|  | /* | 
|  | * Timer device implementation for SGI SN platforms. | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved. | 
|  | * | 
|  | * This driver exports an API that should be supportable by any HPET or IA-PC | 
|  | * multimedia timer.  The code below is currently specific to the SGI Altix | 
|  | * SHub RTC, however. | 
|  | * | 
|  | * 11/01/01 - jbarnes - initial revision | 
|  | * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion | 
|  | * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE | 
|  | * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt | 
|  | *		support via the posix timer interface | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/ioctl.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mmtimer.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/sn/addrs.h> | 
|  | #include <asm/sn/intr.h> | 
|  | #include <asm/sn/shub_mmr.h> | 
|  | #include <asm/sn/nodepda.h> | 
|  | #include <asm/sn/shubio.h> | 
|  |  | 
|  | MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); | 
|  | MODULE_DESCRIPTION("SGI Altix RTC Timer"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | /* name of the device, usually in /dev */ | 
|  | #define MMTIMER_NAME "mmtimer" | 
|  | #define MMTIMER_DESC "SGI Altix RTC Timer" | 
|  | #define MMTIMER_VERSION "2.1" | 
|  |  | 
|  | #define RTC_BITS 55 /* 55 bits for this implementation */ | 
|  |  | 
|  | static struct k_clock sgi_clock; | 
|  |  | 
|  | extern unsigned long sn_rtc_cycles_per_second; | 
|  |  | 
|  | #define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC)) | 
|  |  | 
|  | #define rtc_time()              (*RTC_COUNTER_ADDR) | 
|  |  | 
|  | static DEFINE_MUTEX(mmtimer_mutex); | 
|  | static long mmtimer_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg); | 
|  | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma); | 
|  |  | 
|  | /* | 
|  | * Period in femtoseconds (10^-15 s) | 
|  | */ | 
|  | static unsigned long mmtimer_femtoperiod = 0; | 
|  |  | 
|  | static const struct file_operations mmtimer_fops = { | 
|  | .owner = THIS_MODULE, | 
|  | .mmap =	mmtimer_mmap, | 
|  | .unlocked_ioctl = mmtimer_ioctl, | 
|  | .llseek = noop_llseek, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We only have comparison registers RTC1-4 currently available per | 
|  | * node.  RTC0 is used by SAL. | 
|  | */ | 
|  | /* Check for an RTC interrupt pending */ | 
|  | static int mmtimer_int_pending(int comparator) | 
|  | { | 
|  | if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) & | 
|  | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Clear the RTC interrupt pending bit */ | 
|  | static void mmtimer_clr_int_pending(int comparator) | 
|  | { | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), | 
|  | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator); | 
|  | } | 
|  |  | 
|  | /* Setup timer on comparator RTC1 */ | 
|  | static void mmtimer_setup_int_0(int cpu, u64 expires) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | /* Disable interrupt */ | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL); | 
|  |  | 
|  | /* Initialize comparator value */ | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L); | 
|  |  | 
|  | /* Clear pending bit */ | 
|  | mmtimer_clr_int_pending(0); | 
|  |  | 
|  | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) | | 
|  | ((u64)cpu_physical_id(cpu) << | 
|  | SH_RTC1_INT_CONFIG_PID_SHFT); | 
|  |  | 
|  | /* Set configuration */ | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val); | 
|  |  | 
|  | /* Enable RTC interrupts */ | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL); | 
