| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Based on arch/arm/include/asm/uaccess.h |
| * |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| #ifndef __ASM_UACCESS_H |
| #define __ASM_UACCESS_H |
| |
| #include <asm/alternative.h> |
| #include <asm/kernel-pgtable.h> |
| #include <asm/sysreg.h> |
| |
| /* |
| * User space memory access functions |
| */ |
| #include <linux/bitops.h> |
| #include <linux/kasan-checks.h> |
| #include <linux/string.h> |
| |
| #include <asm/asm-extable.h> |
| #include <asm/cpufeature.h> |
| #include <asm/mmu.h> |
| #include <asm/mte.h> |
| #include <asm/ptrace.h> |
| #include <asm/memory.h> |
| #include <asm/extable.h> |
| |
| static inline int __access_ok(const void __user *ptr, unsigned long size); |
| |
| /* |
| * Test whether a block of memory is a valid user space address. |
| * Returns 1 if the range is valid, 0 otherwise. |
| * |
| * This is equivalent to the following test: |
| * (u65)addr + (u65)size <= (u65)TASK_SIZE_MAX |
| */ |
| static inline int access_ok(const void __user *addr, unsigned long size) |
| { |
| /* |
| * Asynchronous I/O running in a kernel thread does not have the |
| * TIF_TAGGED_ADDR flag of the process owning the mm, so always untag |
| * the user address before checking. |
| */ |
| if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI) && |
| (current->flags & PF_KTHREAD || test_thread_flag(TIF_TAGGED_ADDR))) |
| addr = untagged_addr(addr); |
| |
| return likely(__access_ok(addr, size)); |
| } |
| #define access_ok access_ok |
| |
| #include <asm-generic/access_ok.h> |
| |
| /* |
| * User access enabling/disabling. |
| */ |
| #ifdef CONFIG_ARM64_SW_TTBR0_PAN |
| static inline void __uaccess_ttbr0_disable(void) |
| { |
| unsigned long flags, ttbr; |
| |
| local_irq_save(flags); |
| ttbr = read_sysreg(ttbr1_el1); |
| ttbr &= ~TTBR_ASID_MASK; |
| /* reserved_pg_dir placed before swapper_pg_dir */ |
| write_sysreg(ttbr - RESERVED_SWAPPER_OFFSET, ttbr0_el1); |
| isb(); |
| /* Set reserved ASID */ |
| write_sysreg(ttbr, ttbr1_el1); |
| isb(); |
| local_irq_restore(flags); |
| } |
| |
| static inline void __uaccess_ttbr0_enable(void) |
| { |
| unsigned long flags, ttbr0, ttbr1; |
| |
| /* |
| * Disable interrupts to avoid preemption between reading the 'ttbr0' |
| * variable and the MSR. A context switch could trigger an ASID |
| * roll-over and an update of 'ttbr0'. |
| */ |
| local_irq_save(flags); |
| ttbr0 = READ_ONCE(current_thread_info()->ttbr0); |
| |
| /* Restore active ASID */ |
| ttbr1 = read_sysreg(ttbr1_el1); |
| ttbr1 &= ~TTBR_ASID_MASK; /* safety measure */ |
| ttbr1 |= ttbr0 & TTBR_ASID_MASK; |
| write_sysreg(ttbr1, ttbr1_el1); |
| isb(); |
| |
| /* Restore user page table */ |
| write_sysreg(ttbr0, ttbr0_el1); |
| isb(); |
| local_irq_restore(flags); |
| } |
| |
| static inline bool uaccess_ttbr0_disable(void) |
| { |
| if (!system_uses_ttbr0_pan()) |
| return false; |
| __uaccess_ttbr0_disable(); |
| return true; |
| } |
| |
| static inline bool uaccess_ttbr0_enable(void) |
| { |
| if (!system_uses_ttbr0_pan()) |
| return false; |
| __uaccess_ttbr0_enable(); |
| return true; |
| } |
| #else |
| static inline bool uaccess_ttbr0_disable(void) |
| { |
| return false; |
| } |
| |
| static inline bool uaccess_ttbr0_enable(void) |
| { |
| return false; |
| } |
| #endif |
| |
| static inline void __uaccess_disable_hw_pan(void) |
| { |
| asm(ALTERNATIVE("nop", SET_PSTATE_PAN(0), ARM64_HAS_PAN, |
| CONFIG_ARM64_PAN)); |
