blob: ca11ddb6ed467588ebe5cb98e359b91e07da92c4 [file] [log] [blame]
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "gf100.h"
#include "ctxgf100.h"
#include "fuc/os.h"
#include <core/client.h>
#include <core/device.h>
#include <core/handle.h>
#include <core/option.h>
#include <engine/fifo.h>
#include <subdev/fb.h>
#include <subdev/mc.h>
#include <subdev/timer.h>
#include <nvif/class.h>
#include <nvif/unpack.h>
/*******************************************************************************
* Zero Bandwidth Clear
******************************************************************************/
static void
gf100_gr_zbc_clear_color(struct gf100_gr_priv *priv, int zbc)
{
if (priv->zbc_color[zbc].format) {
nv_wr32(priv, 0x405804, priv->zbc_color[zbc].ds[0]);
nv_wr32(priv, 0x405808, priv->zbc_color[zbc].ds[1]);
nv_wr32(priv, 0x40580c, priv->zbc_color[zbc].ds[2]);
nv_wr32(priv, 0x405810, priv->zbc_color[zbc].ds[3]);
}
nv_wr32(priv, 0x405814, priv->zbc_color[zbc].format);
nv_wr32(priv, 0x405820, zbc);
nv_wr32(priv, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
}
static int
gf100_gr_zbc_color_get(struct gf100_gr_priv *priv, int format,
const u32 ds[4], const u32 l2[4])
{
struct nvkm_ltc *ltc = nvkm_ltc(priv);
int zbc = -ENOSPC, i;
for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
if (priv->zbc_color[i].format) {
if (priv->zbc_color[i].format != format)
continue;
if (memcmp(priv->zbc_color[i].ds, ds, sizeof(
priv->zbc_color[i].ds)))
continue;
if (memcmp(priv->zbc_color[i].l2, l2, sizeof(
priv->zbc_color[i].l2))) {
WARN_ON(1);
return -EINVAL;
}
return i;
} else {
zbc = (zbc < 0) ? i : zbc;
}
}
if (zbc < 0)
return zbc;
memcpy(priv->zbc_color[zbc].ds, ds, sizeof(priv->zbc_color[zbc].ds));
memcpy(priv->zbc_color[zbc].l2, l2, sizeof(priv->zbc_color[zbc].l2));
priv->zbc_color[zbc].format = format;
ltc->zbc_color_get(ltc, zbc, l2);
gf100_gr_zbc_clear_color(priv, zbc);
return zbc;
}
static void
gf100_gr_zbc_clear_depth(struct gf100_gr_priv *priv, int zbc)
{
if (priv->zbc_depth[zbc].format)
nv_wr32(priv, 0x405818, priv->zbc_depth[zbc].ds);
nv_wr32(priv, 0x40581c, priv->zbc_depth[zbc].format);
nv_wr32(priv, 0x405820, zbc);
nv_wr32(priv, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
}
static int
gf100_gr_zbc_depth_get(struct gf100_gr_priv *priv, int format,
const u32 ds, const u32 l2)
{
struct nvkm_ltc *ltc = nvkm_ltc(priv);
int zbc = -ENOSPC, i;
for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
if (priv->zbc_depth[i].format) {
if (priv->zbc_depth[i].format != format)
continue;
if (priv->zbc_depth[i].ds != ds)
continue;
if (priv->zbc_depth[i].l2 != l2) {
WARN_ON(1);
return -EINVAL;
}
return i;
} else {
zbc = (zbc < 0) ? i : zbc;
}
}
if (zbc < 0)
return zbc;
priv->zbc_depth[zbc].format = format;
priv->zbc_depth[zbc].ds = ds;
priv->zbc_depth[zbc].l2 = l2;
ltc->zbc_depth_get(ltc, zbc, l2);
gf100_gr_zbc_clear_depth(priv, zbc);
return zbc;
}
/*******************************************************************************
* Graphics object classes
******************************************************************************/
static int
gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
{
struct gf100_gr_priv *priv = (void *)object->engine;
union {
struct fermi_a_zbc_color_v0 v0;
} *args = data;
int ret;
if (nvif_unpack(args->v0, 0, 0, false)) {
switch (args->v0.format) {
case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
ret = gf100_gr_zbc_color_get(priv, args->v0.format,
args->v0.ds,
args->v0.l2);
if (ret >= 0) {
args->v0.index = ret;
return 0;
}
break;
default:
return -EINVAL;
}
}
return ret;
}
static int
gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
{
struct gf100_gr_priv *priv = (void *)object->engine;
union {
struct fermi_a_zbc_depth_v0 v0;
} *args = data;
int ret;
if (nvif_unpack(args->v0, 0, 0, false)) {
switch (args->v0.format) {
case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
ret = gf100_gr_zbc_depth_get(priv, args->v0.format,
args->v0.ds,
args->v0.l2);
return (ret >= 0) ? 0 : -ENOSPC;
default:
return -EINVAL;
}
}
return ret;
}
static int
gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
{
switch (mthd) {
case FERMI_A_ZBC_COLOR:
return gf100_fermi_mthd_zbc_color(object, data, size);
case FERMI_A_ZBC_DEPTH:
return gf100_fermi_mthd_zbc_depth(object, data, size);
default:
break;
}
return -EINVAL;
}
struct nvkm_ofuncs
gf100_fermi_ofuncs = {
.ctor = _nvkm_object_ctor,
.dtor = nvkm_object_destroy,
.init = nvkm_object_init,
.fini = nvkm_object_fini,
.mthd = gf100_fermi_mthd,
};
static int
gf100_gr_set_shader_exceptions(struct nvkm_object *object, u32 mthd,
void *pdata, u32 size)
{
struct gf100_gr_priv *priv = (void *)object->engine;
if (size >= sizeof(u32)) {
u32 data = *(u32 *)pdata ? 0xffffffff : 0x00000000;
nv_wr32(priv, 0x419e44, data);
nv_wr32(priv, 0x419e4c, data);
return 0;
}
return -EINVAL;
}
struct nvkm_omthds
gf100_gr_9097_omthds[] = {
{ 0x1528, 0x1528, gf100_gr_set_shader_exceptions },
{}
};
struct nvkm_omthds
gf100_gr_90c0_omthds[] = {
{ 0x1528, 0x1528, gf100_gr_set_shader_exceptions },
{}
};
struct nvkm_oclass
gf100_gr_sclass[] = {
{ FERMI_TWOD_A, &nvkm_object_ofuncs },
{ FERMI_MEMORY_TO_MEMORY_FORMAT_A, &nvkm_object_ofuncs },
{ FERMI_A, &gf100_fermi_ofuncs, gf100_gr_9097_omthds },
{ FERMI_COMPUTE_A, &nvkm_object_ofuncs, gf100_gr_90c0_omthds },
{}
};
/*******************************************************************************
* PGRAPH context
******************************************************************************/
int
gf100_gr_context_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *args, u32 size,
struct nvkm_object **pobject)
{
struct nvkm_vm *vm = nvkm_client(parent)->vm;
struct gf100_gr_priv *priv = (void *)engine;
struct gf100_gr_data *data = priv->mmio_data;
struct gf100_gr_mmio *mmio = priv->mmio_list;
struct gf100_gr_chan *chan;
int ret, i;
/* allocate memory for context, and fill with default values */
ret = nvkm_gr_context_create(parent, engine, oclass, NULL,
priv->size, 0x100,
NVOBJ_FLAG_ZERO_ALLOC, &chan);
*pobject = nv_object(chan);
if (ret)
return ret;
/* allocate memory for a "mmio list" buffer that's used by the HUB
* fuc to modify some per-context register settings on first load
* of the context.
