ |
| static int k3_r5_rproc_stop(struct rproc *rproc) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct k3_r5_cluster *cluster = kproc->cluster; |
| struct device *dev = kproc->dev; |
| struct k3_r5_core *core1, *core = kproc->core; |
| int ret; |
| |
| /* halt all applicable cores */ |
| if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| list_for_each_entry(core, &cluster->cores, elem) { |
| ret = k3_r5_core_halt(core); |
| if (ret) { |
| core = list_prev_entry(core, elem); |
| goto unroll_core_halt; |
| } |
| } |
| } else { |
| /* do not allow core 0 to stop before core 1 */ |
| core1 = list_last_entry(&cluster->cores, struct k3_r5_core, |
| elem); |
| if (core != core1 && core1->rproc->state != RPROC_OFFLINE) { |
| dev_err(dev, "%s: can not stop core 0 before core 1\n", |
| __func__); |
| ret = -EPERM; |
| goto out; |
| } |
| |
| ret = k3_r5_core_halt(core); |
| if (ret) |
| goto out; |
| } |
| |
| mbox_free_channel(kproc->mbox); |
| |
| return 0; |
| |
| unroll_core_halt: |
| list_for_each_entry_from_reverse(core, &cluster->cores, elem) { |
| if (k3_r5_core_run(core)) |
| dev_warn(core->dev, "core run back failed\n"); |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * Attach to a running R5F remote processor (IPC-only mode) |
| * |
| * The R5F attach callback only needs to request the mailbox, the remote |
| * processor is already booted, so there is no need to issue any TI-SCI |
| * commands to boot the R5F cores in IPC-only mode. This callback is invoked |
| * only in IPC-only mode. |
| */ |
| static int k3_r5_rproc_attach(struct rproc *rproc) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| ret = k3_r5_rproc_request_mbox(rproc); |
| if (ret) |
| return ret; |
| |
| dev_info(dev, "R5F core initialized in IPC-only mode\n"); |
| return 0; |
| } |
| |
| /* |
| * Detach from a running R5F remote processor (IPC-only mode) |
| * |
| * The R5F detach callback performs the opposite operation to attach callback |
| * and only needs to release the mailbox, the R5F cores are not stopped and |
| * will be left in booted state in IPC-only mode. This callback is invoked |
| * only in IPC-only mode. |
| */ |
| static int k3_r5_rproc_detach(struct rproc *rproc) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| |
| mbox_free_channel(kproc->mbox); |
| dev_info(dev, "R5F core deinitialized in IPC-only mode\n"); |
| return 0; |
| } |
| |
| /* |
| * This function implements the .get_loaded_rsc_table() callback and is used |
| * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F |
| * firmwares follow a design-by-contract approach and are expected to have the |
| * resource table at the base of the DDR region reserved for firmware usage. |
| * This provides flexibility for the remote processor to be booted by different |
| * bootloaders that may or may not have the ability to publish the resource table |
| * address and size through a DT property. This callback is invoked only in |
| * IPC-only mode. |
| */ |
| static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc, |
| size_t *rsc_table_sz) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| |
| if (!kproc->rmem[0].cpu_addr) { |
| dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * NOTE: The resource table size is currently hard-coded to a maximum |
| * of 256 bytes. The most common resource table usage for K3 firmwares |
| * is to only have the vdev resource entry and an optional trace entry. |
| * The exact size could be computed based on resource table address, but |
| * the hard-coded value suffices to support the IPC-only mode. |
| */ |
| *rsc_table_sz = 256; |
| return (struct resource_table *)kproc->rmem[0].cpu_addr; |
| } |
| |
| /* |
| * Internal Memory translation helper |
| * |
| * Custom function implementing the rproc .da_to_va ops to provide address |
| * translation (device address to kernel virtual address) for internal RAMs |
| * present in a DSP or IPU device). The translated addresses can be used |
| * either by the remoteproc core for loading, or by any rpmsg bus drivers. |
| */ |
| static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) |
| { |
| struct k3_r5_rproc *kproc = rproc->priv; |
| struct k3_r5_core *core = kproc->core; |
| void __iomem *va = NULL; |
| phys_addr_t bus_addr; |
| u32 dev_addr, offset; |
| size_t size; |
| int i; |
| |
| if (len == 0) |
| return NULL; |
| |
| /* handle both R5 and SoC views of ATCM and BTCM */ |
| for (i = 0; i < core->num_mems; i++) { |
| bus_addr = core->mem[i].bus_addr; |
| dev_addr = core->mem[i].dev_addr; |
| size = core->mem[i].size; |
| |
| /* handle R5-view addresses of TCMs */ |
| if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = core->mem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| |