|  |  | 
|  | /* Initialize comparator value */ | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires); | 
|  |  | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Setup timer on comparator RTC2 */ | 
|  | static void mmtimer_setup_int_1(int cpu, u64 expires) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L); | 
|  |  | 
|  | mmtimer_clr_int_pending(1); | 
|  |  | 
|  | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) | | 
|  | ((u64)cpu_physical_id(cpu) << | 
|  | SH_RTC2_INT_CONFIG_PID_SHFT); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires); | 
|  | } | 
|  |  | 
|  | /* Setup timer on comparator RTC3 */ | 
|  | static void mmtimer_setup_int_2(int cpu, u64 expires) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L); | 
|  |  | 
|  | mmtimer_clr_int_pending(2); | 
|  |  | 
|  | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) | | 
|  | ((u64)cpu_physical_id(cpu) << | 
|  | SH_RTC3_INT_CONFIG_PID_SHFT); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL); | 
|  |  | 
|  | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function must be called with interrupts disabled and preemption off | 
|  | * in order to insure that the setup succeeds in a deterministic time frame. | 
|  | * It will check if the interrupt setup succeeded. | 
|  | */ | 
|  | static int mmtimer_setup(int cpu, int comparator, unsigned long expires, | 
|  | u64 *set_completion_time) | 
|  | { | 
|  | switch (comparator) { | 
|  | case 0: | 
|  | mmtimer_setup_int_0(cpu, expires); | 
|  | break; | 
|  | case 1: | 
|  | mmtimer_setup_int_1(cpu, expires); | 
|  | break; | 
|  | case 2: | 
|  | mmtimer_setup_int_2(cpu, expires); | 
|  | break; | 
|  | } | 
|  | /* We might've missed our expiration time */ | 
|  | *set_completion_time = rtc_time(); | 
|  | if (*set_completion_time <= expires) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * If an interrupt is already pending then its okay | 
|  | * if not then we failed | 
|  | */ | 
|  | return mmtimer_int_pending(comparator); | 
|  | } | 
|  |  | 
|  | static int mmtimer_disable_int(long nasid, int comparator) | 
|  | { | 
|  | switch (comparator) { | 
|  | case 0: | 
|  | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), | 
|  | 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL); | 
|  | break; | 
|  | case 1: | 
|  | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), | 
|  | 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL); | 
|  | break; | 
|  | case 2: | 
|  | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), | 
|  | 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL); | 
|  | break; | 
|  | default: | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define COMPARATOR	1		/* The comparator to use */ | 
|  |  | 
|  | #define TIMER_OFF	0xbadcabLL	/* Timer is not setup */ | 
|  | #define TIMER_SET	0		/* Comparator is set for this timer */ | 
|  |  | 
|  | #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40 | 
|  |  | 
|  | /* There is one of these for each timer */ | 
|  | struct mmtimer { | 
|  | struct rb_node list; | 
|  | struct k_itimer *timer; | 
|  | int cpu; | 
|  | }; | 
|  |  | 
|  | struct mmtimer_node { | 
|  | spinlock_t lock ____cacheline_aligned; | 
|  | struct rb_root timer_head; | 
|  | struct rb_node *next; | 
|  | struct tasklet_struct tasklet; | 
|  | }; | 
|  | static struct mmtimer_node *timers; | 
|  |  | 
|  | static unsigned mmtimer_interval_retry_increment = | 
|  | MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT; | 
|  | module_param(mmtimer_interval_retry_increment, uint, 0644); | 