*/
ret = nvkm_gpuobj_new(nv_object(chan), NULL, 0x1000, 0x100, 0,
&chan->mmio);
if (ret)
return ret;
ret = nvkm_gpuobj_map_vm(nv_gpuobj(chan->mmio), vm,
NV_MEM_ACCESS_RW | NV_MEM_ACCESS_SYS,
&chan->mmio_vma);
if (ret)
return ret;
/* allocate buffers referenced by mmio list */
for (i = 0; data->size && i < ARRAY_SIZE(priv->mmio_data); i++) {
ret = nvkm_gpuobj_new(nv_object(chan), NULL, data->size,
data->align, 0, &chan->data[i].mem);
if (ret)
return ret;
ret = nvkm_gpuobj_map_vm(chan->data[i].mem, vm, data->access,
&chan->data[i].vma);
if (ret)
return ret;
data++;
}
/* finally, fill in the mmio list and point the context at it */
for (i = 0; mmio->addr && i < ARRAY_SIZE(priv->mmio_list); i++) {
u32 addr = mmio->addr;
u32 data = mmio->data;
if (mmio->buffer >= 0) {
u64 info = chan->data[mmio->buffer].vma.offset;
data |= info >> mmio->shift;
}
nv_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
nv_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
mmio++;
}
for (i = 0; i < priv->size; i += 4)
nv_wo32(chan, i, priv->data[i / 4]);
if (!priv->firmware) {
nv_wo32(chan, 0x00, chan->mmio_nr / 2);
nv_wo32(chan, 0x04, chan->mmio_vma.offset >> 8);
} else {
nv_wo32(chan, 0xf4, 0);
nv_wo32(chan, 0xf8, 0);
nv_wo32(chan, 0x10, chan->mmio_nr / 2);
nv_wo32(chan, 0x14, lower_32_bits(chan->mmio_vma.offset));
nv_wo32(chan, 0x18, upper_32_bits(chan->mmio_vma.offset));
nv_wo32(chan, 0x1c, 1);
nv_wo32(chan, 0x20, 0);
nv_wo32(chan, 0x28, 0);
nv_wo32(chan, 0x2c, 0);
}
return 0;
}
void
gf100_gr_context_dtor(struct nvkm_object *object)
{
struct gf100_gr_chan *chan = (void *)object;
int i;
for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
nvkm_gpuobj_unmap(&chan->data[i].vma);
nvkm_gpuobj_ref(NULL, &chan->data[i].mem);
}
nvkm_gpuobj_unmap(&chan->mmio_vma);
nvkm_gpuobj_ref(NULL, &chan->mmio);
nvkm_gr_context_destroy(&chan->base);
}
/*******************************************************************************
* PGRAPH register lists
******************************************************************************/
const struct gf100_gr_init
gf100_gr_init_main_0[] = {
{ 0x400080, 1, 0x04, 0x003083c2 },
{ 0x400088, 1, 0x04, 0x00006fe7 },
{ 0x40008c, 1, 0x04, 0x00000000 },
{ 0x400090, 1, 0x04, 0x00000030 },
{ 0x40013c, 1, 0x04, 0x013901f7 },
{ 0x400140, 1, 0x04, 0x00000100 },
{ 0x400144, 1, 0x04, 0x00000000 },
{ 0x400148, 1, 0x04, 0x00000110 },
{ 0x400138, 1, 0x04, 0x00000000 },
{ 0x400130, 2, 0x04, 0x00000000 },
{ 0x400124, 1, 0x04, 0x00000002 },
{}
};
const struct gf100_gr_init
gf100_gr_init_fe_0[] = {
{ 0x40415c, 1, 0x04, 0x00000000 },
{ 0x404170, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pri_0[] = {
{ 0x404488, 2, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_rstr2d_0[] = {
{ 0x407808, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pd_0[] = {
{ 0x406024, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_ds_0[] = {
{ 0x405844, 1, 0x04, 0x00ffffff },
{ 0x405850, 1, 0x04, 0x00000000 },
{ 0x405908, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_scc_0[] = {
{ 0x40803c, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_prop_0[] = {
{ 0x4184a0, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gpc_unk_0[] = {
{ 0x418604, 1, 0x04, 0x00000000 },
{ 0x418680, 1, 0x04, 0x00000000 },
{ 0x418714, 1, 0x04, 0x80000000 },
{ 0x418384, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_setup_0[] = {
{ 0x418814, 3, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_crstr_0[] = {
{ 0x418b04, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_setup_1[] = {
{ 0x4188c8, 1, 0x04, 0x80000000 },
{ 0x4188cc, 1, 0x04, 0x00000000 },
{ 0x4188d0, 1, 0x04, 0x00010000 },
{ 0x4188d4, 1, 0x04, 0x00000001 },
{}
};
const struct gf100_gr_init
gf100_gr_init_zcull_0[] = {
{ 0x418910, 1, 0x04, 0x00010001 },
{ 0x418914, 1, 0x04, 0x00000301 },
{ 0x418918, 1, 0x04, 0x00800000 },
{ 0x418980, 1, 0x04, 0x77777770 },
{ 0x418984, 3, 0x04, 0x77777777 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gpm_0[] = {
{ 0x418c04, 1, 0x04, 0x00000000 },
{ 0x418c88, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gpc_unk_1[] = {
{ 0x418d00, 1, 0x04, 0x00000000 },
{ 0x418f08, 1, 0x04, 0x00000000 },
{ 0x418e00, 1, 0x04, 0x00000050 },
{ 0x418e08, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_gcc_0[] = {
{ 0x41900c, 1, 0x04, 0x00000000 },
{ 0x419018, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_tpccs_0[] = {
{ 0x419d08, 2, 0x04, 0x00000000 },
{ 0x419d10, 1, 0x04, 0x00000014 },
{}
};
const struct gf100_gr_init
gf100_gr_init_tex_0[] = {
{ 0x419ab0, 1, 0x04, 0x00000000 },
{ 0x419ab8, 1, 0x04, 0x000000e7 },
{ 0x419abc, 2, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pe_0[] = {
{ 0x41980c, 3, 0x04, 0x00000000 },
{ 0x419844, 1, 0x04, 0x00000000 },
{ 0x41984c, 1, 0x04, 0x00005bc5 },
{ 0x419850, 4, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_l1c_0[] = {
{ 0x419c98, 1, 0x04, 0x00000000 },
{ 0x419ca8, 1, 0x04, 0x80000000 },
{ 0x419cb4, 1, 0x04, 0x00000000 },
{ 0x419cb8, 1, 0x04, 0x00008bf4 },
{ 0x419cbc, 1, 0x04, 0x28137606 },