| /* handle SoC-view addresses of TCMs */ |
| if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { |
| offset = da - bus_addr; |
| va = core->mem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } |
| |
| /* handle any SRAM regions using SoC-view addresses */ |
| for (i = 0; i < core->num_sram; i++) { |
| dev_addr = core->sram[i].dev_addr; |
| size = core->sram[i].size; |
| |
| if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = core->sram[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } |
| |
| /* handle static DDR reserved memory regions */ |
| for (i = 0; i < kproc->num_rmems; i++) { |
| dev_addr = kproc->rmem[i].dev_addr; |
| size = kproc->rmem[i].size; |
| |
| if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = kproc->rmem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static const struct rproc_ops k3_r5_rproc_ops = { |
| .prepare = k3_r5_rproc_prepare, |
| .unprepare = k3_r5_rproc_unprepare, |
| .start = k3_r5_rproc_start, |
| .stop = k3_r5_rproc_stop, |
| .kick = k3_r5_rproc_kick, |
| .da_to_va = k3_r5_rproc_da_to_va, |
| }; |
| |
| /* |
| * Internal R5F Core configuration |
| * |
| * Each R5FSS has a cluster-level setting for configuring the processor |
| * subsystem either in a safety/fault-tolerant LockStep mode or a performance |
| * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode |
| * as an alternate for LockStep mode that exercises only a single R5F core |
| * called Single-CPU mode. Each R5F core has a number of settings to either |
| * enable/disable each of the TCMs, control which TCM appears at the R5F core's |
| * address 0x0. These settings need to be configured before the resets for the |
| * corresponding core are released. These settings are all protected and managed |
| * by the System Processor. |
| * |
| * This function is used to pre-configure these settings for each R5F core, and |
| * the configuration is all done through various ti_sci_proc functions that |
| * communicate with the System Processor. The function also ensures that both |
| * the cores are halted before the .prepare() step. |
| * |
| * The function is called from k3_r5_cluster_rproc_init() and is invoked either |
| * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support |
| * for LockStep-mode is dictated by an eFUSE register bit, and the config |
| * settings retrieved from DT are adjusted accordingly as per the permitted |
| * cluster mode. Another eFUSE register bit dictates if the R5F cluster only |
| * supports a Single-CPU mode. All cluster level settings like Cluster mode and |
| * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set |
| * and retrieved using Core0. |
| * |
| * The function behavior is different based on the cluster mode. The R5F cores |
| * are configured independently as per their individual settings in Split mode. |
| * They are identically configured in LockStep mode using the primary Core0 |
| * settings. However, some individual settings cannot be set in LockStep mode. |
| * This is overcome by switching to Split-mode initially and then programming |
| * both the cores with the same settings, before reconfiguing again for |
| * LockStep mode. |
| */ |
| static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) |
| { |
| struct k3_r5_cluster *cluster = kproc->cluster; |
| struct device *dev = kproc->dev; |
| struct k3_r5_core *core0, *core, *temp; |
| u32 ctrl = 0, cfg = 0, stat = 0; |
| u32 set_cfg = 0, clr_cfg = 0; |
| u64 boot_vec = 0; |
| bool lockstep_en; |
| bool single_cpu; |
| int ret; |
| |
| core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); |
| if (cluster->mode == CLUSTER_MODE_LOCKSTEP || |
| cluster->mode == CLUSTER_MODE_SINGLECPU || |
| cluster->mode == CLUSTER_MODE_SINGLECORE) { |
| core = core0; |
| } else { |
| core = kproc->core; |
| } |
| |
| ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, |
| &stat); |
| if (ret < 0) |
| return ret; |
| |
| dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", |
| boot_vec, cfg, ctrl, stat); |
| |
| single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY); |
| lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); |
| |
| /* Override to single CPU mode if set in status flag */ |
| if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { |
| dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); |
| cluster->mode = CLUSTER_MODE_SINGLECPU; |
| } |
| |
| /* Override to split mode if lockstep enable bit is not set in status flag */ |
| if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); |
| cluster->mode = CLUSTER_MODE_SPLIT; |
| } |
| |
| /* always enable ARM mode and set boot vector to 0 */ |
