blob: 0f423e9df09565b20c3442309e5d031ee55fdc16 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* S390 low-level entry points.
*
* Copyright IBM Corp. 1999, 2012
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
* Hartmut Penner (hp@de.ibm.com),
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
*/
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/asm-extable.h>
#include <asm/alternative-asm.h>
#include <asm/processor.h>
#include <asm/cache.h>
#include <asm/dwarf.h>
#include <asm/errno.h>
#include <asm/ptrace.h>
#include <asm/thread_info.h>
#include <asm/asm-offsets.h>
#include <asm/unistd.h>
#include <asm/page.h>
#include <asm/sigp.h>
#include <asm/irq.h>
#include <asm/vx-insn.h>
#include <asm/setup.h>
#include <asm/nmi.h>
#include <asm/export.h>
#include <asm/nospec-insn.h>
STACK_SHIFT = PAGE_SHIFT + THREAD_SIZE_ORDER
STACK_SIZE = 1 << STACK_SHIFT
STACK_INIT = STACK_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE
_LPP_OFFSET = __LC_LPP
.macro STBEAR address
ALTERNATIVE "nop", ".insn s,0xb2010000,\address", 193
.endm
.macro LBEAR address
ALTERNATIVE "nop", ".insn s,0xb2000000,\address", 193
.endm
.macro LPSWEY address,lpswe
ALTERNATIVE "b \lpswe; nopr", ".insn siy,0xeb0000000071,\address,0", 193
.endm
.macro MBEAR reg
ALTERNATIVE "brcl 0,0", __stringify(mvc __PT_LAST_BREAK(8,\reg),__LC_LAST_BREAK), 193
.endm
.macro CHECK_STACK savearea
#ifdef CONFIG_CHECK_STACK
tml %r15,STACK_SIZE - CONFIG_STACK_GUARD
lghi %r14,\savearea
jz stack_overflow
#endif
.endm
.macro CHECK_VMAP_STACK savearea,oklabel
#ifdef CONFIG_VMAP_STACK
lgr %r14,%r15
nill %r14,0x10000 - STACK_SIZE
oill %r14,STACK_INIT
clg %r14,__LC_KERNEL_STACK
je \oklabel
clg %r14,__LC_ASYNC_STACK
je \oklabel
clg %r14,__LC_MCCK_STACK
je \oklabel
clg %r14,__LC_NODAT_STACK
je \oklabel
clg %r14,__LC_RESTART_STACK
je \oklabel
lghi %r14,\savearea
j stack_overflow
#else
j \oklabel
#endif
.endm
/*
* The TSTMSK macro generates a test-under-mask instruction by
* calculating the memory offset for the specified mask value.
* Mask value can be any constant. The macro shifts the mask
* value to calculate the memory offset for the test-under-mask
* instruction.
*/
.macro TSTMSK addr, mask, size=8, bytepos=0
.if (\bytepos < \size) && (\mask >> 8)
.if (\mask & 0xff)
.error "Mask exceeds byte boundary"
.endif
TSTMSK \addr, "(\mask >> 8)", \size, "(\bytepos + 1)"
.exitm
.endif
.ifeq \mask
.error "Mask must not be zero"
.endif
off = \size - \bytepos - 1
tm off+\addr, \mask
.endm
.macro BPOFF
ALTERNATIVE "nop", ".insn rrf,0xb2e80000,0,0,12,0", 82
.endm
.macro BPON
ALTERNATIVE "nop", ".insn rrf,0xb2e80000,0,0,13,0", 82
.endm
.macro BPENTER tif_ptr,tif_mask
ALTERNATIVE "TSTMSK \tif_ptr,\tif_mask; jz .+8; .insn rrf,0xb2e80000,0,0,13,0", \
"j .+12; nop; nop", 82
.endm
.macro BPEXIT tif_ptr,tif_mask
TSTMSK \tif_ptr,\tif_mask
ALTERNATIVE "jz .+8; .insn rrf,0xb2e80000,0,0,12,0", \
"jnz .+8; .insn rrf,0xb2e80000,0,0,13,0", 82
.endm
#if IS_ENABLED(CONFIG_KVM)
/*
* The OUTSIDE macro jumps to the provided label in case the value
* in the provided register is outside of the provided range. The
* macro is useful for checking whether a PSW stored in a register
* pair points inside or outside of a block of instructions.