{ 0x419cc0, 2, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_wwdx_0[] = {
{ 0x419bd4, 1, 0x04, 0x00800000 },
{ 0x419bdc, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_tpccs_1[] = {
{ 0x419d2c, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_mpc_0[] = {
{ 0x419c0c, 1, 0x04, 0x00000000 },
{}
};
static const struct gf100_gr_init
gf100_gr_init_sm_0[] = {
{ 0x419e00, 1, 0x04, 0x00000000 },
{ 0x419ea0, 1, 0x04, 0x00000000 },
{ 0x419ea4, 1, 0x04, 0x00000100 },
{ 0x419ea8, 1, 0x04, 0x00001100 },
{ 0x419eac, 1, 0x04, 0x11100702 },
{ 0x419eb0, 1, 0x04, 0x00000003 },
{ 0x419eb4, 4, 0x04, 0x00000000 },
{ 0x419ec8, 1, 0x04, 0x06060618 },
{ 0x419ed0, 1, 0x04, 0x0eff0e38 },
{ 0x419ed4, 1, 0x04, 0x011104f1 },
{ 0x419edc, 1, 0x04, 0x00000000 },
{ 0x419f00, 1, 0x04, 0x00000000 },
{ 0x419f2c, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_be_0[] = {
{ 0x40880c, 1, 0x04, 0x00000000 },
{ 0x408910, 9, 0x04, 0x00000000 },
{ 0x408950, 1, 0x04, 0x00000000 },
{ 0x408954, 1, 0x04, 0x0000ffff },
{ 0x408984, 1, 0x04, 0x00000000 },
{ 0x408988, 1, 0x04, 0x08040201 },
{ 0x40898c, 1, 0x04, 0x80402010 },
{}
};
const struct gf100_gr_init
gf100_gr_init_fe_1[] = {
{ 0x4040f0, 1, 0x04, 0x00000000 },
{}
};
const struct gf100_gr_init
gf100_gr_init_pe_1[] = {
{ 0x419880, 1, 0x04, 0x00000002 },
{}
};
static const struct gf100_gr_pack
gf100_gr_pack_mmio[] = {
{ gf100_gr_init_main_0 },
{ gf100_gr_init_fe_0 },
{ gf100_gr_init_pri_0 },
{ gf100_gr_init_rstr2d_0 },
{ gf100_gr_init_pd_0 },
{ gf100_gr_init_ds_0 },
{ gf100_gr_init_scc_0 },
{ gf100_gr_init_prop_0 },
{ gf100_gr_init_gpc_unk_0 },
{ gf100_gr_init_setup_0 },
{ gf100_gr_init_crstr_0 },
{ gf100_gr_init_setup_1 },
{ gf100_gr_init_zcull_0 },
{ gf100_gr_init_gpm_0 },
{ gf100_gr_init_gpc_unk_1 },
{ gf100_gr_init_gcc_0 },
{ gf100_gr_init_tpccs_0 },
{ gf100_gr_init_tex_0 },
{ gf100_gr_init_pe_0 },
{ gf100_gr_init_l1c_0 },
{ gf100_gr_init_wwdx_0 },
{ gf100_gr_init_tpccs_1 },
{ gf100_gr_init_mpc_0 },
{ gf100_gr_init_sm_0 },
{ gf100_gr_init_be_0 },
{ gf100_gr_init_fe_1 },
{ gf100_gr_init_pe_1 },
{}
};
/*******************************************************************************
* PGRAPH engine/subdev functions
******************************************************************************/
void
gf100_gr_zbc_init(struct gf100_gr_priv *priv)
{
const u32 zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const u32 one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000 };
const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
struct nvkm_ltc *ltc = nvkm_ltc(priv);
int index;
if (!priv->zbc_color[0].format) {
gf100_gr_zbc_color_get(priv, 1, & zero[0], &zero[4]);
gf100_gr_zbc_color_get(priv, 2, & one[0], &one[4]);
gf100_gr_zbc_color_get(priv, 4, &f32_0[0], &f32_0[4]);
gf100_gr_zbc_color_get(priv, 4, &f32_1[0], &f32_1[4]);
gf100_gr_zbc_depth_get(priv, 1, 0x00000000, 0x00000000);
gf100_gr_zbc_depth_get(priv, 1, 0x3f800000, 0x3f800000);
}
for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
gf100_gr_zbc_clear_color(priv, index);
for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
gf100_gr_zbc_clear_depth(priv, index);
}
/**
* Wait until GR goes idle. GR is considered idle if it is disabled by the
* MC (0x200) register, or GR is not busy and a context switch is not in
* progress.
*/
int
gf100_gr_wait_idle(struct gf100_gr_priv *priv)
{
unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
bool gr_enabled, ctxsw_active, gr_busy;
do {
/*
* required to make sure FIFO_ENGINE_STATUS (0x2640) is
* up-to-date
*/
nv_rd32(priv, 0x400700);
gr_enabled = nv_rd32(priv, 0x200) & 0x1000;
ctxsw_active = nv_rd32(priv, 0x2640) & 0x8000;
gr_busy = nv_rd32(priv, 0x40060c) & 0x1;
if (!gr_enabled || (!gr_busy && !ctxsw_active))
return 0;
} while (time_before(jiffies, end_jiffies));
nv_error(priv, "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
gr_enabled, ctxsw_active, gr_busy);
return -EAGAIN;
}
void
gf100_gr_mmio(struct gf100_gr_priv *priv, const struct gf100_gr_pack *p)
{
const struct gf100_gr_pack *pack;
const struct gf100_gr_init *init;
pack_for_each_init(init, pack, p) {
u32 next = init->addr + init->count * init->pitch;
u32 addr = init->addr;
while (addr < next) {
nv_wr32(priv, addr, init->data);
addr += init->pitch;
}
}
}
void
gf100_gr_icmd(struct gf100_gr_priv *priv, const struct gf100_gr_pack *p)
{
const struct gf100_gr_pack *pack;
const struct gf100_gr_init *init;
u32 data = 0;
nv_wr32(priv, 0x400208, 0x80000000);
pack_for_each_init(init, pack, p) {
u32 next = init->addr + init->count * init->pitch;
u32 addr = init->addr;
if ((pack == p && init == p->init) || data != init->data) {
nv_wr32(priv, 0x400204, init->data);
data = init->data;
}
while (addr < next) {
nv_wr32(priv, 0x400200, addr);
/**
* Wait for GR to go idle after submitting a
* GO_IDLE bundle
*/
if ((addr & 0xffff) == 0xe100)
gf100_gr_wait_idle(priv);
nv_wait(priv, 0x400700, 0x00000004, 0x00000000);
addr += init->pitch;
}
}
nv_wr32(priv, 0x400208, 0x00000000);
}
void
gf100_gr_mthd(struct gf100_gr_priv *priv, const struct gf100_gr_pack *p)