|  | MODULE_PARM_DESC(mmtimer_interval_retry_increment, | 
|  | "RTC ticks to add to expiration on interval retry (default 40)"); | 
|  |  | 
|  | /* | 
|  | * Add a new mmtimer struct to the node's mmtimer list. | 
|  | * This function assumes the struct mmtimer_node is locked. | 
|  | */ | 
|  | static void mmtimer_add_list(struct mmtimer *n) | 
|  | { | 
|  | int nodeid = n->timer->it.mmtimer.node; | 
|  | unsigned long expires = n->timer->it.mmtimer.expires; | 
|  | struct rb_node **link = &timers[nodeid].timer_head.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct mmtimer *x; | 
|  |  | 
|  | /* | 
|  | * Find the right place in the rbtree: | 
|  | */ | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | x = rb_entry(parent, struct mmtimer, list); | 
|  |  | 
|  | if (expires < x->timer->it.mmtimer.expires) | 
|  | link = &(*link)->rb_left; | 
|  | else | 
|  | link = &(*link)->rb_right; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the timer to the rbtree and check whether it | 
|  | * replaces the first pending timer | 
|  | */ | 
|  | rb_link_node(&n->list, parent, link); | 
|  | rb_insert_color(&n->list, &timers[nodeid].timer_head); | 
|  |  | 
|  | if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next, | 
|  | struct mmtimer, list)->timer->it.mmtimer.expires) | 
|  | timers[nodeid].next = &n->list; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the comparator for the next timer. | 
|  | * This function assumes the struct mmtimer_node is locked. | 
|  | */ | 
|  | static void mmtimer_set_next_timer(int nodeid) | 
|  | { | 
|  | struct mmtimer_node *n = &timers[nodeid]; | 
|  | struct mmtimer *x; | 
|  | struct k_itimer *t; | 
|  | u64 expires, exp, set_completion_time; | 
|  | int i; | 
|  |  | 
|  | restart: | 
|  | if (n->next == NULL) | 
|  | return; | 
|  |  | 
|  | x = rb_entry(n->next, struct mmtimer, list); | 
|  | t = x->timer; | 
|  | if (!t->it.mmtimer.incr) { | 
|  | /* Not an interval timer */ | 
|  | if (!mmtimer_setup(x->cpu, COMPARATOR, | 
|  | t->it.mmtimer.expires, | 
|  | &set_completion_time)) { | 
|  | /* Late setup, fire now */ | 
|  | tasklet_schedule(&n->tasklet); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Interval timer */ | 
|  | i = 0; | 
|  | expires = exp = t->it.mmtimer.expires; | 
|  | while (!mmtimer_setup(x->cpu, COMPARATOR, expires, | 
|  | &set_completion_time)) { | 
|  | int to; | 
|  |  | 
|  | i++; | 
|  | expires = set_completion_time + | 
|  | mmtimer_interval_retry_increment + (1 << i); | 
|  | /* Calculate overruns as we go. */ | 
|  | to = ((u64)(expires - exp) / t->it.mmtimer.incr); | 
|  | if (to) { | 
|  | t->it_overrun += to; | 
|  | t->it.mmtimer.expires += t->it.mmtimer.incr * to; | 
|  | exp = t->it.mmtimer.expires; | 
|  | } | 
|  | if (i > 20) { | 
|  | printk(KERN_ALERT "mmtimer: cannot reschedule timer\n"); | 
|  | t->it.mmtimer.clock = TIMER_OFF; | 
|  | n->next = rb_next(&x->list); | 
|  | rb_erase(&x->list, &n->timer_head); | 
|  | kfree(x); | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mmtimer_ioctl - ioctl interface for /dev/mmtimer | 
|  | * @file: file structure for the device | 
|  | * @cmd: command to execute | 
|  | * @arg: optional argument to command | 
|  | * | 
|  | * Executes the command specified by @cmd.  Returns 0 for success, < 0 for | 
|  | * failure. | 
|  | * | 
|  | * Valid commands: | 
|  | * | 
|  | * %MMTIMER_GETOFFSET - Should return the offset (relative to the start | 
|  | * of the page where the registers are mapped) for the counter in question. | 
|  | * | 