| boot_vec = 0x0; |
| if (core == core0) { |
| clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; |
| /* |
| * Single-CPU configuration bit can only be configured |
| * on Core0 and system firmware will NACK any requests |
| * with the bit configured, so program it only on |
| * permitted cores |
| */ |
| if (cluster->mode == CLUSTER_MODE_SINGLECPU || |
| cluster->mode == CLUSTER_MODE_SINGLECORE) { |
| set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE; |
| } else { |
| /* |
| * LockStep configuration bit is Read-only on Split-mode |
| * _only_ devices and system firmware will NACK any |
| * requests with the bit configured, so program it only |
| * on permitted devices |
| */ |
| if (lockstep_en) |
| clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; |
| } |
| } |
| |
| if (core->atcm_enable) |
| set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; |
| else |
| clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; |
| |
| if (core->btcm_enable) |
| set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; |
| else |
| clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; |
| |
| if (core->loczrama) |
| set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; |
| else |
| clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; |
| |
| if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| /* |
| * work around system firmware limitations to make sure both |
| * cores are programmed symmetrically in LockStep. LockStep |
| * and TEINIT config is only allowed with Core0. |
| */ |
| list_for_each_entry(temp, &cluster->cores, elem) { |
| ret = k3_r5_core_halt(temp); |
| if (ret) |
| goto out; |
| |
| if (temp != core) { |
| clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; |
| clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; |
| } |
| ret = ti_sci_proc_set_config(temp->tsp, boot_vec, |
| set_cfg, clr_cfg); |
| if (ret) |
| goto out; |
| } |
| |
| set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; |
| clr_cfg = 0; |
| ret = ti_sci_proc_set_config(core->tsp, boot_vec, |
| set_cfg, clr_cfg); |
| } else { |
| ret = k3_r5_core_halt(core); |
| if (ret) |
| goto out; |
| |
| ret = ti_sci_proc_set_config(core->tsp, boot_vec, |
| set_cfg, clr_cfg); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) |
| { |
| struct device *dev = kproc->dev; |
| struct device_node *np = dev_of_node(dev); |
| struct device_node *rmem_np; |
| struct reserved_mem *rmem; |
| int num_rmems; |
| int ret, i; |
| |
| num_rmems = of_property_count_elems_of_size(np, "memory-region", |
| sizeof(phandle)); |
| if (num_rmems <= 0) { |
| dev_err(dev, "device does not have reserved memory regions, ret = %d\n", |
| num_rmems); |
| return -EINVAL; |
| } |
| if (num_rmems < 2) { |
| dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", |
| num_rmems); |
| return -EINVAL; |
| } |
| |
| /* use reserved memory region 0 for vring DMA allocations */ |
| ret = of_reserved_mem_device_init_by_idx(dev, np, 0); |
| if (ret) { |
| dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", |
| ret); |
| return ret; |
| } |
| |
| num_rmems--; |
| kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); |
| if (!kproc->rmem) { |
| ret = -ENOMEM; |
| goto release_rmem; |
| } |
| |
| /* use remaining reserved memory regions for static carveouts */ |
| for (i = 0; i < num_rmems; i++) { |
| rmem_np = of_parse_phandle(np, "memory-region", i + 1); |
| if (!rmem_np) { |
| ret = -EINVAL; |
| goto unmap_rmem; |
| } |
| |
| rmem = of_reserved_mem_lookup(rmem_np); |
| if (!rmem) { |
| of_node_put(rmem_np); |
| ret = -EINVAL; |
| goto unmap_rmem; |
| } |
| of_node_put(rmem_np); |
| |
| kproc->rmem[i].bus_addr = rmem->base; |
| /* |
| * R5Fs do not have an MMU, but have a Region Address Translator |
| * (RAT) module that provides a fixed entry translation between |
| * the 32-bit processor addresses to 64-bit bus addresses. The |
| * RAT is programmable only by the R5F cores. Support for RAT |
| * is currently not supported, so 64-bit address regions are not |
| * supported. The absence of MMUs implies that the R5F device |
| * addresses/supported memory regions are restricted to 32-bit |
| * bus addresses, and are identical |
| */ |
| kproc->rmem[i].dev_addr = (u32)rmem->base; |
| kproc->rmem[i].size = rmem->size; |
| kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); |
| if (!kproc->rmem[i].cpu_addr) { |
| dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", |
| i + 1, &rmem->base, &rmem->size); |
| ret = -ENOMEM; |
| goto unmap_rmem; |
| } |
| |
| dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| i + 1, &kproc->rmem[i].bus_addr, |
| kproc->rmem[i].size, kproc->rmem[i].cpu_addr, |