{
const struct gf100_gr_pack *pack;
const struct gf100_gr_init *init;
u32 data = 0;
pack_for_each_init(init, pack, p) {
u32 ctrl = 0x80000000 | pack->type;
u32 next = init->addr + init->count * init->pitch;
u32 addr = init->addr;
if ((pack == p && init == p->init) || data != init->data) {
nv_wr32(priv, 0x40448c, init->data);
data = init->data;
}
while (addr < next) {
nv_wr32(priv, 0x404488, ctrl | (addr << 14));
addr += init->pitch;
}
}
}
u64
gf100_gr_units(struct nvkm_gr *gr)
{
struct gf100_gr_priv *priv = (void *)gr;
u64 cfg;
cfg = (u32)priv->gpc_nr;
cfg |= (u32)priv->tpc_total << 8;
cfg |= (u64)priv->rop_nr << 32;
return cfg;
}
static const struct nvkm_enum gk104_sked_error[] = {
{ 7, "CONSTANT_BUFFER_SIZE" },
{ 9, "LOCAL_MEMORY_SIZE_POS" },
{ 10, "LOCAL_MEMORY_SIZE_NEG" },
{ 11, "WARP_CSTACK_SIZE" },
{ 12, "TOTAL_TEMP_SIZE" },
{ 13, "REGISTER_COUNT" },
{ 18, "TOTAL_THREADS" },
{ 20, "PROGRAM_OFFSET" },
{ 21, "SHARED_MEMORY_SIZE" },
{ 25, "SHARED_CONFIG_TOO_SMALL" },
{ 26, "TOTAL_REGISTER_COUNT" },
{}
};
static const struct nvkm_enum gf100_gpc_rop_error[] = {
{ 1, "RT_PITCH_OVERRUN" },
{ 4, "RT_WIDTH_OVERRUN" },
{ 5, "RT_HEIGHT_OVERRUN" },
{ 7, "ZETA_STORAGE_TYPE_MISMATCH" },
{ 8, "RT_STORAGE_TYPE_MISMATCH" },
{ 10, "RT_LINEAR_MISMATCH" },
{}
};
static void
gf100_gr_trap_gpc_rop(struct gf100_gr_priv *priv, int gpc)
{
u32 trap[4];
int i;
trap[0] = nv_rd32(priv, GPC_UNIT(gpc, 0x0420));
trap[1] = nv_rd32(priv, GPC_UNIT(gpc, 0x0434));
trap[2] = nv_rd32(priv, GPC_UNIT(gpc, 0x0438));
trap[3] = nv_rd32(priv, GPC_UNIT(gpc, 0x043c));
nv_error(priv, "GPC%d/PROP trap:", gpc);
for (i = 0; i <= 29; ++i) {
if (!(trap[0] & (1 << i)))
continue;
pr_cont(" ");
nvkm_enum_print(gf100_gpc_rop_error, i);
}
pr_cont("\n");
nv_error(priv, "x = %u, y = %u, format = %x, storage type = %x\n",
trap[1] & 0xffff, trap[1] >> 16, (trap[2] >> 8) & 0x3f,
trap[3] & 0xff);
nv_wr32(priv, GPC_UNIT(gpc, 0x0420), 0xc0000000);
}
static const struct nvkm_enum gf100_mp_warp_error[] = {
{ 0x00, "NO_ERROR" },
{ 0x01, "STACK_MISMATCH" },
{ 0x05, "MISALIGNED_PC" },
{ 0x08, "MISALIGNED_GPR" },
{ 0x09, "INVALID_OPCODE" },
{ 0x0d, "GPR_OUT_OF_BOUNDS" },
{ 0x0e, "MEM_OUT_OF_BOUNDS" },
{ 0x0f, "UNALIGNED_MEM_ACCESS" },
{ 0x11, "INVALID_PARAM" },
{}
};
static const struct nvkm_bitfield gf100_mp_global_error[] = {
{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
{ 0x00000008, "OUT_OF_STACK_SPACE" },
{}
};
static void
gf100_gr_trap_mp(struct gf100_gr_priv *priv, int gpc, int tpc)
{
u32 werr = nv_rd32(priv, TPC_UNIT(gpc, tpc, 0x648));
u32 gerr = nv_rd32(priv, TPC_UNIT(gpc, tpc, 0x650));
nv_error(priv, "GPC%i/TPC%i/MP trap:", gpc, tpc);
nvkm_bitfield_print(gf100_mp_global_error, gerr);
if (werr) {
pr_cont(" ");
nvkm_enum_print(gf100_mp_warp_error, werr & 0xffff);
}
pr_cont("\n");
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x650), gerr);
}
static void
gf100_gr_trap_tpc(struct gf100_gr_priv *priv, int gpc, int tpc)
{
u32 stat = nv_rd32(priv, TPC_UNIT(gpc, tpc, 0x0508));
if (stat & 0x00000001) {
u32 trap = nv_rd32(priv, TPC_UNIT(gpc, tpc, 0x0224));
nv_error(priv, "GPC%d/TPC%d/TEX: 0x%08x\n", gpc, tpc, trap);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
stat &= ~0x00000001;
}
if (stat & 0x00000002) {
gf100_gr_trap_mp(priv, gpc, tpc);
stat &= ~0x00000002;
}
if (stat & 0x00000004) {
u32 trap = nv_rd32(priv, TPC_UNIT(gpc, tpc, 0x0084));
nv_error(priv, "GPC%d/TPC%d/POLY: 0x%08x\n", gpc, tpc, trap);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
stat &= ~0x00000004;
}
if (stat & 0x00000008) {
u32 trap = nv_rd32(priv, TPC_UNIT(gpc, tpc, 0x048c));
nv_error(priv, "GPC%d/TPC%d/L1C: 0x%08x\n", gpc, tpc, trap);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
stat &= ~0x00000008;
}
if (stat) {
nv_error(priv, "GPC%d/TPC%d/0x%08x: unknown\n", gpc, tpc, stat);
}
}
static void
gf100_gr_trap_gpc(struct gf100_gr_priv *priv, int gpc)
{
u32 stat = nv_rd32(priv, GPC_UNIT(gpc, 0x2c90));
int tpc;
if (stat & 0x00000001) {
gf100_gr_trap_gpc_rop(priv, gpc);
stat &= ~0x00000001;
}
if (stat & 0x00000002) {
u32 trap = nv_rd32(priv, GPC_UNIT(gpc, 0x0900));
nv_error(priv, "GPC%d/ZCULL: 0x%08x\n", gpc, trap);
nv_wr32(priv, GPC_UNIT(gpc, 0x0900), 0xc0000000);
stat &= ~0x00000002;
}
if (stat & 0x00000004) {
u32 trap = nv_rd32(priv, GPC_UNIT(gpc, 0x1028));
nv_error(priv, "GPC%d/CCACHE: 0x%08x\n", gpc, trap);
nv_wr32(priv, GPC_UNIT(gpc, 0x1028), 0xc0000000);
stat &= ~0x00000004;
}
if (stat & 0x00000008) {
u32 trap = nv_rd32(priv, GPC_UNIT(gpc, 0x0824));
nv_error(priv, "GPC%d/ESETUP: 0x%08x\n", gpc, trap);
nv_wr32(priv, GPC_UNIT(gpc, 0x0824), 0xc0000000);
stat &= ~0x00000009;
}
for (tpc = 0; tpc < priv->tpc_nr[gpc]; tpc++) {
u32 mask = 0x00010000 << tpc;
if (stat & mask) {
gf100_gr_trap_tpc(priv, gpc, tpc);
nv_wr32(priv, GPC_UNIT(gpc, 0x2c90), mask);
stat &= ~mask;
}
}
if (stat) {
nv_error(priv, "GPC%d/0x%08x: unknown\n", gpc, stat);
}
}
static void
gf100_gr_trap_intr(struct gf100_gr_priv *priv)
{
u32 trap = nv_rd32(priv, 0x400108);
int rop, gpc, i;
if (trap & 0x00000001) {