|  | * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15) | 
|  | * seconds | 
|  | * | 
|  | * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address | 
|  | * specified by @arg | 
|  | * | 
|  | * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter | 
|  | * | 
|  | * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace | 
|  | * | 
|  | * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it | 
|  | * in the address specified by @arg. | 
|  | */ | 
|  | static long mmtimer_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&mmtimer_mutex); | 
|  |  | 
|  | switch (cmd) { | 
|  | case MMTIMER_GETOFFSET:	/* offset of the counter */ | 
|  | /* | 
|  | * SN RTC registers are on their own 64k page | 
|  | */ | 
|  | if(PAGE_SIZE <= (1 << 16)) | 
|  | ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8; | 
|  | else | 
|  | ret = -ENOSYS; | 
|  | break; | 
|  |  | 
|  | case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */ | 
|  | if(copy_to_user((unsigned long __user *)arg, | 
|  | &mmtimer_femtoperiod, sizeof(unsigned long))) | 
|  | ret = -EFAULT; | 
|  | break; | 
|  |  | 
|  | case MMTIMER_GETFREQ: /* frequency in Hz */ | 
|  | if(copy_to_user((unsigned long __user *)arg, | 
|  | &sn_rtc_cycles_per_second, | 
|  | sizeof(unsigned long))) | 
|  | ret = -EFAULT; | 
|  | break; | 
|  |  | 
|  | case MMTIMER_GETBITS: /* number of bits in the clock */ | 
|  | ret = RTC_BITS; | 
|  | break; | 
|  |  | 
|  | case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */ | 
|  | ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0; | 
|  | break; | 
|  |  | 
|  | case MMTIMER_GETCOUNTER: | 
|  | if(copy_to_user((unsigned long __user *)arg, | 
|  | RTC_COUNTER_ADDR, sizeof(unsigned long))) | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | default: | 
|  | ret = -ENOTTY; | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&mmtimer_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mmtimer_mmap - maps the clock's registers into userspace | 
|  | * @file: file structure for the device | 
|  | * @vma: VMA to map the registers into | 
|  | * | 
|  | * Calls remap_pfn_range() to map the clock's registers into | 
|  | * the calling process' address space. | 
|  | */ | 
|  | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long mmtimer_addr; | 
|  |  | 
|  | if (vma->vm_end - vma->vm_start != PAGE_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | return -EPERM; | 
|  |  | 
|  | if (PAGE_SIZE > (1 << 16)) | 
|  | return -ENOSYS; | 
|  |  | 
|  | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | 
|  |  | 
|  | mmtimer_addr = __pa(RTC_COUNTER_ADDR); | 
|  | mmtimer_addr &= ~(PAGE_SIZE - 1); | 
|  | mmtimer_addr &= 0xfffffffffffffffUL; | 
|  |  | 
|  | if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT, | 
|  | PAGE_SIZE, vma->vm_page_prot)) { | 
|  | printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct miscdevice mmtimer_miscdev = { | 
|  | SGI_MMTIMER, | 
|  | MMTIMER_NAME, | 
|  | &mmtimer_fops | 
|  | }; | 
|  |  | 
|  | static struct timespec sgi_clock_offset; | 
|  | static int sgi_clock_period; | 
|  |  | 
|  | /* | 
|  | * Posix Timer Interface | 
|  | */ | 
|  |  | 
|  | static struct timespec sgi_clock_offset; | 
|  | static int sgi_clock_period; | 
|  |  | 
|  | static int sgi_clock_get(clockid_t clockid, struct timespec *tp) | 
|  | { | 
|  | u64 nsec; | 
|  |  | 
|  | nsec = rtc_time() * sgi_clock_period | 
|  | + sgi_clock_offset.tv_nsec; | 
|  | *tp = ns_to_timespec(nsec); | 
|  | tp->tv_sec += sgi_clock_offset.tv_sec; | 
|  | return 0; | 
|  | }; | 
|  |  | 
|  | static int sgi_clock_set(const clockid_t clockid, const struct timespec *tp) | 