* @reg: register to check
* @start: start of the range
* @end: end of the range
* @outside_label: jump here if @reg is outside of [@start..@end)
*/
.macro OUTSIDE reg,start,end,outside_label
lgr %r14,\reg
larl %r13,\start
slgr %r14,%r13
#ifdef CONFIG_AS_IS_LLVM
clgfrl %r14,.Lrange_size\@
#else
clgfi %r14,\end - \start
#endif
jhe \outside_label
#ifdef CONFIG_AS_IS_LLVM
.section .rodata, "a"
.align 4
.Lrange_size\@:
.long \end - \start
.previous
#endif
.endm
.macro SIEEXIT
lg %r9,__SF_SIE_CONTROL(%r15) # get control block pointer
ni __SIE_PROG0C+3(%r9),0xfe # no longer in SIE
lctlg %c1,%c1,__LC_KERNEL_ASCE # load primary asce
larl %r9,sie_exit # skip forward to sie_exit
.endm
#endif
GEN_BR_THUNK %r14
.section .kprobes.text, "ax"
.Ldummy:
/*
* This nop exists only in order to avoid that __bpon starts at
* the beginning of the kprobes text section. In that case we would
* have several symbols at the same address. E.g. objdump would take
* an arbitrary symbol name when disassembling this code.
* With the added nop in between the __bpon symbol is unique
* again.
*/
nop 0
ENTRY(__bpon)
.globl __bpon
BPON
BR_EX %r14
ENDPROC(__bpon)
/*
* Scheduler resume function, called by switch_to
* gpr2 = (task_struct *) prev
* gpr3 = (task_struct *) next
* Returns:
* gpr2 = prev
*/
ENTRY(__switch_to)
stmg %r6,%r15,__SF_GPRS(%r15) # store gprs of prev task
lghi %r4,__TASK_stack
lghi %r1,__TASK_thread
llill %r5,STACK_INIT
stg %r15,__THREAD_ksp(%r1,%r2) # store kernel stack of prev
lg %r15,0(%r4,%r3) # start of kernel stack of next
agr %r15,%r5 # end of kernel stack of next
stg %r3,__LC_CURRENT # store task struct of next
stg %r15,__LC_KERNEL_STACK # store end of kernel stack
lg %r15,__THREAD_ksp(%r1,%r3) # load kernel stack of next
aghi %r3,__TASK_pid
mvc __LC_CURRENT_PID(4,%r0),0(%r3) # store pid of next
lmg %r6,%r15,__SF_GPRS(%r15) # load gprs of next task
ALTERNATIVE "nop", "lpp _LPP_OFFSET", 40
BR_EX %r14
ENDPROC(__switch_to)
#if IS_ENABLED(CONFIG_KVM)
/*
* __sie64a calling convention:
* %r2 pointer to sie control block phys
* %r3 pointer to sie control block virt
* %r4 guest register save area
*/
ENTRY(__sie64a)
stmg %r6,%r14,__SF_GPRS(%r15) # save kernel registers
lg %r12,__LC_CURRENT
stg %r2,__SF_SIE_CONTROL_PHYS(%r15) # save sie block physical..
stg %r3,__SF_SIE_CONTROL(%r15) # ...and virtual addresses
stg %r4,__SF_SIE_SAVEAREA(%r15) # save guest register save area
xc __SF_SIE_REASON(8,%r15),__SF_SIE_REASON(%r15) # reason code = 0
mvc __SF_SIE_FLAGS(8,%r15),__TI_flags(%r12) # copy thread flags
lmg %r0,%r13,0(%r4) # load guest gprs 0-13
lg %r14,__LC_GMAP # get gmap pointer
ltgr %r14,%r14
jz .Lsie_gmap
lctlg %c1,%c1,__GMAP_ASCE(%r14) # load primary asce
.Lsie_gmap:
lg %r14,__SF_SIE_CONTROL(%r15) # get control block pointer
oi __SIE_PROG0C+3(%r14),1 # we are going into SIE now
tm __SIE_PROG20+3(%r14),3 # last exit...