u32 stat = nv_rd32(priv, 0x404000);
nv_error(priv, "DISPATCH 0x%08x\n", stat);
nv_wr32(priv, 0x404000, 0xc0000000);
nv_wr32(priv, 0x400108, 0x00000001);
trap &= ~0x00000001;
}
if (trap & 0x00000002) {
u32 stat = nv_rd32(priv, 0x404600);
nv_error(priv, "M2MF 0x%08x\n", stat);
nv_wr32(priv, 0x404600, 0xc0000000);
nv_wr32(priv, 0x400108, 0x00000002);
trap &= ~0x00000002;
}
if (trap & 0x00000008) {
u32 stat = nv_rd32(priv, 0x408030);
nv_error(priv, "CCACHE 0x%08x\n", stat);
nv_wr32(priv, 0x408030, 0xc0000000);
nv_wr32(priv, 0x400108, 0x00000008);
trap &= ~0x00000008;
}
if (trap & 0x00000010) {
u32 stat = nv_rd32(priv, 0x405840);
nv_error(priv, "SHADER 0x%08x\n", stat);
nv_wr32(priv, 0x405840, 0xc0000000);
nv_wr32(priv, 0x400108, 0x00000010);
trap &= ~0x00000010;
}
if (trap & 0x00000040) {
u32 stat = nv_rd32(priv, 0x40601c);
nv_error(priv, "UNK6 0x%08x\n", stat);
nv_wr32(priv, 0x40601c, 0xc0000000);
nv_wr32(priv, 0x400108, 0x00000040);
trap &= ~0x00000040;
}
if (trap & 0x00000080) {
u32 stat = nv_rd32(priv, 0x404490);
nv_error(priv, "MACRO 0x%08x\n", stat);
nv_wr32(priv, 0x404490, 0xc0000000);
nv_wr32(priv, 0x400108, 0x00000080);
trap &= ~0x00000080;
}
if (trap & 0x00000100) {
u32 stat = nv_rd32(priv, 0x407020);
nv_error(priv, "SKED:");
for (i = 0; i <= 29; ++i) {
if (!(stat & (1 << i)))
continue;
pr_cont(" ");
nvkm_enum_print(gk104_sked_error, i);
}
pr_cont("\n");
if (stat & 0x3fffffff)
nv_wr32(priv, 0x407020, 0x40000000);
nv_wr32(priv, 0x400108, 0x00000100);
trap &= ~0x00000100;
}
if (trap & 0x01000000) {
u32 stat = nv_rd32(priv, 0x400118);
for (gpc = 0; stat && gpc < priv->gpc_nr; gpc++) {
u32 mask = 0x00000001 << gpc;
if (stat & mask) {
gf100_gr_trap_gpc(priv, gpc);
nv_wr32(priv, 0x400118, mask);
stat &= ~mask;
}
}
nv_wr32(priv, 0x400108, 0x01000000);
trap &= ~0x01000000;
}
if (trap & 0x02000000) {
for (rop = 0; rop < priv->rop_nr; rop++) {
u32 statz = nv_rd32(priv, ROP_UNIT(rop, 0x070));
u32 statc = nv_rd32(priv, ROP_UNIT(rop, 0x144));
nv_error(priv, "ROP%d 0x%08x 0x%08x\n",
rop, statz, statc);
nv_wr32(priv, ROP_UNIT(rop, 0x070), 0xc0000000);
nv_wr32(priv, ROP_UNIT(rop, 0x144), 0xc0000000);
}
nv_wr32(priv, 0x400108, 0x02000000);
trap &= ~0x02000000;
}
if (trap) {
nv_error(priv, "TRAP UNHANDLED 0x%08x\n", trap);
nv_wr32(priv, 0x400108, trap);
}
}
static void
gf100_gr_ctxctl_debug_unit(struct gf100_gr_priv *priv, u32 base)
{
nv_error(priv, "%06x - done 0x%08x\n", base,
nv_rd32(priv, base + 0x400));
nv_error(priv, "%06x - stat 0x%08x 0x%08x 0x%08x 0x%08x\n", base,
nv_rd32(priv, base + 0x800), nv_rd32(priv, base + 0x804),
nv_rd32(priv, base + 0x808), nv_rd32(priv, base + 0x80c));
nv_error(priv, "%06x - stat 0x%08x 0x%08x 0x%08x 0x%08x\n", base,
nv_rd32(priv, base + 0x810), nv_rd32(priv, base + 0x814),
nv_rd32(priv, base + 0x818), nv_rd32(priv, base + 0x81c));
}
void
gf100_gr_ctxctl_debug(struct gf100_gr_priv *priv)
{
u32 gpcnr = nv_rd32(priv, 0x409604) & 0xffff;
u32 gpc;
gf100_gr_ctxctl_debug_unit(priv, 0x409000);
for (gpc = 0; gpc < gpcnr; gpc++)
gf100_gr_ctxctl_debug_unit(priv, 0x502000 + (gpc * 0x8000));
}
static void
gf100_gr_ctxctl_isr(struct gf100_gr_priv *priv)
{
u32 stat = nv_rd32(priv, 0x409c18);
if (stat & 0x00000001) {
u32 code = nv_rd32(priv, 0x409814);
if (code == E_BAD_FWMTHD) {
u32 class = nv_rd32(priv, 0x409808);
u32 addr = nv_rd32(priv, 0x40980c);
u32 subc = (addr & 0x00070000) >> 16;
u32 mthd = (addr & 0x00003ffc);
u32 data = nv_rd32(priv, 0x409810);
nv_error(priv, "FECS MTHD subc %d class 0x%04x "
"mthd 0x%04x data 0x%08x\n",
subc, class, mthd, data);
nv_wr32(priv, 0x409c20, 0x00000001);
stat &= ~0x00000001;
} else {
nv_error(priv, "FECS ucode error %d\n", code);
}
}
if (stat & 0x00080000) {
nv_error(priv, "FECS watchdog timeout\n");
gf100_gr_ctxctl_debug(priv);
nv_wr32(priv, 0x409c20, 0x00080000);
stat &= ~0x00080000;
}
if (stat) {
nv_error(priv, "FECS 0x%08x\n", stat);
gf100_gr_ctxctl_debug(priv);
nv_wr32(priv, 0x409c20, stat);
}
}
static void
gf100_gr_intr(struct nvkm_subdev *subdev)
{
struct nvkm_fifo *pfifo = nvkm_fifo(subdev);
struct nvkm_engine *engine = nv_engine(subdev);
struct nvkm_object *engctx;
struct nvkm_handle *handle;
struct gf100_gr_priv *priv = (void *)subdev;
u64 inst = nv_rd32(priv, 0x409b00) & 0x0fffffff;
u32 stat = nv_rd32(priv, 0x400100);
u32 addr = nv_rd32(priv, 0x400704);
u32 mthd = (addr & 0x00003ffc);
u32 subc = (addr & 0x00070000) >> 16;
u32 data = nv_rd32(priv, 0x400708);
u32 code = nv_rd32(priv, 0x400110);
u32 class;
int chid;
if (nv_device(priv)->card_type < NV_E0 || subc < 4)
class = nv_rd32(priv, 0x404200 + (subc * 4));
else
class = 0x0000;
engctx = nvkm_engctx_get(engine, inst);
chid = pfifo->chid(pfifo, engctx);
if (stat & 0x00000001) {
/*
* notifier interrupt, only needed for cyclestats
* can be safely ignored
*/
nv_wr32(priv, 0x400100, 0x00000001);
stat &= ~0x00000001;
}
if (stat & 0x00000010) {
handle = nvkm_handle_get_class(engctx, class);
if (!handle || nv_call(handle->object, mthd, data)) {
nv_error(priv,
"ILLEGAL_MTHD ch %d [0x%010llx %s] subc %d class 0x%04x mthd 0x%04x data 0x%08x\n",