|  | { | 
|  |  | 
|  | u64 nsec; | 
|  | u32 rem; | 
|  |  | 
|  | nsec = rtc_time() * sgi_clock_period; | 
|  |  | 
|  | sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem); | 
|  |  | 
|  | if (rem <= tp->tv_nsec) | 
|  | sgi_clock_offset.tv_nsec = tp->tv_sec - rem; | 
|  | else { | 
|  | sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem; | 
|  | sgi_clock_offset.tv_sec--; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mmtimer_interrupt - timer interrupt handler | 
|  | * @irq: irq received | 
|  | * @dev_id: device the irq came from | 
|  | * | 
|  | * Called when one of the comarators matches the counter, This | 
|  | * routine will send signals to processes that have requested | 
|  | * them. | 
|  | * | 
|  | * This interrupt is run in an interrupt context | 
|  | * by the SHUB. It is therefore safe to locally access SHub | 
|  | * registers. | 
|  | */ | 
|  | static irqreturn_t | 
|  | mmtimer_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | unsigned long expires = 0; | 
|  | int result = IRQ_NONE; | 
|  | unsigned indx = cpu_to_node(smp_processor_id()); | 
|  | struct mmtimer *base; | 
|  |  | 
|  | spin_lock(&timers[indx].lock); | 
|  | base = rb_entry(timers[indx].next, struct mmtimer, list); | 
|  | if (base == NULL) { | 
|  | spin_unlock(&timers[indx].lock); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | if (base->cpu == smp_processor_id()) { | 
|  | if (base->timer) | 
|  | expires = base->timer->it.mmtimer.expires; | 
|  | /* expires test won't work with shared irqs */ | 
|  | if ((mmtimer_int_pending(COMPARATOR) > 0) || | 
|  | (expires && (expires <= rtc_time()))) { | 
|  | mmtimer_clr_int_pending(COMPARATOR); | 
|  | tasklet_schedule(&timers[indx].tasklet); | 
|  | result = IRQ_HANDLED; | 
|  | } | 
|  | } | 
|  | spin_unlock(&timers[indx].lock); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void mmtimer_tasklet(unsigned long data) | 
|  | { | 
|  | int nodeid = data; | 
|  | struct mmtimer_node *mn = &timers[nodeid]; | 
|  | struct mmtimer *x; | 
|  | struct k_itimer *t; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Send signal and deal with periodic signals */ | 
|  | spin_lock_irqsave(&mn->lock, flags); | 
|  | if (!mn->next) | 
|  | goto out; | 
|  |  | 
|  | x = rb_entry(mn->next, struct mmtimer, list); | 
|  | t = x->timer; | 
|  |  | 
|  | if (t->it.mmtimer.clock == TIMER_OFF) | 
|  | goto out; | 
|  |  | 
|  | t->it_overrun = 0; | 
|  |  | 
|  | mn->next = rb_next(&x->list); | 
|  | rb_erase(&x->list, &mn->timer_head); | 
|  |  | 
|  | if (posix_timer_event(t, 0) != 0) | 
|  | t->it_overrun++; | 
|  |  | 
|  | if(t->it.mmtimer.incr) { | 
|  | t->it.mmtimer.expires += t->it.mmtimer.incr; | 
|  | mmtimer_add_list(x); | 
|  | } else { | 
|  | /* Ensure we don't false trigger in mmtimer_interrupt */ | 
|  | t->it.mmtimer.clock = TIMER_OFF; | 
|  | t->it.mmtimer.expires = 0; | 
|  | kfree(x); | 
|  | } | 
|  | /* Set comparator for next timer, if there is one */ | 
|  | mmtimer_set_next_timer(nodeid); | 
|  |  | 
|  | t->it_overrun_last = t->it_overrun; | 
|  | out: | 
|  | spin_unlock_irqrestore(&mn->lock, flags); | 
|  | } | 
|  |  | 
|  | static int sgi_timer_create(struct k_itimer *timer) | 
|  | { | 
|  | /* Insure that a newly created timer is off */ | 
|  | timer->it.mmtimer.clock = TIMER_OFF; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This does not really delete a timer. It just insures | 
|  | * that the timer is not active | 
|  | * | 
|  | * Assumption: it_lock is already held with irq's disabled | 
|  | */ | 