| kproc->rmem[i].dev_addr); |
| } |
| kproc->num_rmems = num_rmems; |
| |
| return 0; |
| |
| unmap_rmem: |
| for (i--; i >= 0; i--) |
| iounmap(kproc->rmem[i].cpu_addr); |
| kfree(kproc->rmem); |
| release_rmem: |
| of_reserved_mem_device_release(dev); |
| return ret; |
| } |
| |
| static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) |
| { |
| int i; |
| |
| for (i = 0; i < kproc->num_rmems; i++) |
| iounmap(kproc->rmem[i].cpu_addr); |
| kfree(kproc->rmem); |
| |
| of_reserved_mem_device_release(kproc->dev); |
| } |
| |
| /* |
| * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs, |
| * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both |
| * cores are usable in Split-mode, but only the Core0 TCMs can be used in |
| * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by |
| * leveraging the Core1 TCMs as well in certain modes where they would have |
| * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on |
| * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the |
| * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for |
| * the Core0 TCMs, and the dts representation reflects this increased size on |
| * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only |
| * half the original size in Split mode. |
| */ |
| static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc) |
| { |
| struct k3_r5_cluster *cluster = kproc->cluster; |
| struct k3_r5_core *core = kproc->core; |
| struct device *cdev = core->dev; |
| struct k3_r5_core *core0; |
| |
| if (cluster->mode == CLUSTER_MODE_LOCKSTEP || |
| cluster->mode == CLUSTER_MODE_SINGLECPU || |
| cluster->mode == CLUSTER_MODE_SINGLECORE || |
| !cluster->soc_data->tcm_is_double) |
| return; |
| |
| core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); |
| if (core == core0) { |
| WARN_ON(core->mem[0].size != SZ_64K); |
| WARN_ON(core->mem[1].size != SZ_64K); |
| |
| core->mem[0].size /= 2; |
| core->mem[1].size /= 2; |
| |
| dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n", |
| core->mem[0].size, core->mem[1].size); |
| } |
| } |
| |
| /* |
| * This function checks and configures a R5F core for IPC-only or remoteproc |
| * mode. The driver is configured to be in IPC-only mode for a R5F core when |
| * the core has been loaded and started by a bootloader. The IPC-only mode is |
| * detected by querying the System Firmware for reset, power on and halt status |
| * and ensuring that the core is running. Any incomplete steps at bootloader |
| * are validated and errored out. |
| * |
| * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings |
| * and cluster mode parsed originally from kernel DT are updated to reflect the |
| * actual values configured by bootloader. The driver internal device memory |
| * addresses for TCMs are also updated. |
| */ |
| static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc) |
| { |
| struct k3_r5_cluster *cluster = kproc->cluster; |
| struct k3_r5_core *core = kproc->core; |
| struct device *cdev = core->dev; |
| bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false; |
| u32 ctrl = 0, cfg = 0, stat = 0, halted = 0; |
| u64 boot_vec = 0; |
| u32 atcm_enable, btcm_enable, loczrama; |
| struct k3_r5_core *core0; |
| enum cluster_mode mode = cluster->mode; |
| int ret; |
| |
| core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); |
| |
| ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id, |
| &r_state, &c_state); |
| if (ret) { |
| dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n", |
| ret); |
| return ret; |
| } |
| if (r_state != c_state) { |
| dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n", |
| r_state, c_state); |
| } |
| |
| ret = reset_control_status(core->reset); |
| if (ret < 0) { |
| dev_err(cdev, "failed to get initial local reset status, ret = %d\n", |
| ret); |
| return ret; |
| } |
| |
| /* |
| * Skip the waiting mechanism for sequential power-on of cores if the |
| * core has already been booted by another entity. |
| */ |
| core->released_from_reset = c_state; |
| |
| ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, |
| &stat); |
| if (ret < 0) { |
| dev_err(cdev, "failed to get initial processor status, ret = %d\n", |
| ret); |
| return ret; |
| } |
| atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0; |
| btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0; |
| loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0; |
| single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0; |
| lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0; |
| |
| if (single_cpu && mode != CLUSTER_MODE_SINGLECORE) |
| mode = CLUSTER_MODE_SINGLECPU; |
| if (lockstep_en) |
| mode = CLUSTER_MODE_LOCKSTEP; |
| |
| halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT; |
| |
| /* |
| * IPC-only mode detection requires both local and module resets to |
| * be deasserted and R5F core to be unhalted. Local reset status is |
| * irrelevant if module reset is asserted (POR value has local reset |
| * deasserted), and is deemed as remoteproc mode |
| */ |
| if (c_state && !ret && !halted) { |
| dev_info(cdev, "configured R5F for IPC-only mode\n"); |
| kproc->rproc->state = RPROC_DETACHED; |
| ret = 1; |
| /* override rproc ops with only required IPC-only mode ops */ |
| kproc->rproc->ops->prepare = NULL; |
| kproc->rproc->ops->unprepare = NULL; |
| kproc->rproc->ops->start = NULL; |
| kproc->rproc->ops->stop = NULL; |
| kproc->rproc->ops->attach = k3_r5_rproc_attach; |
| kproc->rproc->ops->detach = k3_r5_rproc_detach; |
| kproc->rproc->ops->get_loaded_rsc_table = |
| k3_r5_get_loaded_rsc_table; |
| } else if (!c_state) { |
| dev_info(cdev, "configured R5F for remoteproc mode\n"); |
| ret = 0; |
| } else { |
| dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n", |
| !ret ? "deasserted" : "asserted", |
| c_state ? "deasserted" : "asserted", |
| halted ? "halted" : "unhalted"); |
| ret = -EINVAL; |
| } |
| |
| /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */ |
| if (ret > 0) { |
| if (core == core0) |
| cluster->mode = mode; |
| core->atcm_enable = atcm_enable; |
| core->btcm_enable = btcm_enable; |
| core->loczrama = loczrama; |
| core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR; |
| core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0; |
| } |
| |
| return ret; |
| } |
| |
| static int k3_r5_cluster_rproc_init(struct platform_device *pdev) |
| { |
| struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); |
| struct device *dev = &pdev->dev; |
| struct k3_r5_rproc *kproc; |
| struct k3_r5_core *core, *core1; |
| struct device *cdev; |
| const char *fw_name; |
| struct rproc *rproc; |
| int ret, ret1; |
| |
| core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); |
| list_for_each_entry(core, &cluster->cores, elem) { |
| cdev = core->dev; |
| ret = rproc_of_parse_firmware(cdev, 0, &fw_name); |
| if (ret) { |
| dev_err(dev, "failed to parse firmware-name property, ret = %d\n", |
| ret); |
| goto out; |
| } |
| |
| rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, |
| fw_name, sizeof(*kproc)); |
| if (!rproc) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* K3 R5s have a Region Address Translator (RAT) but no MMU */ |
| rproc->has_iommu = false; |
| /* error recovery is not supported at present */ |
| rproc->recovery_disabled = true; |
| |
| kproc = rproc->priv; |
| kproc->cluster = cluster; |
| kproc->core = core; |
| kproc->dev = cdev; |
| kproc->rproc = rproc; |
| core->rproc = rproc; |
| |
| ret = k3_r5_rproc_configure_mode(kproc); |
| if (ret < 0) |
| goto err_config; |
| if (ret) |
| goto init_rmem; |
| |
| ret = k3_r5_rproc_configure(kproc); |
| if (ret) { |
| dev_err(dev, "initial configure failed, ret = %d\n", |
| ret); |
| goto err_config; |
| } |
| |
| init_rmem: |
| k3_r5_adjust_tcm_sizes(kproc); |
| |
| ret = k3_r5_reserved_mem_init(kproc); |
| if (ret) { |
| dev_err(dev, "reserved memory init failed, ret = %d\n", |
| ret); |
| goto err_config; |
| } |
| |
| ret = rproc_add(rproc); |
| if (ret) { |
| dev_err(dev, "rproc_add failed, ret = %d\n", ret); |
| goto err_add; |
| } |
| |
| /* create only one rproc in lockstep, single-cpu or |
| * single core mode |
| */ |
| if (cluster->mode == CLUSTER_MODE_LOCKSTEP || |
| cluster->mode == CLUSTER_MODE_SINGLECPU || |
| cluster->mode == CLUSTER_MODE_SINGLECORE) |
| break; |
| |
| /* |
| * R5 cores require to be powered on sequentially, core0 |
| * should be in higher power state than core1 in a cluster |
| * So, wait for current core to power up before proceeding |
| * to next core and put timeout of 2sec for each core. |
| * |
| * This waiting mechanism is necessary because |
| * rproc_auto_boot_callback() for core1 can be called before |
| * core0 due to thread execution order. |
| */ |
| ret = wait_event_interruptible_timeout(cluster->core_transition, |
| core->released_from_reset, |
| msecs_to_jiffies(2000)); |
| if (ret <= 0) { |
| dev_err(dev, |
| "Timed out waiting for %s core to power up!\n", |
| rproc->name); |
| return ret; |
| } |
| } |
| |
| return 0; |
| |
| err_split: |
| if (rproc->state == RPROC_ATTACHED) { |
| ret1 = rproc_detach(rproc); |
| if (ret1) { |
| dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", |
| ret1); |
| return ret1; |
| } |
| } |
| |
| rproc_del(rproc); |
| err_add: |
| k3_r5_reserved_mem_exit(kproc); |
| err_config: |
| rproc_free(rproc); |
| core->rproc = NULL; |
| out: |