| } |
| |
| static inline void __uaccess_enable_hw_pan(void) |
| { |
| asm(ALTERNATIVE("nop", SET_PSTATE_PAN(1), ARM64_HAS_PAN, |
| CONFIG_ARM64_PAN)); |
| } |
| |
| /* |
| * The Tag Check Flag (TCF) mode for MTE is per EL, hence TCF0 |
| * affects EL0 and TCF affects EL1 irrespective of which TTBR is |
| * used. |
| * The kernel accesses TTBR0 usually with LDTR/STTR instructions |
| * when UAO is available, so these would act as EL0 accesses using |
| * TCF0. |
| * However futex.h code uses exclusives which would be executed as |
| * EL1, this can potentially cause a tag check fault even if the |
| * user disables TCF0. |
| * |
| * To address the problem we set the PSTATE.TCO bit in uaccess_enable() |
| * and reset it in uaccess_disable(). |
| * |
| * The Tag check override (TCO) bit disables temporarily the tag checking |
| * preventing the issue. |
| */ |
| static inline void __uaccess_disable_tco(void) |
| { |
| asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(0), |
| ARM64_MTE, CONFIG_KASAN_HW_TAGS)); |
| } |
| |
| static inline void __uaccess_enable_tco(void) |
| { |
| asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(1), |
| ARM64_MTE, CONFIG_KASAN_HW_TAGS)); |
| } |
| |
| /* |
| * These functions disable tag checking only if in MTE async mode |
| * since the sync mode generates exceptions synchronously and the |
| * nofault or load_unaligned_zeropad can handle them. |
| */ |
| static inline void __uaccess_disable_tco_async(void) |
| { |
| if (system_uses_mte_async_or_asymm_mode()) |
| __uaccess_disable_tco(); |
| } |
| |
| static inline void __uaccess_enable_tco_async(void) |
| { |
| if (system_uses_mte_async_or_asymm_mode()) |
| __uaccess_enable_tco(); |
| } |
| |
| static inline void uaccess_disable_privileged(void) |
| { |
| __uaccess_disable_tco(); |
| |
| if (uaccess_ttbr0_disable()) |
| return; |
| |
| __uaccess_enable_hw_pan(); |
| } |
| |
| static inline void uaccess_enable_privileged(void) |
| { |
| __uaccess_enable_tco(); |
| |
| if (uaccess_ttbr0_enable()) |
| return; |
| |
| __uaccess_disable_hw_pan(); |
| } |
| |
| /* |
| * Sanitize a uaccess pointer such that it cannot reach any kernel address. |
| * |
| * Clearing bit 55 ensures the pointer cannot address any portion of the TTBR1 |
| * address range (i.e. any kernel address), and either the pointer falls within |
| * the TTBR0 address range or must cause a fault. |
| */ |
| #define uaccess_mask_ptr(ptr) (__typeof__(ptr))__uaccess_mask_ptr(ptr) |
| static inline void __user *__uaccess_mask_ptr(const void __user *ptr) |
| { |
| void __user *safe_ptr; |
| |
| asm volatile( |
| " bic %0, %1, %2\n" |
| : "=r" (safe_ptr) |
| : "r" (ptr), |
| "i" (BIT(55)) |
| ); |
| |
| return safe_ptr; |
| } |
| |
| /* |
| * The "__xxx" versions of the user access functions do not verify the address |
| * space - it must have been done previously with a separate "access_ok()" |
| * call. |
| * |
| * The "__xxx_error" versions set the third argument to -EFAULT if an error |
| * occurs, and leave it unchanged on success. |
| */ |
| #define __get_mem_asm(load, reg, x, addr, err, type) \ |
| asm volatile( \ |
| "1: " load " " reg "1, [%2]\n" \ |
| "2:\n" \ |
| _ASM_EXTABLE_##type##ACCESS_ERR_ZERO(1b, 2b, %w0, %w1) \ |
| : "+r" (err), "=&r" (x) \ |
| : "r" (addr)) |
| |
| #define __raw_get_mem(ldr, x, ptr, err, type) \ |
| do { \ |
| unsigned long __gu_val; \ |
| switch (sizeof(*(ptr))) { \ |
| case 1: \ |