|  | static int sgi_timer_del(struct k_itimer *timr) | 
|  | { | 
|  | cnodeid_t nodeid = timr->it.mmtimer.node; | 
|  | unsigned long irqflags; | 
|  |  | 
|  | spin_lock_irqsave(&timers[nodeid].lock, irqflags); | 
|  | if (timr->it.mmtimer.clock != TIMER_OFF) { | 
|  | unsigned long expires = timr->it.mmtimer.expires; | 
|  | struct rb_node *n = timers[nodeid].timer_head.rb_node; | 
|  | struct mmtimer *uninitialized_var(t); | 
|  | int r = 0; | 
|  |  | 
|  | timr->it.mmtimer.clock = TIMER_OFF; | 
|  | timr->it.mmtimer.expires = 0; | 
|  |  | 
|  | while (n) { | 
|  | t = rb_entry(n, struct mmtimer, list); | 
|  | if (t->timer == timr) | 
|  | break; | 
|  |  | 
|  | if (expires < t->timer->it.mmtimer.expires) | 
|  | n = n->rb_left; | 
|  | else | 
|  | n = n->rb_right; | 
|  | } | 
|  |  | 
|  | if (!n) { | 
|  | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (timers[nodeid].next == n) { | 
|  | timers[nodeid].next = rb_next(n); | 
|  | r = 1; | 
|  | } | 
|  |  | 
|  | rb_erase(n, &timers[nodeid].timer_head); | 
|  | kfree(t); | 
|  |  | 
|  | if (r) { | 
|  | mmtimer_disable_int(cnodeid_to_nasid(nodeid), | 
|  | COMPARATOR); | 
|  | mmtimer_set_next_timer(nodeid); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Assumption: it_lock is already held with irq's disabled */ | 
|  | static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 
|  | { | 
|  |  | 
|  | if (timr->it.mmtimer.clock == TIMER_OFF) { | 
|  | cur_setting->it_interval.tv_nsec = 0; | 
|  | cur_setting->it_interval.tv_sec = 0; | 
|  | cur_setting->it_value.tv_nsec = 0; | 
|  | cur_setting->it_value.tv_sec =0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period); | 
|  | cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int sgi_timer_set(struct k_itimer *timr, int flags, | 
|  | struct itimerspec * new_setting, | 
|  | struct itimerspec * old_setting) | 
|  | { | 
|  | unsigned long when, period, irqflags; | 
|  | int err = 0; | 
|  | cnodeid_t nodeid; | 
|  | struct mmtimer *base; | 
|  | struct rb_node *n; | 
|  |  | 
|  | if (old_setting) | 
|  | sgi_timer_get(timr, old_setting); | 
|  |  | 
|  | sgi_timer_del(timr); | 
|  | when = timespec_to_ns(&new_setting->it_value); | 
|  | period = timespec_to_ns(&new_setting->it_interval); | 
|  |  | 
|  | if (when == 0) | 
|  | /* Clear timer */ | 
|  | return 0; | 
|  |  | 
|  | base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL); | 
|  | if (base == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & TIMER_ABSTIME) { | 
|  | struct timespec n; | 
|  | unsigned long now; | 
|  |  | 
|  | getnstimeofday(&n); | 
|  | now = timespec_to_ns(&n); | 
|  | if (when > now) | 
|  | when -= now; | 
|  | else | 
|  | /* Fire the timer immediately */ | 
|  | when = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert to sgi clock period. Need to keep rtc_time() as near as possible | 
|  | * to getnstimeofday() in order to be as faithful as possible to the time | 
|  | * specified. | 
|  | */ | 
|  | when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time(); | 
|  | period = (period + sgi_clock_period - 1)  / sgi_clock_period; | 
|  |  | 
|  | /* | 
|  | * We are allocating a local SHub comparator. If we would be moved to another | 
|  | * cpu then another SHub may be local to us. Prohibit that by switching off | 
|  | * preemption. | 
|  | */ | 
|  | preempt_disable(); | 
|  |  | 
|  | nodeid =  cpu_to_node(smp_processor_id()); | 
|  |  | 
|  | /* Lock the node timer structure */ | 
|  | spin_lock_irqsave(&timers[nodeid].lock, irqflags); | 
|  |  | 
|  | base->timer = timr; | 