jnz .Lsie_skip
TSTMSK __LC_CPU_FLAGS,_CIF_FPU
jo .Lsie_skip # exit if fp/vx regs changed
lg %r14,__SF_SIE_CONTROL_PHYS(%r15) # get sie block phys addr
BPEXIT __SF_SIE_FLAGS(%r15),(_TIF_ISOLATE_BP|_TIF_ISOLATE_BP_GUEST)
.Lsie_entry:
sie 0(%r14)
# Let the next instruction be NOP to avoid triggering a machine check
# and handling it in a guest as result of the instruction execution.
nopr 7
.Lsie_leave:
BPOFF
BPENTER __SF_SIE_FLAGS(%r15),(_TIF_ISOLATE_BP|_TIF_ISOLATE_BP_GUEST)
.Lsie_skip:
lg %r14,__SF_SIE_CONTROL(%r15) # get control block pointer
ni __SIE_PROG0C+3(%r14),0xfe # no longer in SIE
lctlg %c1,%c1,__LC_KERNEL_ASCE # load primary asce
.Lsie_done:
# some program checks are suppressing. C code (e.g. do_protection_exception)
# will rewind the PSW by the ILC, which is often 4 bytes in case of SIE. There
# are some corner cases (e.g. runtime instrumentation) where ILC is unpredictable.
# Other instructions between __sie64a and .Lsie_done should not cause program
# interrupts. So lets use 3 nops as a landing pad for all possible rewinds.
.Lrewind_pad6:
nopr 7
.Lrewind_pad4:
nopr 7
.Lrewind_pad2:
nopr 7
.globl sie_exit
sie_exit:
lg %r14,__SF_SIE_SAVEAREA(%r15) # load guest register save area
stmg %r0,%r13,0(%r14) # save guest gprs 0-13
xgr %r0,%r0 # clear guest registers to
xgr %r1,%r1 # prevent speculative use
xgr %r3,%r3
xgr %r4,%r4
xgr %r5,%r5
lmg %r6,%r14,__SF_GPRS(%r15) # restore kernel registers
lg %r2,__SF_SIE_REASON(%r15) # return exit reason code
BR_EX %r14
.Lsie_fault:
lghi %r14,-EFAULT
stg %r14,__SF_SIE_REASON(%r15) # set exit reason code
j sie_exit
EX_TABLE(.Lrewind_pad6,.Lsie_fault)
EX_TABLE(.Lrewind_pad4,.Lsie_fault)
EX_TABLE(.Lrewind_pad2,.Lsie_fault)
EX_TABLE(sie_exit,.Lsie_fault)
ENDPROC(__sie64a)
EXPORT_SYMBOL(__sie64a)
EXPORT_SYMBOL(sie_exit)
#endif
/*
* SVC interrupt handler routine. System calls are synchronous events and
* are entered with interrupts disabled.
