blob: 5c7b2f9d5913759472a1cb79335ca7263c6a5b4d [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Based on arch/arm/include/asm/uaccess.h
*
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_UACCESS_H
#define __ASM_UACCESS_H
#include <asm/alternative.h>
#include <asm/kernel-pgtable.h>
#include <asm/sysreg.h>
/*
* User space memory access functions
*/
#include <linux/bitops.h>
#include <linux/kasan-checks.h>
#include <linux/string.h>
#include <asm/asm-extable.h>
#include <asm/cpufeature.h>
#include <asm/mmu.h>
#include <asm/mte.h>
#include <asm/ptrace.h>
#include <asm/memory.h>
#include <asm/extable.h>
static inline int __access_ok(const void __user *ptr, unsigned long size);
/*
* Test whether a block of memory is a valid user space address.
* Returns 1 if the range is valid, 0 otherwise.
*
* This is equivalent to the following test:
* (u65)addr + (u65)size <= (u65)TASK_SIZE_MAX
*/
static inline int access_ok(const void __user *addr, unsigned long size)
{
/*
* Asynchronous I/O running in a kernel thread does not have the
* TIF_TAGGED_ADDR flag of the process owning the mm, so always untag
* the user address before checking.
*/
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI) &&
(current->flags & PF_KTHREAD || test_thread_flag(TIF_TAGGED_ADDR)))
addr = untagged_addr(addr);
return likely(__access_ok(addr, size));
}
#define access_ok access_ok
#include <asm-generic/access_ok.h>
/*
* User access enabling/disabling.
*/
#ifdef CONFIG_ARM64_SW_TTBR0_PAN
static inline void __uaccess_ttbr0_disable(void)
{
unsigned long flags, ttbr;
local_irq_save(flags);
ttbr = read_sysreg(ttbr1_el1);
ttbr &= ~TTBR_ASID_MASK;
/* reserved_pg_dir placed before swapper_pg_dir */
write_sysreg(ttbr - RESERVED_SWAPPER_OFFSET, ttbr0_el1);
isb();
/* Set reserved ASID */
write_sysreg(ttbr, ttbr1_el1);
isb();
local_irq_restore(flags);
}
static inline void __uaccess_ttbr0_enable(void)
{
unsigned long flags, ttbr0, ttbr1;
/*
* Disable interrupts to avoid preemption between reading the 'ttbr0'
* variable and the MSR. A context switch could trigger an ASID
* roll-over and an update of 'ttbr0'.
*/
local_irq_save(flags);
ttbr0 = READ_ONCE(current_thread_info()->ttbr0);
/* Restore active ASID */
ttbr1 = read_sysreg(ttbr1_el1);
ttbr1 &= ~TTBR_ASID_MASK; /* safety measure */
ttbr1 |= ttbr0 & TTBR_ASID_MASK;
write_sysreg(ttbr1, ttbr1_el1);
isb();
/* Restore user page table */
write_sysreg(ttbr0, ttbr0_el1);
isb();
local_irq_restore(flags);
}
static inline bool uaccess_ttbr0_disable(void)
{
if (!system_uses_ttbr0_pan())
return false;
__uaccess_ttbr0_disable();
return true;
}
static inline bool uaccess_ttbr0_enable(void)
{
if (!system_uses_ttbr0_pan())
return false;
__uaccess_ttbr0_enable();
return true;
}
#else
static inline bool uaccess_ttbr0_disable(void)
{
return false;
}
static inline bool uaccess_ttbr0_enable(void)
{
return false;
}
#endif
static inline void __uaccess_disable_hw_pan(void)
{
asm(ALTERNATIVE("nop", SET_PSTATE_PAN(0), ARM64_HAS_PAN,
CONFIG_ARM64_PAN));
}
static inline void __uaccess_enable_hw_pan(void)
{
asm(ALTERNATIVE("nop", SET_PSTATE_PAN(1), ARM64_HAS_PAN,
CONFIG_ARM64_PAN));
}
/*
* The Tag Check Flag (TCF) mode for MTE is per EL, hence TCF0
* affects EL0 and TCF affects EL1 irrespective of which TTBR is
* used.
* The kernel accesses TTBR0 usually with LDTR/STTR instructions
* when UAO is available, so these would act as EL0 accesses using
* TCF0.
* However futex.h code uses exclusives which would be executed as
* EL1, this can potentially cause a tag check fault even if the
* user disables TCF0.
*
* To address the problem we set the PSTATE.TCO bit in uaccess_enable()
* and reset it in uaccess_disable().
*
* The Tag check override (TCO) bit disables temporarily the tag checking
* preventing the issue.
*/
static inline void __uaccess_disable_tco(void)
{
asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(0),
ARM64_MTE, CONFIG_KASAN_HW_TAGS));
}
static inline void __uaccess_enable_tco(void)
{
asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(1),
ARM64_MTE, CONFIG_KASAN_HW_TAGS));
}
/*
* These functions disable tag checking only if in MTE async mode
* since the sync mode generates exceptions synchronously and the
* nofault or load_unaligned_zeropad can handle them.