chid, inst << 12, nvkm_client_name(engctx),
subc, class, mthd, data);
}
nvkm_handle_put(handle);
nv_wr32(priv, 0x400100, 0x00000010);
stat &= ~0x00000010;
}
if (stat & 0x00000020) {
nv_error(priv,
"ILLEGAL_CLASS ch %d [0x%010llx %s] subc %d class 0x%04x mthd 0x%04x data 0x%08x\n",
chid, inst << 12, nvkm_client_name(engctx), subc,
class, mthd, data);
nv_wr32(priv, 0x400100, 0x00000020);
stat &= ~0x00000020;
}
if (stat & 0x00100000) {
nv_error(priv, "DATA_ERROR [");
nvkm_enum_print(nv50_data_error_names, code);
pr_cont("] ch %d [0x%010llx %s] subc %d class 0x%04x mthd 0x%04x data 0x%08x\n",
chid, inst << 12, nvkm_client_name(engctx), subc,
class, mthd, data);
nv_wr32(priv, 0x400100, 0x00100000);
stat &= ~0x00100000;
}
if (stat & 0x00200000) {
nv_error(priv, "TRAP ch %d [0x%010llx %s]\n", chid, inst << 12,
nvkm_client_name(engctx));
gf100_gr_trap_intr(priv);
nv_wr32(priv, 0x400100, 0x00200000);
stat &= ~0x00200000;
}
if (stat & 0x00080000) {
gf100_gr_ctxctl_isr(priv);
nv_wr32(priv, 0x400100, 0x00080000);
stat &= ~0x00080000;
}
if (stat) {
nv_error(priv, "unknown stat 0x%08x\n", stat);
nv_wr32(priv, 0x400100, stat);
}
nv_wr32(priv, 0x400500, 0x00010001);
nvkm_engctx_put(engctx);
}
void
gf100_gr_init_fw(struct gf100_gr_priv *priv, u32 fuc_base,
struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
{
int i;
nv_wr32(priv, fuc_base + 0x01c0, 0x01000000);
for (i = 0; i < data->size / 4; i++)
nv_wr32(priv, fuc_base + 0x01c4, data->data[i]);
nv_wr32(priv, fuc_base + 0x0180, 0x01000000);
for (i = 0; i < code->size / 4; i++) {
if ((i & 0x3f) == 0)
nv_wr32(priv, fuc_base + 0x0188, i >> 6);
nv_wr32(priv, fuc_base + 0x0184, code->data[i]);
}
/* code must be padded to 0x40 words */
for (; i & 0x3f; i++)
nv_wr32(priv, fuc_base + 0x0184, 0);
}
static void
gf100_gr_init_csdata(struct gf100_gr_priv *priv,
const struct gf100_gr_pack *pack,
u32 falcon, u32 starstar, u32 base)
{
const struct gf100_gr_pack *iter;
const struct gf100_gr_init *init;
u32 addr = ~0, prev = ~0, xfer = 0;
u32 star, temp;
nv_wr32(priv, falcon + 0x01c0, 0x02000000 + starstar);
star = nv_rd32(priv, falcon + 0x01c4);
temp = nv_rd32(priv, falcon + 0x01c4);
if (temp > star)
star = temp;
nv_wr32(priv, falcon + 0x01c0, 0x01000000 + star);
pack_for_each_init(init, iter, pack) {
u32 head = init->addr - base;
u32 tail = head + init->count * init->pitch;
while (head < tail) {
if (head != prev + 4 || xfer >= 32) {
if (xfer) {
u32 data = ((--xfer << 26) | addr);
nv_wr32(priv, falcon + 0x01c4, data);
star += 4;
}
addr = head;
xfer = 0;
}
prev = head;
xfer = xfer + 1;
head = head + init->pitch;
}
}
nv_wr32(priv, falcon + 0x01c4, (--xfer << 26) | addr);
nv_wr32(priv, falcon + 0x01c0, 0x01000004 + starstar);
nv_wr32(priv, falcon + 0x01c4, star + 4);
}
int
gf100_gr_init_ctxctl(struct gf100_gr_priv *priv)
{
struct gf100_gr_oclass *oclass = (void *)nv_object(priv)->oclass;
struct gf100_grctx_oclass *cclass = (void *)nv_engine(priv)->cclass;
int i;
if (priv->firmware) {
/* load fuc microcode */
nvkm_mc(priv)->unk260(nvkm_mc(priv), 0);
gf100_gr_init_fw(priv, 0x409000, &priv->fuc409c,
&priv->fuc409d);
gf100_gr_init_fw(priv, 0x41a000, &priv->fuc41ac,
&priv->fuc41ad);
nvkm_mc(priv)->unk260(nvkm_mc(priv), 1);
/* start both of them running */
nv_wr32(priv, 0x409840, 0xffffffff);
nv_wr32(priv, 0x41a10c, 0x00000000);
nv_wr32(priv, 0x40910c, 0x00000000);
nv_wr32(priv, 0x41a100, 0x00000002);
nv_wr32(priv, 0x409100, 0x00000002);
if (!nv_wait(priv, 0x409800, 0x00000001, 0x00000001))
nv_warn(priv, "0x409800 wait failed\n");
nv_wr32(priv, 0x409840, 0xffffffff);
nv_wr32(priv, 0x409500, 0x7fffffff);
nv_wr32(priv, 0x409504, 0x00000021);
nv_wr32(priv, 0x409840, 0xffffffff);
nv_wr32(priv, 0x409500, 0x00000000);
nv_wr32(priv, 0x409504, 0x00000010);
if (!nv_wait_ne(priv, 0x409800, 0xffffffff, 0x00000000)) {
nv_error(priv, "fuc09 req 0x10 timeout\n");
return -EBUSY;
}
priv->size = nv_rd32(priv, 0x409800);
nv_wr32(priv, 0x409840, 0xffffffff);
nv_wr32(priv, 0x409500, 0x00000000);
nv_wr32(priv, 0x409504, 0x00000016);
if (!nv_wait_ne(priv, 0x409800, 0xffffffff, 0x00000000)) {
nv_error(priv, "fuc09 req 0x16 timeout\n");
return -EBUSY;
}
nv_wr32(priv, 0x409840, 0xffffffff);
nv_wr32(priv, 0x409500, 0x00000000);
nv_wr32(priv, 0x409504, 0x00000025);
if (!nv_wait_ne(priv, 0x409800, 0xffffffff, 0x00000000)) {
nv_error(priv, "fuc09 req 0x25 timeout\n");
return -EBUSY;
}
if (nv_device(priv)->chipset >= 0xe0) {
nv_wr32(priv, 0x409800, 0x00000000);
nv_wr32(priv, 0x409500, 0x00000001);
nv_wr32(priv, 0x409504, 0x00000030);
if (!nv_wait_ne(priv, 0x409800, 0xffffffff, 0x00000000)) {
nv_error(priv, "fuc09 req 0x30 timeout\n");
return -EBUSY;
}
nv_wr32(priv, 0x409810, 0xb00095c8);
nv_wr32(priv, 0x409800, 0x00000000);
nv_wr32(priv, 0x409500, 0x00000001);
nv_wr32(priv, 0x409504, 0x00000031);
if (!nv_wait_ne(priv, 0x409800, 0xffffffff, 0x00000000)) {
nv_error(priv, "fuc09 req 0x31 timeout\n");
return -EBUSY;
}
nv_wr32(priv, 0x409810, 0x00080420);
nv_wr32(priv, 0x409800, 0x00000000);
nv_wr32(priv, 0x409500, 0x00000001);