|  | base->cpu = smp_processor_id(); | 
|  |  | 
|  | timr->it.mmtimer.clock = TIMER_SET; | 
|  | timr->it.mmtimer.node = nodeid; | 
|  | timr->it.mmtimer.incr = period; | 
|  | timr->it.mmtimer.expires = when; | 
|  |  | 
|  | n = timers[nodeid].next; | 
|  |  | 
|  | /* Add the new struct mmtimer to node's timer list */ | 
|  | mmtimer_add_list(base); | 
|  |  | 
|  | if (timers[nodeid].next == n) { | 
|  | /* No need to reprogram comparator for now */ | 
|  | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | 
|  | preempt_enable(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* We need to reprogram the comparator */ | 
|  | if (n) | 
|  | mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR); | 
|  |  | 
|  | mmtimer_set_next_timer(nodeid); | 
|  |  | 
|  | /* Unlock the node timer structure */ | 
|  | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sgi_clock_getres(const clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | tp->tv_sec = 0; | 
|  | tp->tv_nsec = sgi_clock_period; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct k_clock sgi_clock = { | 
|  | .clock_set	= sgi_clock_set, | 
|  | .clock_get	= sgi_clock_get, | 
|  | .clock_getres	= sgi_clock_getres, | 
|  | .timer_create	= sgi_timer_create, | 
|  | .timer_set	= sgi_timer_set, | 
|  | .timer_del	= sgi_timer_del, | 
|  | .timer_get	= sgi_timer_get | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * mmtimer_init - device initialization routine | 
|  | * | 
|  | * Does initial setup for the mmtimer device. | 
|  | */ | 
|  | static int __init mmtimer_init(void) | 
|  | { | 
|  | cnodeid_t node, maxn = -1; | 
|  |  | 
|  | if (!ia64_platform_is("sn2")) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Sanity check the cycles/sec variable | 
|  | */ | 
|  | if (sn_rtc_cycles_per_second < 100000) { | 
|  | printk(KERN_ERR "%s: unable to determine clock frequency\n", | 
|  | MMTIMER_NAME); | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second / | 
|  | 2) / sn_rtc_cycles_per_second; | 
|  |  | 
|  | if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) { | 
|  | printk(KERN_WARNING "%s: unable to allocate interrupt.", | 
|  | MMTIMER_NAME); | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | if (misc_register(&mmtimer_miscdev)) { | 
|  | printk(KERN_ERR "%s: failed to register device\n", | 
|  | MMTIMER_NAME); | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | /* Get max numbered node, calculate slots needed */ | 
|  | for_each_online_node(node) { | 
|  | maxn = node; | 
|  | } | 
|  | maxn++; | 
|  |  | 
|  | /* Allocate list of node ptrs to mmtimer_t's */ | 
|  | timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL); | 
|  | if (!timers) { | 
|  | printk(KERN_ERR "%s: failed to allocate memory for device\n", | 
|  | MMTIMER_NAME); | 
|  | goto out3; | 
|  | } | 
|  |  | 
|  | /* Initialize struct mmtimer's for each online node */ | 
|  | for_each_online_node(node) { | 
|  | spin_lock_init(&timers[node].lock); | 
|  | tasklet_init(&timers[node].tasklet, mmtimer_tasklet, | 
|  | (unsigned long) node); | 
|  | } | 
|  |  | 
|  | sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second; | 
|  | posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock); | 
|  |  | 
|  | printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION, | 
|  | sn_rtc_cycles_per_second/(unsigned long)1E6); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out3: | 
|  | misc_deregister(&mmtimer_miscdev); | 
|  | out2: | 
|  | free_irq(SGI_MMTIMER_VECTOR, NULL); | 
|  | out1: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | module_init(mmtimer_init); |