| /* undo core0 upon any failures on core1 in split-mode */ |
| if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { |
| core = list_prev_entry(core, elem); |
| rproc = core->rproc; |
| kproc = rproc->priv; |
| goto err_split; |
| } |
| return ret; |
| } |
| |
| static void k3_r5_cluster_rproc_exit(void *data) |
| { |
| struct k3_r5_cluster *cluster = platform_get_drvdata(data); |
| struct k3_r5_rproc *kproc; |
| struct k3_r5_core *core; |
| struct rproc *rproc; |
| int ret; |
| |
| /* |
| * lockstep mode and single-cpu modes have only one rproc associated |
| * with first core, whereas split-mode has two rprocs associated with |
| * each core, and requires that core1 be powered down first |
| */ |
| core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || |
| cluster->mode == CLUSTER_MODE_SINGLECPU) ? |
| list_first_entry(&cluster->cores, struct k3_r5_core, elem) : |
| list_last_entry(&cluster->cores, struct k3_r5_core, elem); |
| |
| list_for_each_entry_from_reverse(core, &cluster->cores, elem) { |
| rproc = core->rproc; |
| kproc = rproc->priv; |
| |
| if (rproc->state == RPROC_ATTACHED) { |
| ret = rproc_detach(rproc); |
| if (ret) { |
| dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret); |
| return; |
| } |
| } |
| |
| rproc_del(rproc); |
| |
| k3_r5_reserved_mem_exit(kproc); |
| |
| rproc_free(rproc); |
| core->rproc = NULL; |
| } |
| } |
| |
| static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, |
| struct k3_r5_core *core) |
| { |
| static const char * const mem_names[] = {"atcm", "btcm"}; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int num_mems; |
| int i; |
| |
| num_mems = ARRAY_SIZE(mem_names); |
| core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); |
| if (!core->mem) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_mems; i++) { |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| mem_names[i]); |
| if (!res) { |
| dev_err(dev, "found no memory resource for %s\n", |
| mem_names[i]); |
| return -EINVAL; |
| } |
| if (!devm_request_mem_region(dev, res->start, |
| resource_size(res), |
| dev_name(dev))) { |
| dev_err(dev, "could not request %s region for resource\n", |
| mem_names[i]); |
| return -EBUSY; |
| } |
| |
| /* |
| * TCMs are designed in general to support RAM-like backing |
| * memories. So, map these as Normal Non-Cached memories. This |
| * also avoids/fixes any potential alignment faults due to |
| * unaligned data accesses when using memcpy() or memset() |
| * functions (normally seen with device type memory). |
| */ |
| core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, |
| resource_size(res)); |
| if (!core->mem[i].cpu_addr) { |
| dev_err(dev, "failed to map %s memory\n", mem_names[i]); |
| return -ENOMEM; |
| } |
| core->mem[i].bus_addr = res->start; |
| |
| /* |
| * TODO: |
| * The R5F cores can place ATCM & BTCM anywhere in its address |
| * based on the corresponding Region Registers in the System |
| * Control coprocessor. For now, place ATCM and BTCM at |
| * addresses 0 and 0x41010000 (same as the bus address on AM65x |
| * SoCs) based on loczrama setting |
| */ |
| if (!strcmp(mem_names[i], "atcm")) { |
| core->mem[i].dev_addr = core->loczrama ? |
| 0 : K3_R5_TCM_DEV_ADDR; |
| } else { |
| core->mem[i].dev_addr = core->loczrama ? |
| K3_R5_TCM_DEV_ADDR : 0; |
| } |
| core->mem[i].size = resource_size(res); |
| |
| dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| mem_names[i], &core->mem[i].bus_addr, |
| core->mem[i].size, core->mem[i].cpu_addr, |
| core->mem[i].dev_addr); |
| } |
| core->num_mems = num_mems; |
| |
| return 0; |
| } |
| |
| static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, |
| struct k3_r5_core *core) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct device *dev = &pdev->dev; |
| struct device_node *sram_np; |
| struct resource res; |
| int num_sram; |
| int i, ret; |
| |
| num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); |
| if (num_sram <= 0) { |
| dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", |
| num_sram); |
| return 0; |
| } |
| |
| core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); |
| if (!core->sram) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_sram; i++) { |
| sram_np = of_parse_phandle(np, "sram", i); |
| if (!sram_np) |
| return -EINVAL; |
| |
| if (!of_device_is_available(sram_np)) { |
| of_node_put(sram_np); |
| return -EINVAL; |
| } |
| |
| ret = of_address_to_resource(sram_np, 0, &res); |
| of_node_put(sram_np); |
| if (ret) |
| return -EINVAL; |
| |
| core->sram[i].bus_addr = res.start; |
| core->sram[i].dev_addr = res.start; |
| core->sram[i].size = resource_size(&res); |
| core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, |