nv_wr32(priv, 0x409504, 0x00000032);
if (!nv_wait_ne(priv, 0x409800, 0xffffffff, 0x00000000)) {
nv_error(priv, "fuc09 req 0x32 timeout\n");
return -EBUSY;
}
nv_wr32(priv, 0x409614, 0x00000070);
nv_wr32(priv, 0x409614, 0x00000770);
nv_wr32(priv, 0x40802c, 0x00000001);
}
if (priv->data == NULL) {
int ret = gf100_grctx_generate(priv);
if (ret) {
nv_error(priv, "failed to construct context\n");
return ret;
}
}
return 0;
} else
if (!oclass->fecs.ucode) {
return -ENOSYS;
}
/* load HUB microcode */
nvkm_mc(priv)->unk260(nvkm_mc(priv), 0);
nv_wr32(priv, 0x4091c0, 0x01000000);
for (i = 0; i < oclass->fecs.ucode->data.size / 4; i++)
nv_wr32(priv, 0x4091c4, oclass->fecs.ucode->data.data[i]);
nv_wr32(priv, 0x409180, 0x01000000);
for (i = 0; i < oclass->fecs.ucode->code.size / 4; i++) {
if ((i & 0x3f) == 0)
nv_wr32(priv, 0x409188, i >> 6);
nv_wr32(priv, 0x409184, oclass->fecs.ucode->code.data[i]);
}
/* load GPC microcode */
nv_wr32(priv, 0x41a1c0, 0x01000000);
for (i = 0; i < oclass->gpccs.ucode->data.size / 4; i++)
nv_wr32(priv, 0x41a1c4, oclass->gpccs.ucode->data.data[i]);
nv_wr32(priv, 0x41a180, 0x01000000);
for (i = 0; i < oclass->gpccs.ucode->code.size / 4; i++) {
if ((i & 0x3f) == 0)
nv_wr32(priv, 0x41a188, i >> 6);
nv_wr32(priv, 0x41a184, oclass->gpccs.ucode->code.data[i]);
}
nvkm_mc(priv)->unk260(nvkm_mc(priv), 1);
/* load register lists */
gf100_gr_init_csdata(priv, cclass->hub, 0x409000, 0x000, 0x000000);
gf100_gr_init_csdata(priv, cclass->gpc, 0x41a000, 0x000, 0x418000);
gf100_gr_init_csdata(priv, cclass->tpc, 0x41a000, 0x004, 0x419800);
gf100_gr_init_csdata(priv, cclass->ppc, 0x41a000, 0x008, 0x41be00);
/* start HUB ucode running, it'll init the GPCs */
nv_wr32(priv, 0x40910c, 0x00000000);
nv_wr32(priv, 0x409100, 0x00000002);
if (!nv_wait(priv, 0x409800, 0x80000000, 0x80000000)) {
nv_error(priv, "HUB_INIT timed out\n");
gf100_gr_ctxctl_debug(priv);
return -EBUSY;
}
priv->size = nv_rd32(priv, 0x409804);
if (priv->data == NULL) {
int ret = gf100_grctx_generate(priv);
if (ret) {
nv_error(priv, "failed to construct context\n");
return ret;
}
}
return 0;
}
int
gf100_gr_init(struct nvkm_object *object)
{
struct gf100_gr_oclass *oclass = (void *)object->oclass;
struct gf100_gr_priv *priv = (void *)object;
const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, priv->tpc_total);
u32 data[TPC_MAX / 8] = {};
u8 tpcnr[GPC_MAX];
int gpc, tpc, rop;
int ret, i;
ret = nvkm_gr_init(&priv->base);
if (ret)
return ret;
nv_wr32(priv, GPC_BCAST(0x0880), 0x00000000);
nv_wr32(priv, GPC_BCAST(0x08a4), 0x00000000);
nv_wr32(priv, GPC_BCAST(0x0888), 0x00000000);
nv_wr32(priv, GPC_BCAST(0x088c), 0x00000000);
nv_wr32(priv, GPC_BCAST(0x0890), 0x00000000);
nv_wr32(priv, GPC_BCAST(0x0894), 0x00000000);
nv_wr32(priv, GPC_BCAST(0x08b4), priv->unk4188b4->addr >> 8);
nv_wr32(priv, GPC_BCAST(0x08b8), priv->unk4188b8->addr >> 8);
gf100_gr_mmio(priv, oclass->mmio);
memcpy(tpcnr, priv->tpc_nr, sizeof(priv->tpc_nr));
for (i = 0, gpc = -1; i < priv->tpc_total; i++) {
do {
gpc = (gpc + 1) % priv->gpc_nr;
} while (!tpcnr[gpc]);
tpc = priv->tpc_nr[gpc] - tpcnr[gpc]--;
data[i / 8] |= tpc << ((i % 8) * 4);
}
nv_wr32(priv, GPC_BCAST(0x0980), data[0]);
nv_wr32(priv, GPC_BCAST(0x0984), data[1]);
nv_wr32(priv, GPC_BCAST(0x0988), data[2]);
nv_wr32(priv, GPC_BCAST(0x098c), data[3]);
for (gpc = 0; gpc < priv->gpc_nr; gpc++) {
nv_wr32(priv, GPC_UNIT(gpc, 0x0914),
priv->magic_not_rop_nr << 8 | priv->tpc_nr[gpc]);
nv_wr32(priv, GPC_UNIT(gpc, 0x0910), 0x00040000 |
priv->tpc_total);
nv_wr32(priv, GPC_UNIT(gpc, 0x0918), magicgpc918);
}
if (nv_device(priv)->chipset != 0xd7)
nv_wr32(priv, GPC_BCAST(0x1bd4), magicgpc918);
else
nv_wr32(priv, GPC_BCAST(0x3fd4), magicgpc918);
nv_wr32(priv, GPC_BCAST(0x08ac), nv_rd32(priv, 0x100800));
nv_wr32(priv, 0x400500, 0x00010001);
nv_wr32(priv, 0x400100, 0xffffffff);
nv_wr32(priv, 0x40013c, 0xffffffff);
nv_wr32(priv, 0x409c24, 0x000f0000);
nv_wr32(priv, 0x404000, 0xc0000000);
nv_wr32(priv, 0x404600, 0xc0000000);
nv_wr32(priv, 0x408030, 0xc0000000);
nv_wr32(priv, 0x40601c, 0xc0000000);
nv_wr32(priv, 0x404490, 0xc0000000);
nv_wr32(priv, 0x406018, 0xc0000000);
nv_wr32(priv, 0x405840, 0xc0000000);
nv_wr32(priv, 0x405844, 0x00ffffff);
nv_mask(priv, 0x419cc0, 0x00000008, 0x00000008);
nv_mask(priv, 0x419eb4, 0x00001000, 0x00001000);
for (gpc = 0; gpc < priv->gpc_nr; gpc++) {
nv_wr32(priv, GPC_UNIT(gpc, 0x0420), 0xc0000000);
nv_wr32(priv, GPC_UNIT(gpc, 0x0900), 0xc0000000);
nv_wr32(priv, GPC_UNIT(gpc, 0x1028), 0xc0000000);
nv_wr32(priv, GPC_UNIT(gpc, 0x0824), 0xc0000000);
for (tpc = 0; tpc < priv->tpc_nr[gpc]; tpc++) {
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
nv_wr32(priv, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
}
nv_wr32(priv, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
nv_wr32(priv, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
}
for (rop = 0; rop < priv->rop_nr; rop++) {
nv_wr32(priv, ROP_UNIT(rop, 0x144), 0xc0000000);
nv_wr32(priv, ROP_UNIT(rop, 0x070), 0xc0000000);
nv_wr32(priv, ROP_UNIT(rop, 0x204), 0xffffffff);