*/
static inline void __uaccess_disable_tco_async(void)
{
if (system_uses_mte_async_or_asymm_mode())
__uaccess_disable_tco();
}
static inline void __uaccess_enable_tco_async(void)
{
if (system_uses_mte_async_or_asymm_mode())
__uaccess_enable_tco();
}
static inline void uaccess_disable_privileged(void)
{
__uaccess_disable_tco();
if (uaccess_ttbr0_disable())
return;
__uaccess_enable_hw_pan();
}
static inline void uaccess_enable_privileged(void)
{
__uaccess_enable_tco();
if (uaccess_ttbr0_enable())
return;
__uaccess_disable_hw_pan();
}
/*
* Sanitize a uaccess pointer such that it cannot reach any kernel address.
*
* Clearing bit 55 ensures the pointer cannot address any portion of the TTBR1
* address range (i.e. any kernel address), and either the pointer falls within
* the TTBR0 address range or must cause a fault.
*/
#define uaccess_mask_ptr(ptr) (__typeof__(ptr))__uaccess_mask_ptr(ptr)
static inline void __user *__uaccess_mask_ptr(const void __user *ptr)
{
void __user *safe_ptr;
asm volatile(
" bic %0, %1, %2\n"
: "=r" (safe_ptr)
: "r" (ptr),
"i" (BIT(55))
);
return safe_ptr;
}
/*
* The "__xxx" versions of the user access functions do not verify the address
* space - it must have been done previously with a separate "access_ok()"
* call.
*
* The "__xxx_error" versions set the third argument to -EFAULT if an error
* occurs, and leave it unchanged on success.
*/
#define __get_mem_asm(load, reg, x, addr, err, type) \
asm volatile( \
"1: " load " " reg "1, [%2]\n" \
"2:\n" \
_ASM_EXTABLE_##type##ACCESS_ERR_ZERO(1b, 2b, %w0, %w1) \
: "+r" (err), "=&r" (x) \
: "r" (addr))
#define __raw_get_mem(ldr, x, ptr, err, type) \
do { \
unsigned long __gu_val; \
switch (sizeof(*(ptr))) { \
case 1: \
__get_mem_asm(ldr "b", "%w", __gu_val, (ptr), (err), type); \
break; \
case 2: \
__get_mem_asm(ldr "h", "%w", __gu_val, (ptr), (err), type); \
break; \
case 4: \
__get_mem_asm(ldr, "%w", __gu_val, (ptr), (err), type); \
break; \
case 8: \
__get_mem_asm(ldr, "%x", __gu_val, (ptr), (err), type); \
break; \
default: \
BUILD_BUG(); \
} \
(x) = (__force __typeof__(*(ptr)))__gu_val; \
} while (0)
/*
* We must not call into the scheduler between uaccess_ttbr0_enable() and
* uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions,
* we must evaluate these outside of the critical section.
*/
#define __raw_get_user(x, ptr, err) \
do { \
__typeof__(*(ptr)) __user *__rgu_ptr = (ptr); \
__typeof__(x) __rgu_val; \
__chk_user_ptr(ptr); \
\
uaccess_ttbr0_enable(); \
__raw_get_mem("ldtr", __rgu_val, __rgu_ptr, err, U); \
uaccess_ttbr0_disable(); \
\
(x) = __rgu_val; \
} while (0)
#define __get_user_error(x, ptr, err) \
do { \
__typeof__(*(ptr)) __user *__p = (ptr); \
might_fault(); \
if (access_ok(__p, sizeof(*__p))) { \
__p = uaccess_mask_ptr(__p); \
__raw_get_user((x), __p, (err)); \
} else { \
(x) = (__force __typeof__(x))0; (err) = -EFAULT; \
} \
} while (0)
#define __get_user(x, ptr) \
({ \
int __gu_err = 0; \
__get_user_error((x), (ptr), __gu_err); \
__gu_err; \
})
#define get_user __get_user
/*
* We must not call into the scheduler between __uaccess_enable_tco_async() and
* __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking
* functions, we must evaluate these outside of the critical section.