| resource_size(&res)); |
| if (!core->sram[i].cpu_addr) { |
| dev_err(dev, "failed to parse and map sram%d memory at %pad\n", |
| i, &res.start); |
| return -ENOMEM; |
| } |
| |
| dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| i, &core->sram[i].bus_addr, |
| core->sram[i].size, core->sram[i].cpu_addr, |
| core->sram[i].dev_addr); |
| } |
| core->num_sram = num_sram; |
| |
| return 0; |
| } |
| |
| static |
| struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, |
| const struct ti_sci_handle *sci) |
| { |
| struct ti_sci_proc *tsp; |
| u32 temp[2]; |
| int ret; |
| |
| ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", |
| temp, 2); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); |
| if (!tsp) |
| return ERR_PTR(-ENOMEM); |
| |
| tsp->dev = dev; |
| tsp->sci = sci; |
| tsp->ops = &sci->ops.proc_ops; |
| tsp->proc_id = temp[0]; |
| tsp->host_id = temp[1]; |
| |
| return tsp; |
| } |
| |
| static int k3_r5_core_of_init(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev_of_node(dev); |
| struct k3_r5_core *core; |
| int ret; |
| |
| if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); |
| if (!core) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| core->dev = dev; |
| /* |
| * Use SoC Power-on-Reset values as default if no DT properties are |
| * used to dictate the TCM configurations |
| */ |
| core->atcm_enable = 0; |
| core->btcm_enable = 1; |
| core->loczrama = 1; |
| |
| ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); |
| if (ret < 0 && ret != -EINVAL) { |
| dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", |
| ret); |
| goto err; |
| } |
| |
| ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); |
| if (ret < 0 && ret != -EINVAL) { |
| dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", |
| ret); |
| goto err; |
| } |
| |
| ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); |
| if (ret < 0 && ret != -EINVAL) { |
| dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); |
| goto err; |
| } |
| |
| core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); |
| if (IS_ERR(core->ti_sci)) { |
| ret = PTR_ERR(core->ti_sci); |
| if (ret != -EPROBE_DEFER) { |
| dev_err(dev, "failed to get ti-sci handle, ret = %d\n", |
| ret); |
| } |
| core->ti_sci = NULL; |
| goto err; |
| } |
| |
| ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); |
| if (ret) { |
| dev_err(dev, "missing 'ti,sci-dev-id' property\n"); |
| goto err; |
| } |
| |
| core->reset = devm_reset_control_get_exclusive(dev, NULL); |
| if (IS_ERR_OR_NULL(core->reset)) { |
| ret = PTR_ERR_OR_ZERO(core->reset); |
| if (!ret) |
| ret = -ENODEV; |
| if (ret != -EPROBE_DEFER) { |
| dev_err(dev, "failed to get reset handle, ret = %d\n", |
| ret); |
| } |
| goto err; |
| } |
| |
| core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); |
| if (IS_ERR(core->tsp)) { |
| ret = PTR_ERR(core->tsp); |
| dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", |
| ret); |
| goto err; |
| } |
| |
| ret = k3_r5_core_of_get_internal_memories(pdev, core); |
| if (ret) { |
| dev_err(dev, "failed to get internal memories, ret = %d\n", |
| ret); |
| goto err; |
| } |
| |
| ret = k3_r5_core_of_get_sram_memories(pdev, core); |
| if (ret) { |
| dev_err(dev, "failed to get sram memories, ret = %d\n", ret); |
| goto err; |
| } |
| |
| ret = ti_sci_proc_request(core->tsp); |
| if (ret < 0) { |
| dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); |
| goto err; |
| } |
| |
| platform_set_drvdata(pdev, core); |
| devres_close_group(dev, k3_r5_core_of_init); |
| |
| return 0; |
| |
| err: |
| devres_release_group(dev, k3_r5_core_of_init); |
| return ret; |
| } |
| |
| /* |
| * free the resources explicitly since driver model is not being used |
| * for the child R5F devices |
| */ |
| static void k3_r5_core_of_exit(struct platform_device *pdev) |
| { |
| struct k3_r5_core *core = platform_get_drvdata(pdev); |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| ret = ti_sci_proc_release(core->tsp); |
| if (ret) |
| dev_err(dev, "failed to release proc, ret = %d\n", ret); |
| |
| platform_set_drvdata(pdev, NULL); |
| devres_release_group(dev, k3_r5_core_of_init); |
| } |
| |
| static void k3_r5_cluster_of_exit(void *data) |
| { |
| struct k3_r5_cluster *cluster = platform_get_drvdata(data); |
| struct platform_device *cpdev; |
| struct k3_r5_core *core, *temp; |
| |
| list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { |
| list_del(&core->elem); |
| cpdev = to_platform_device(core->dev); |
| k3_r5_core_of_exit(cpdev); |
| } |
| } |
| |
| static int k3_r5_cluster_of_init(struct platform_device *pdev) |
| { |
| struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev_of_node(dev); |