| __get_mem_asm(ldr "b", "%w", __gu_val, (ptr), (err), type); \ |
| break; \ |
| case 2: \ |
| __get_mem_asm(ldr "h", "%w", __gu_val, (ptr), (err), type); \ |
| break; \ |
| case 4: \ |
| __get_mem_asm(ldr, "%w", __gu_val, (ptr), (err), type); \ |
| break; \ |
| case 8: \ |
| __get_mem_asm(ldr, "%x", __gu_val, (ptr), (err), type); \ |
| break; \ |
| default: \ |
| BUILD_BUG(); \ |
| } \ |
| (x) = (__force __typeof__(*(ptr)))__gu_val; \ |
| } while (0) |
| |
| /* |
| * We must not call into the scheduler between uaccess_ttbr0_enable() and |
| * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions, |
| * we must evaluate these outside of the critical section. |
| */ |
| #define __raw_get_user(x, ptr, err) \ |
| do { \ |
| __typeof__(*(ptr)) __user *__rgu_ptr = (ptr); \ |
| __typeof__(x) __rgu_val; \ |
| __chk_user_ptr(ptr); \ |
| \ |
| uaccess_ttbr0_enable(); \ |
| __raw_get_mem("ldtr", __rgu_val, __rgu_ptr, err, U); \ |
| uaccess_ttbr0_disable(); \ |
| \ |
| (x) = __rgu_val; \ |
| } while (0) |
| |
| #define __get_user_error(x, ptr, err) \ |
| do { \ |
| __typeof__(*(ptr)) __user *__p = (ptr); \ |
| might_fault(); \ |
| if (access_ok(__p, sizeof(*__p))) { \ |
| __p = uaccess_mask_ptr(__p); \ |
| __raw_get_user((x), __p, (err)); \ |
| } else { \ |
| (x) = (__force __typeof__(x))0; (err) = -EFAULT; \ |
| } \ |
| } while (0) |
| |
| #define __get_user(x, ptr) \ |
| ({ \ |
| int __gu_err = 0; \ |
| __get_user_error((x), (ptr), __gu_err); \ |
| __gu_err; \ |
| }) |
| |
| #define get_user __get_user |
| |
| /* |
| * We must not call into the scheduler between __uaccess_enable_tco_async() and |
| * __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking |
| * functions, we must evaluate these outside of the critical section. |
| */ |
| #define __get_kernel_nofault(dst, src, type, err_label) \ |
| do { \ |
| __typeof__(dst) __gkn_dst = (dst); \ |
| __typeof__(src) __gkn_src = (src); \ |
| int __gkn_err = 0; \ |
| \ |
| __uaccess_enable_tco_async(); \ |
| __raw_get_mem("ldr", *((type *)(__gkn_dst)), \ |
| (__force type *)(__gkn_src), __gkn_err, K); \ |
| __uaccess_disable_tco_async(); \ |
| \ |
| if (unlikely(__gkn_err)) \ |
| goto err_label; \ |
| } while (0) |
| |
| #define __put_mem_asm(store, reg, x, addr, err, type) \ |
| asm volatile( \ |
| "1: " store " " reg "1, [%2]\n" \ |
| "2:\n" \ |
| _ASM_EXTABLE_##type##ACCESS_ERR(1b, 2b, %w0) \ |
| : "+r" (err) \ |
| : "r" (x), "r" (addr)) |
| |
| #define __raw_put_mem(str, x, ptr, err, type) \ |
| do { \ |
| __typeof__(*(ptr)) __pu_val = (x); \ |
| switch (sizeof(*(ptr))) { \ |
| case 1: \ |
| __put_mem_asm(str "b", "%w", __pu_val, (ptr), (err), type); \ |
| break; \ |
| case 2: \ |
| __put_mem_asm(str "h", "%w", __pu_val, (ptr), (err), type); \ |
| break; \ |
| case 4: \ |
| __put_mem_asm(str, "%w", __pu_val, (ptr), (err), type); \ |
| break; \ |
| case 8: \ |
| __put_mem_asm(str, "%x", __pu_val, (ptr), (err), type); \ |
| break; \ |
| default: \ |
| BUILD_BUG(); \ |
| } \ |
| } while (0) |
| |
| /* |
| * We must not call into the scheduler between uaccess_ttbr0_enable() and |
| * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions, |
| * we must evaluate these outside of the critical section. |
| */ |
| #define __raw_put_user(x, ptr, err) \ |
| do { \ |
| __typeof__(*(ptr)) __user *__rpu_ptr = (ptr); \ |
| __typeof__(*(ptr)) __rpu_val = (x); \ |
| __chk_user_ptr(__rpu_ptr); \ |
| \ |
| uaccess_ttbr0_enable(); \ |
| __raw_put_mem("sttr", __rpu_val, __rpu_ptr, err, U); \ |
