blob: 4dfb5a85032b72489bd3fcbac63a39bfc52d1596 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* MIPS-specific support for Broadcom STB S2/S3/S5 power management
*
* Copyright (C) 2016-2017 Broadcom
*/
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/delay.h>
#include <linux/suspend.h>
#include <asm/bmips.h>
#include <asm/tlbflush.h>
#include "pm.h"
#define S2_NUM_PARAMS 6
#define MAX_NUM_MEMC 3
/* S3 constants */
#define MAX_GP_REGS 16
#define MAX_CP0_REGS 32
#define NUM_MEMC_CLIENTS 128
#define AON_CTRL_RAM_SIZE 128
#define BRCMSTB_S3_MAGIC 0x5AFEB007
#define CLEAR_RESET_MASK 0x01
/* Index each CP0 register that needs to be saved */
#define CONTEXT 0
#define USER_LOCAL 1
#define PGMK 2
#define HWRENA 3
#define COMPARE 4
#define STATUS 5
#define CONFIG 6
#define MODE 7
#define EDSP 8
#define BOOT_VEC 9
#define EBASE 10
struct brcmstb_memc {
void __iomem *ddr_phy_base;
void __iomem *arb_base;
};
struct brcmstb_pm_control {
void __iomem *aon_ctrl_base;
void __iomem *aon_sram_base;
void __iomem *timers_base;
struct brcmstb_memc memcs[MAX_NUM_MEMC];
int num_memc;
};
struct brcm_pm_s3_context {
u32 cp0_regs[MAX_CP0_REGS];
u32 memc0_rts[NUM_MEMC_CLIENTS];
u32 sc_boot_vec;
};
struct brcmstb_mem_transfer;
struct brcmstb_mem_transfer {
struct brcmstb_mem_transfer *next;
void *src;
void *dst;
dma_addr_t pa_src;
dma_addr_t pa_dst;
u32 len;
u8 key;
u8 mode;
u8 src_remapped;
u8 dst_remapped;
u8 src_dst_remapped;
};
#define AON_SAVE_SRAM(base, idx, val) \
__raw_writel(val, base + (idx << 2))
/* Used for saving registers in asm */
u32 gp_regs[MAX_GP_REGS];
#define BSP_CLOCK_STOP 0x00
#define PM_INITIATE 0x01
static struct brcmstb_pm_control ctrl;
static void brcm_pm_save_cp0_context(struct brcm_pm_s3_context *ctx)
{
/* Generic MIPS */
ctx->cp0_regs[CONTEXT] = read_c0_context();
ctx->cp0_regs[USER_LOCAL] = read_c0_userlocal();
ctx->cp0_regs[PGMK] = read_c0_pagemask();
ctx->cp0_regs[HWRENA] = read_c0_cache();
ctx->cp0_regs[COMPARE] = read_c0_compare();
ctx->cp0_regs[STATUS] = read_c0_status();
/* Broadcom specific */
ctx->cp0_regs[CONFIG] = read_c0_brcm_config();
ctx->cp0_regs[MODE] = read_c0_brcm_mode();
ctx->cp0_regs[EDSP] = read_c0_brcm_edsp();
ctx->cp0_regs[BOOT_VEC] = read_c0_brcm_bootvec();
ctx->cp0_regs[EBASE] = read_c0_ebase();
ctx->sc_boot_vec = bmips_read_zscm_reg(0xa0);
}
static void brcm_pm_restore_cp0_context(struct brcm_pm_s3_context *ctx)
{
/* Restore cp0 state */
bmips_write_zscm_reg(0xa0, ctx->sc_boot_vec);
/* Generic MIPS */
write_c0_context(ctx->cp0_regs[CONTEXT]);
write_c0_userlocal(ctx->cp0_regs[USER_LOCAL]);
write_c0_pagemask(ctx->cp0_regs[PGMK]);
write_c0_cache(ctx->cp0_regs[HWRENA]);
write_c0_compare(ctx->cp0_regs[COMPARE]);
write_c0_status(ctx->cp0_regs[STATUS]);
/* Broadcom specific */
write_c0_brcm_config(ctx->cp0_regs[CONFIG]);
write_c0_brcm_mode(ctx->cp0_regs[MODE]);
write_c0_brcm_edsp(ctx->cp0_regs[EDSP]);
write_c0_brcm_bootvec(ctx->cp0_regs[BOOT_VEC]);
write_c0_ebase(ctx->cp0_regs[EBASE]);
}
static void brcmstb_pm_handshake(void)
{
void __iomem *base = ctrl.aon_ctrl_base;
u32 tmp;
/* BSP power handshake, v1 */
tmp = __raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
tmp &= ~1UL;
__raw_writel(tmp, base + AON_CTRL_HOST_MISC_CMDS);
(void)__raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
__raw_writel(0, base + AON_CTRL_PM_INITIATE);
(void)__raw_readl(base + AON_CTRL_PM_INITIATE);
__raw_writel(BSP_CLOCK_STOP | PM_INITIATE,
base + AON_CTRL_PM_INITIATE);
/*
* HACK: BSP may have internal race on the CLOCK_STOP command.