nv_wr32(priv, ROP_UNIT(rop, 0x208), 0xffffffff);
}
nv_wr32(priv, 0x400108, 0xffffffff);
nv_wr32(priv, 0x400138, 0xffffffff);
nv_wr32(priv, 0x400118, 0xffffffff);
nv_wr32(priv, 0x400130, 0xffffffff);
nv_wr32(priv, 0x40011c, 0xffffffff);
nv_wr32(priv, 0x400134, 0xffffffff);
nv_wr32(priv, 0x400054, 0x34ce3464);
gf100_gr_zbc_init(priv);
return gf100_gr_init_ctxctl(priv);
}
static void
gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
{
kfree(fuc->data);
fuc->data = NULL;
}
int
gf100_gr_ctor_fw(struct gf100_gr_priv *priv, const char *fwname,
struct gf100_gr_fuc *fuc)
{
struct nvkm_device *device = nv_device(priv);
const struct firmware *fw;
char f[32];
int ret;
snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
ret = request_firmware(&fw, f, nv_device_base(device));
if (ret) {
snprintf(f, sizeof(f), "nouveau/%s", fwname);
ret = request_firmware(&fw, f, nv_device_base(device));
if (ret) {
nv_error(priv, "failed to load %s\n", fwname);
return ret;
}
}
fuc->size = fw->size;
fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
release_firmware(fw);
return (fuc->data != NULL) ? 0 : -ENOMEM;
}
void
gf100_gr_dtor(struct nvkm_object *object)
{
struct gf100_gr_priv *priv = (void *)object;
kfree(priv->data);
gf100_gr_dtor_fw(&priv->fuc409c);
gf100_gr_dtor_fw(&priv->fuc409d);
gf100_gr_dtor_fw(&priv->fuc41ac);
gf100_gr_dtor_fw(&priv->fuc41ad);
nvkm_gpuobj_ref(NULL, &priv->unk4188b8);
nvkm_gpuobj_ref(NULL, &priv->unk4188b4);
nvkm_gr_destroy(&priv->base);
}
int
gf100_gr_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *bclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct gf100_gr_oclass *oclass = (void *)bclass;
struct nvkm_device *device = nv_device(parent);
struct gf100_gr_priv *priv;
bool use_ext_fw, enable;
int ret, i, j;
use_ext_fw = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
oclass->fecs.ucode == NULL);
enable = use_ext_fw || oclass->fecs.ucode != NULL;
ret = nvkm_gr_create(parent, engine, bclass, enable, &priv);
*pobject = nv_object(priv);
if (ret)
return ret;
nv_subdev(priv)->unit = 0x08001000;
nv_subdev(priv)->intr = gf100_gr_intr;
priv->base.units = gf100_gr_units;
if (use_ext_fw) {
nv_info(priv, "using external firmware\n");
if (gf100_gr_ctor_fw(priv, "fuc409c", &priv->fuc409c) ||
gf100_gr_ctor_fw(priv, "fuc409d", &priv->fuc409d) ||
gf100_gr_ctor_fw(priv, "fuc41ac", &priv->fuc41ac) ||
gf100_gr_ctor_fw(priv, "fuc41ad", &priv->fuc41ad))
return -ENODEV;
priv->firmware = true;
}
ret = nvkm_gpuobj_new(nv_object(priv), NULL, 0x1000, 256, 0,
&priv->unk4188b4);
if (ret)
return ret;
ret = nvkm_gpuobj_new(nv_object(priv), NULL, 0x1000, 256, 0,
&priv->unk4188b8);
if (ret)
return ret;
for (i = 0; i < 0x1000; i += 4) {
nv_wo32(priv->unk4188b4, i, 0x00000010);
nv_wo32(priv->unk4188b8, i, 0x00000010);
}
priv->rop_nr = (nv_rd32(priv, 0x409604) & 0x001f0000) >> 16;
priv->gpc_nr = nv_rd32(priv, 0x409604) & 0x0000001f;
for (i = 0; i < priv->gpc_nr; i++) {
priv->tpc_nr[i] = nv_rd32(priv, GPC_UNIT(i, 0x2608));
priv->tpc_total += priv->tpc_nr[i];
priv->ppc_nr[i] = oclass->ppc_nr;
for (j = 0; j < priv->ppc_nr[i]; j++) {
u8 mask = nv_rd32(priv, GPC_UNIT(i, 0x0c30 + (j * 4)));
priv->ppc_tpc_nr[i][j] = hweight8(mask);
}
}
/*XXX: these need figuring out... though it might not even matter */
switch (nv_device(priv)->chipset) {
case 0xc0:
if (priv->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
priv->magic_not_rop_nr = 0x07;
} else
if (priv->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
priv->magic_not_rop_nr = 0x05;
} else
if (priv->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
priv->magic_not_rop_nr = 0x06;
}
break;
case 0xc3: /* 450, 4/0/0/0, 2 */
priv->magic_not_rop_nr = 0x03;
break;
case 0xc4: /* 460, 3/4/0/0, 4 */
priv->magic_not_rop_nr = 0x01;
break;
case 0xc1: /* 2/0/0/0, 1 */
priv->magic_not_rop_nr = 0x01;
break;
case 0xc8: /* 4/4/3/4, 5 */
priv->magic_not_rop_nr = 0x06;
break;
case 0xce: /* 4/4/0/0, 4 */
priv->magic_not_rop_nr = 0x03;
break;
case 0xcf: /* 4/0/0/0, 3 */
priv->magic_not_rop_nr = 0x03;
break;
case 0xd7:
case 0xd9: /* 1/0/0/0, 1 */
priv->magic_not_rop_nr = 0x01;
break;
}
nv_engine(priv)->cclass = *oclass->cclass;
nv_engine(priv)->sclass = oclass->sclass;
return 0;
}
#include "fuc/hubgf100.fuc3.h"
struct gf100_gr_ucode
gf100_gr_fecs_ucode = {
.code.data = gf100_grhub_code,
.code.size = sizeof(gf100_grhub_code),
.data.data = gf100_grhub_data,
.data.size = sizeof(gf100_grhub_data),
};
#include "fuc/gpcgf100.fuc3.h"
struct gf100_gr_ucode
gf100_gr_gpccs_ucode = {
.code.data = gf100_grgpc_code,
.code.size = sizeof(gf100_grgpc_code),
.data.data = gf100_grgpc_data,
.data.size = sizeof(gf100_grgpc_data),
};
struct nvkm_oclass *
gf100_gr_oclass = &(struct gf100_gr_oclass) {
.base.handle = NV_ENGINE(GR, 0xc0),
.base.ofuncs = &(struct nvkm_ofuncs) {
.ctor = gf100_gr_ctor,
.dtor = gf100_gr_dtor,
.init = gf100_gr_init,
.fini = _nvkm_gr_fini,
},
.cclass = &gf100_grctx_oclass,
.sclass = gf100_gr_sclass,
.mmio = gf100_gr_pack_mmio,
.fecs.ucode = &gf100_gr_fecs_ucode,
.gpccs.ucode = &gf100_gr_gpccs_ucode,
}.base;