| uaccess_ttbr0_disable(); \ |
| } while (0) |
| |
| #define __put_user_error(x, ptr, err) \ |
| do { \ |
| __typeof__(*(ptr)) __user *__p = (ptr); \ |
| might_fault(); \ |
| if (access_ok(__p, sizeof(*__p))) { \ |
| __p = uaccess_mask_ptr(__p); \ |
| __raw_put_user((x), __p, (err)); \ |
| } else { \ |
| (err) = -EFAULT; \ |
| } \ |
| } while (0) |
| |
| #define __put_user(x, ptr) \ |
| ({ \ |
| int __pu_err = 0; \ |
| __put_user_error((x), (ptr), __pu_err); \ |
| __pu_err; \ |
| }) |
| |
| #define put_user __put_user |
| |
| /* |
| * We must not call into the scheduler between __uaccess_enable_tco_async() and |
| * __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking |
| * functions, we must evaluate these outside of the critical section. |
| */ |
| #define __put_kernel_nofault(dst, src, type, err_label) \ |
| do { \ |
| __typeof__(dst) __pkn_dst = (dst); \ |
| __typeof__(src) __pkn_src = (src); \ |
| int __pkn_err = 0; \ |
| \ |
| __uaccess_enable_tco_async(); \ |
| __raw_put_mem("str", *((type *)(__pkn_src)), \ |
| (__force type *)(__pkn_dst), __pkn_err, K); \ |
| __uaccess_disable_tco_async(); \ |
| \ |
| if (unlikely(__pkn_err)) \ |
| goto err_label; \ |
| } while(0) |
| |
| extern unsigned long __must_check __arch_copy_from_user(void *to, const void __user *from, unsigned long n); |
| #define raw_copy_from_user(to, from, n) \ |
| ({ \ |
| unsigned long __acfu_ret; \ |
| uaccess_ttbr0_enable(); \ |
| __acfu_ret = __arch_copy_from_user((to), \ |
| __uaccess_mask_ptr(from), (n)); \ |
| uaccess_ttbr0_disable(); \ |
| __acfu_ret; \ |
| }) |
| |
| extern unsigned long __must_check __arch_copy_to_user(void __user *to, const void *from, unsigned long n); |
| #define raw_copy_to_user(to, from, n) \ |
| ({ \ |
| unsigned long __actu_ret; \ |
| uaccess_ttbr0_enable(); \ |
| __actu_ret = __arch_copy_to_user(__uaccess_mask_ptr(to), \ |
| (from), (n)); \ |
| uaccess_ttbr0_disable(); \ |
| __actu_ret; \ |
| }) |
| |
| #define INLINE_COPY_TO_USER |
| #define INLINE_COPY_FROM_USER |
| |
| extern unsigned long __must_check __arch_clear_user(void __user *to, unsigned long n); |
| static inline unsigned long __must_check __clear_user(void __user *to, unsigned long n) |
| { |
| if (access_ok(to, n)) { |
| uaccess_ttbr0_enable(); |
| n = __arch_clear_user(__uaccess_mask_ptr(to), n); |
| uaccess_ttbr0_disable(); |
| } |
| return n; |
| } |
| #define clear_user __clear_user |
| |
| extern long strncpy_from_user(char *dest, const char __user *src, long count); |
| |
| extern __must_check long strnlen_user(const char __user *str, long n); |
| |
| #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE |
| struct page; |
| void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); |
| extern unsigned long __must_check __copy_user_flushcache(void *to, const void __user *from, unsigned long n); |
| |
| static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) |
| { |
| kasan_check_write(dst, size); |
| return __copy_user_flushcache(dst, __uaccess_mask_ptr(src), size); |
| } |
| #endif |
| |
| #ifdef CONFIG_ARCH_HAS_SUBPAGE_FAULTS |
| |
| /* |
| * Return 0 on success, the number of bytes not probed otherwise. |
| */ |
| static inline size_t probe_subpage_writeable(const char __user *uaddr, |
| size_t size) |
| { |
| if (!system_supports_mte()) |
| return 0; |
| return mte_probe_user_range(uaddr, size); |
| } |
| |
| #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */ |
| |
| #endif /* __ASM_UACCESS_H */ |