* Avoid touching the BSP for a few milliseconds.
*/
mdelay(3);
}
static void brcmstb_pm_s5(void)
{
void __iomem *base = ctrl.aon_ctrl_base;
brcmstb_pm_handshake();
/* Clear magic s3 warm-boot value */
AON_SAVE_SRAM(ctrl.aon_sram_base, 0, 0);
/* Set the countdown */
__raw_writel(0x10, base + AON_CTRL_PM_CPU_WAIT_COUNT);
(void)__raw_readl(base + AON_CTRL_PM_CPU_WAIT_COUNT);
/* Prepare to S5 cold boot */
__raw_writel(PM_COLD_CONFIG, base + AON_CTRL_PM_CTRL);
(void)__raw_readl(base + AON_CTRL_PM_CTRL);
__raw_writel((PM_COLD_CONFIG | PM_PWR_DOWN), base +
AON_CTRL_PM_CTRL);
(void)__raw_readl(base + AON_CTRL_PM_CTRL);
__asm__ __volatile__(
" wait\n"
: : : "memory");
}
static int brcmstb_pm_s3(void)
{
struct brcm_pm_s3_context s3_context;
void __iomem *memc_arb_base;
unsigned long flags;
u32 tmp;
int i;
/* Prepare for s3 */
AON_SAVE_SRAM(ctrl.aon_sram_base, 0, BRCMSTB_S3_MAGIC);
AON_SAVE_SRAM(ctrl.aon_sram_base, 1, (u32)&s3_reentry);
AON_SAVE_SRAM(ctrl.aon_sram_base, 2, 0);
/* Clear RESET_HISTORY */
tmp = __raw_readl(ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
tmp &= ~CLEAR_RESET_MASK;
__raw_writel(tmp, ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
local_irq_save(flags);
/* Inhibit DDR_RSTb pulse for both MMCs*/
for (i = 0; i < ctrl.num_memc; i++) {
tmp = __raw_readl(ctrl.memcs[i].ddr_phy_base +
DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
tmp &= ~0x0f;
__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
tmp |= (0x05 | BIT(5));
__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
}
/* Save CP0 context */
brcm_pm_save_cp0_context(&s3_context);
/* Save RTS(skip debug register) */
memc_arb_base = ctrl.memcs[0].arb_base + 4;
for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
s3_context.memc0_rts[i] = __raw_readl(memc_arb_base);
memc_arb_base += 4;
}
/* Save I/O context */
local_flush_tlb_all();
_dma_cache_wback_inv(0, ~0);
brcm_pm_do_s3(ctrl.aon_ctrl_base, current_cpu_data.dcache.linesz);
/* CPU reconfiguration */
local_flush_tlb_all();
bmips_cpu_setup();
cpumask_clear(&bmips_booted_mask);
/* Restore RTS (skip debug register) */
memc_arb_base = ctrl.memcs[0].arb_base + 4;
for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
__raw_writel(s3_context.memc0_rts[i], memc_arb_base);
memc_arb_base += 4;
}
/* restore CP0 context */
brcm_pm_restore_cp0_context(&s3_context);
local_irq_restore(flags);
return 0;
}
static int brcmstb_pm_s2(void)
{
/*
* We need to pass 6 arguments to an assembly function. Lets avoid the
* stack and pass arguments in a explicit 4 byte array. The assembly
* code assumes all arguments are 4 bytes and arguments are ordered
* like so:
*
* 0: AON_CTRl base register
* 1: DDR_PHY base register
* 2: TIMERS base resgister
* 3: I-Cache line size
* 4: Restart vector address
* 5: Restart vector size
*/
u32 s2_params[6];
/* Prepare s2 parameters */
s2_params[0] = (u32)ctrl.aon_ctrl_base;
s2_params[1] = (u32)ctrl.memcs[0].ddr_phy_base;
s2_params[2] = (u32)ctrl.timers_base;
s2_params[3] = (u32)current_cpu_data.icache.linesz;
s2_params[4] = (u32)BMIPS_WARM_RESTART_VEC;
s2_params[5] = (u32)(bmips_smp_int_vec_end -
bmips_smp_int_vec);
/* Drop to standby */
brcm_pm_do_s2(s2_params);
return 0;
}
static int brcmstb_pm_standby(bool deep_standby)
{
brcmstb_pm_handshake();