*/
#define __get_kernel_nofault(dst, src, type, err_label) \
do { \
__typeof__(dst) __gkn_dst = (dst); \
__typeof__(src) __gkn_src = (src); \
int __gkn_err = 0; \
\
__uaccess_enable_tco_async(); \
__raw_get_mem("ldr", *((type *)(__gkn_dst)), \
(__force type *)(__gkn_src), __gkn_err, K); \
__uaccess_disable_tco_async(); \
\
if (unlikely(__gkn_err)) \
goto err_label; \
} while (0)
#define __put_mem_asm(store, reg, x, addr, err, type) \
asm volatile( \
"1: " store " " reg "1, [%2]\n" \
"2:\n" \
_ASM_EXTABLE_##type##ACCESS_ERR(1b, 2b, %w0) \
: "+r" (err) \
: "r" (x), "r" (addr))
#define __raw_put_mem(str, x, ptr, err, type) \
do { \
__typeof__(*(ptr)) __pu_val = (x); \
switch (sizeof(*(ptr))) { \
case 1: \
__put_mem_asm(str "b", "%w", __pu_val, (ptr), (err), type); \
break; \
case 2: \
__put_mem_asm(str "h", "%w", __pu_val, (ptr), (err), type); \
break; \
case 4: \
__put_mem_asm(str, "%w", __pu_val, (ptr), (err), type); \
break; \
case 8: \
__put_mem_asm(str, "%x", __pu_val, (ptr), (err), type); \
break; \
default: \
BUILD_BUG(); \
} \
} while (0)
/*
* We must not call into the scheduler between uaccess_ttbr0_enable() and
* uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions,
* we must evaluate these outside of the critical section.
*/
#define __raw_put_user(x, ptr, err) \
do { \
__typeof__(*(ptr)) __user *__rpu_ptr = (ptr); \
__typeof__(*(ptr)) __rpu_val = (x); \
__chk_user_ptr(__rpu_ptr); \
\
uaccess_ttbr0_enable(); \
__raw_put_mem("sttr", __rpu_val, __rpu_ptr, err, U); \
uaccess_ttbr0_disable(); \
} while (0)
#define __put_user_error(x, ptr, err) \
do { \
__typeof__(*(ptr)) __user *__p = (ptr); \
might_fault(); \
if (access_ok(__p, sizeof(*__p))) { \
__p = uaccess_mask_ptr(__p); \
__raw_put_user((x), __p, (err)); \
} else { \
(err) = -EFAULT; \
} \
} while (0)
#define __put_user(x, ptr) \
({ \
int __pu_err = 0; \
__put_user_error((x), (ptr), __pu_err); \
__pu_err; \
})
#define put_user __put_user
/*
* We must not call into the scheduler between __uaccess_enable_tco_async() and
* __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking
* functions, we must evaluate these outside of the critical section.
*/
#define __put_kernel_nofault(dst, src, type, err_label) \
do { \
__typeof__(dst) __pkn_dst = (dst); \
__typeof__(src) __pkn_src = (src); \
int __pkn_err = 0; \
\
__uaccess_enable_tco_async(); \
__raw_put_mem("str", *((type *)(__pkn_src)), \
(__force type *)(__pkn_dst), __pkn_err, K); \
__uaccess_disable_tco_async(); \
\
if (unlikely(__pkn_err)) \
goto err_label; \
} while(0)
extern unsigned long __must_check __arch_copy_from_user(void *to, const void __user *from, unsigned long n);
#define raw_copy_from_user(to, from, n) \
({ \
unsigned long __acfu_ret; \
uaccess_ttbr0_enable(); \
__acfu_ret = __arch_copy_from_user((to), \
__uaccess_mask_ptr(from), (n)); \
uaccess_ttbr0_disable(); \
__acfu_ret; \
})
extern unsigned long __must_check __arch_copy_to_user(void __user *to, const void *from, unsigned long n);
#define raw_copy_to_user(to, from, n) \
({ \
unsigned long __actu_ret; \
uaccess_ttbr0_enable(); \
__actu_ret = __arch_copy_to_user(__uaccess_mask_ptr(to), \
(from), (n)); \
uaccess_ttbr0_disable(); \
__actu_ret; \
})
#define INLINE_COPY_TO_USER
#define INLINE_COPY_FROM_USER
extern unsigned long __must_check __arch_clear_user(void __user *to, unsigned long n);
static inline unsigned long __must_check __clear_user(void __user *to, unsigned long n)
{
if (access_ok(to, n)) {
uaccess_ttbr0_enable();
n = __arch_clear_user(__uaccess_mask_ptr(to), n);
uaccess_ttbr0_disable();
}
return n;
}
#define clear_user __clear_user
extern long strncpy_from_user(char *dest, const char __user *src, long count);
extern __must_check long strnlen_user(const char __user *str, long n);
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
struct page;
void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len);
extern unsigned long __must_check __copy_user_flushcache(void *to, const void __user *from, unsigned long n);
static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size)
{
kasan_check_write(dst, size);
return __copy_user_flushcache(dst, __uaccess_mask_ptr(src), size);
}
#endif
#ifdef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
/*
* Return 0 on success, the number of bytes not probed otherwise.
*/
static inline size_t probe_subpage_writeable(const char __user *uaddr,
size_t size)
{
if (!system_supports_mte())
return 0;
return mte_probe_user_range(uaddr, size);
}
#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
#endif /* __ASM_UACCESS_H */