| struct platform_device *cpdev; |
| struct device_node *child; |
| struct k3_r5_core *core; |
| int ret; |
| |
| for_each_available_child_of_node(np, child) { |
| cpdev = of_find_device_by_node(child); |
| if (!cpdev) { |
| ret = -ENODEV; |
| dev_err(dev, "could not get R5 core platform device\n"); |
| of_node_put(child); |
| goto fail; |
| } |
| |
| ret = k3_r5_core_of_init(cpdev); |
| if (ret) { |
| dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", |
| ret); |
| put_device(&cpdev->dev); |
| of_node_put(child); |
| goto fail; |
| } |
| |
| core = platform_get_drvdata(cpdev); |
| put_device(&cpdev->dev); |
| list_add_tail(&core->elem, &cluster->cores); |
| } |
| |
| return 0; |
| |
| fail: |
| k3_r5_cluster_of_exit(pdev); |
| return ret; |
| } |
| |
| static int k3_r5_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev_of_node(dev); |
| struct k3_r5_cluster *cluster; |
| const struct k3_r5_soc_data *data; |
| int ret; |
| int num_cores; |
| |
| data = of_device_get_match_data(&pdev->dev); |
| if (!data) { |
| dev_err(dev, "SoC-specific data is not defined\n"); |
| return -ENODEV; |
| } |
| |
| cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); |
| if (!cluster) |
| return -ENOMEM; |
| |
| cluster->dev = dev; |
| cluster->soc_data = data; |
| INIT_LIST_HEAD(&cluster->cores); |
| init_waitqueue_head(&cluster->core_transition); |
| |
| ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); |
| if (ret < 0 && ret != -EINVAL) { |
| dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", |
| ret); |
| return ret; |
| } |
| |
| if (ret == -EINVAL) { |
| /* |
| * default to most common efuse configurations - Split-mode on AM64x |
| * and LockStep-mode on all others |
| * default to most common efuse configurations - |
| * Split-mode on AM64x |
| * Single core on AM62x |
| * LockStep-mode on all others |
| */ |
| if (!data->is_single_core) |
| cluster->mode = data->single_cpu_mode ? |
| CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP; |
| else |
| cluster->mode = CLUSTER_MODE_SINGLECORE; |
| } |
| |
| if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) || |
| (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) { |
| dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode); |
| return -EINVAL; |
| } |
| |
| num_cores = of_get_available_child_count(np); |
| if (num_cores != 2 && !data->is_single_core) { |
| dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n", |
| num_cores); |
| return -ENODEV; |
| } |
| |
| if (num_cores != 1 && data->is_single_core) { |
| dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n", |
| num_cores); |
| return -ENODEV; |
| } |
| |
| platform_set_drvdata(pdev, cluster); |
| |
| ret = devm_of_platform_populate(dev); |
| if (ret) { |
| dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = k3_r5_cluster_of_init(pdev); |
| if (ret) { |
| dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); |
| return ret; |
| } |
| |
| ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); |
| if (ret) |
| return ret; |
| |
| ret = k3_r5_cluster_rproc_init(pdev); |
| if (ret) { |
| dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static const struct k3_r5_soc_data am65_j721e_soc_data = { |
| .tcm_is_double = false, |
| .tcm_ecc_autoinit = false, |
| .single_cpu_mode = false, |
| .is_single_core = false, |
| }; |
| |
| static const struct k3_r5_soc_data j7200_j721s2_soc_data = { |
| .tcm_is_double = true, |
| .tcm_ecc_autoinit = true, |
| .single_cpu_mode = false, |
| .is_single_core = false, |
| }; |
| |
| static const struct k3_r5_soc_data am64_soc_data = { |
| .tcm_is_double = true, |
| .tcm_ecc_autoinit = true, |
| .single_cpu_mode = true, |
| .is_single_core = false, |
| }; |
| |
| static const struct k3_r5_soc_data am62_soc_data = { |
| .tcm_is_double = false, |
| .tcm_ecc_autoinit = true, |
| .single_cpu_mode = false, |
| .is_single_core = true, |
| }; |
| |
| static const struct of_device_id k3_r5_of_match[] = { |
| { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, |
| { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, |
| { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, }, |
| { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, }, |
| { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, }, |
| { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, k3_r5_of_match); |
| |
| static struct platform_driver k3_r5_rproc_driver = { |
| .probe = k3_r5_probe, |
| .driver = { |
| .name = "k3_r5_rproc", |
| .of_match_table = k3_r5_of_match, |
| }, |
| }; |
| |
| module_platform_driver(k3_r5_rproc_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); |
| MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); |