/* Send IRQs to BMIPS_WARM_RESTART_VEC */
clear_c0_cause(CAUSEF_IV);
irq_disable_hazard();
set_c0_status(ST0_BEV);
irq_disable_hazard();
if (deep_standby)
brcmstb_pm_s3();
else
brcmstb_pm_s2();
/* Send IRQs to normal runtime vectors */
clear_c0_status(ST0_BEV);
irq_disable_hazard();
set_c0_cause(CAUSEF_IV);
irq_disable_hazard();
return 0;
}
static int brcmstb_pm_enter(suspend_state_t state)
{
int ret = -EINVAL;
switch (state) {
case PM_SUSPEND_STANDBY:
ret = brcmstb_pm_standby(false);
break;
case PM_SUSPEND_MEM:
ret = brcmstb_pm_standby(true);
break;
}
return ret;
}
static int brcmstb_pm_valid(suspend_state_t state)
{
switch (state) {
case PM_SUSPEND_STANDBY:
return true;
case PM_SUSPEND_MEM:
return true;
default:
return false;
}
}
static const struct platform_suspend_ops brcmstb_pm_ops = {
.enter = brcmstb_pm_enter,
.valid = brcmstb_pm_valid,
};
static const struct of_device_id aon_ctrl_dt_ids[] = {
{ .compatible = "brcm,brcmstb-aon-ctrl" },
{ /* sentinel */ }
};
static const struct of_device_id ddr_phy_dt_ids[] = {
{ .compatible = "brcm,brcmstb-ddr-phy" },
{ /* sentinel */ }
};
static const struct of_device_id arb_dt_ids[] = {
{ .compatible = "brcm,brcmstb-memc-arb" },
{ /* sentinel */ }
};
static const struct of_device_id timers_ids[] = {
{ .compatible = "brcm,brcmstb-timers" },
{ /* sentinel */ }
};
static inline void __iomem *brcmstb_ioremap_node(struct device_node *dn,
int index)
{
return of_io_request_and_map(dn, index, dn->full_name);
}
static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
int index, const void **ofdata)
{
struct device_node *dn;
const struct of_device_id *match;
dn = of_find_matching_node_and_match(NULL, matches, &match);
if (!dn)
return ERR_PTR(-EINVAL);
if (ofdata)
*ofdata = match->data;
return brcmstb_ioremap_node(dn, index);
}
static int brcmstb_pm_init(void)
{
struct device_node *dn;
void __iomem *base;
int i;
/* AON ctrl registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping AON_CTRL\n");
goto aon_err;
}
ctrl.aon_ctrl_base = base;
/* AON SRAM registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
if (IS_ERR(base)) {
pr_err("error mapping AON_SRAM\n");
goto sram_err;
}
ctrl.aon_sram_base = base;
ctrl.num_memc = 0;
/* Map MEMC DDR PHY registers */
for_each_matching_node(dn, ddr_phy_dt_ids) {
i = ctrl.num_memc;
if (i >= MAX_NUM_MEMC) {
pr_warn("Too many MEMCs (max %d)\n", MAX_NUM_MEMC);
of_node_put(dn);
break;
}
base = brcmstb_ioremap_node(dn, 0);
if (IS_ERR(base)) {
of_node_put(dn);
goto ddr_err;
}
ctrl.memcs[i].ddr_phy_base = base;
ctrl.num_memc++;
}
/* MEMC ARB registers */
base = brcmstb_ioremap_match(arb_dt_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping MEMC ARB\n");
goto ddr_err;
}
ctrl.memcs[0].arb_base = base;
/* Timer registers */
base = brcmstb_ioremap_match(timers_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping timers\n");
goto tmr_err;
}
ctrl.timers_base = base;
/* s3 cold boot aka s5 */
pm_power_off = brcmstb_pm_s5;
suspend_set_ops(&brcmstb_pm_ops);
return 0;
tmr_err:
iounmap(ctrl.memcs[0].arb_base);
ddr_err:
for (i = 0; i < ctrl.num_memc; i++)
iounmap(ctrl.memcs[i].ddr_phy_base);
iounmap(ctrl.aon_sram_base);
sram_err:
iounmap(ctrl.aon_ctrl_base);
aon_err:
return PTR_ERR(base);
}
arch_initcall(brcmstb_pm_init);