*/
ENTRY(system_call)
stpt __LC_SYS_ENTER_TIMER
stmg %r8,%r15,__LC_SAVE_AREA_SYNC
BPOFF
lghi %r14,0
.Lsysc_per:
STBEAR __LC_LAST_BREAK
lctlg %c1,%c1,__LC_KERNEL_ASCE
lg %r12,__LC_CURRENT
lg %r15,__LC_KERNEL_STACK
xc __SF_BACKCHAIN(8,%r15),__SF_BACKCHAIN(%r15)
stmg %r0,%r7,STACK_FRAME_OVERHEAD+__PT_R0(%r15)
BPENTER __TI_flags(%r12),_TIF_ISOLATE_BP
# clear user controlled register to prevent speculative use
xgr %r0,%r0
xgr %r1,%r1
xgr %r4,%r4
xgr %r5,%r5
xgr %r6,%r6
xgr %r7,%r7
xgr %r8,%r8
xgr %r9,%r9
xgr %r10,%r10
xgr %r11,%r11
la %r2,STACK_FRAME_OVERHEAD(%r15) # pointer to pt_regs
mvc __PT_R8(64,%r2),__LC_SAVE_AREA_SYNC
MBEAR %r2
lgr %r3,%r14
brasl %r14,__do_syscall
lctlg %c1,%c1,__LC_USER_ASCE
mvc __LC_RETURN_PSW(16),STACK_FRAME_OVERHEAD+__PT_PSW(%r15)
BPEXIT __TI_flags(%r12),_TIF_ISOLATE_BP
LBEAR STACK_FRAME_OVERHEAD+__PT_LAST_BREAK(%r15)
lmg %r0,%r15,STACK_FRAME_OVERHEAD+__PT_R0(%r15)
stpt __LC_EXIT_TIMER
LPSWEY __LC_RETURN_PSW,__LC_RETURN_LPSWE
ENDPROC(system_call)
#
# a new process exits the kernel with ret_from_fork
#
ENTRY(ret_from_fork)
lgr %r3,%r11
brasl %r14,__ret_from_fork
lctlg %c1,%c1,__LC_USER_ASCE
mvc __LC_RETURN_PSW(16),STACK_FRAME_OVERHEAD+__PT_PSW(%r15)
BPEXIT __TI_flags(%r12),_TIF_ISOLATE_BP
LBEAR STACK_FRAME_OVERHEAD+__PT_LAST_BREAK(%r15)
lmg %r0,%r15,STACK_FRAME_OVERHEAD+__PT_R0(%r15)
stpt __LC_EXIT_TIMER
LPSWEY __LC_RETURN_PSW,__LC_RETURN_LPSWE
ENDPROC(ret_from_fork)
/*
* Program check handler routine
*/
ENTRY(pgm_check_handler)
stpt __LC_SYS_ENTER_TIMER
BPOFF
stmg %r8,%r15,__LC_SAVE_AREA_SYNC
lg %r12,__LC_CURRENT
lghi %r10,0
lmg %r8,%r9,__LC_PGM_OLD_PSW
tmhh %r8,0x0001 # coming from user space?
jno .Lpgm_skip_asce
lctlg %c1,%c1,__LC_KERNEL_ASCE
j 3f # -> fault in user space
.Lpgm_skip_asce:
#if IS_ENABLED(CONFIG_KVM)
# cleanup critical section for program checks in __sie64a
OUTSIDE %r9,.Lsie_gmap,.Lsie_done,1f
SIEEXIT
lghi %r10,_PIF_GUEST_FAULT
#endif
1: tmhh %r8,0x4000 # PER bit set in old PSW ?
jnz 2f # -> enabled, can't be a double fault
tm __LC_PGM_ILC+3,0x80 # check for per exception
jnz .Lpgm_svcper # -> single stepped svc
2: CHECK_STACK __LC_SAVE_AREA_SYNC
aghi %r15,-(STACK_FRAME_OVERHEAD + __PT_SIZE)
# CHECK_VMAP_STACK branches to stack_overflow or 4f
CHECK_VMAP_STACK __LC_SAVE_AREA_SYNC,4f
3: BPENTER __TI_flags(%r12),_TIF_ISOLATE_BP
lg %r15,__LC_KERNEL_STACK
4: la %r11,STACK_FRAME_OVERHEAD(%r15)
stg %r10,__PT_FLAGS(%r11)
xc __SF_BACKCHAIN(8,%r15),__SF_BACKCHAIN(%r15)
stmg %r0,%r7,__PT_R0(%r11)
mvc __PT_R8(64,%r11),__LC_SAVE_AREA_SYNC
mvc __PT_LAST_BREAK(8,%r11),__LC_PGM_LAST_BREAK
stmg %r8,%r9,__PT_PSW(%r11)
# clear user controlled registers to prevent speculative use
xgr %r0,%r0
xgr %r1,%r1
xgr %r3,%r3
xgr %r4,%r4
xgr %r5,%r5
xgr %r6,%r6
xgr %r7,%r7
lgr %r2,%r11
brasl %r14,__do_pgm_check
tmhh %r8,0x0001 # returning to user space?
jno .Lpgm_exit_kernel
lctlg %c1,%c1,__LC_USER_ASCE
BPEXIT __TI_flags(%r12),_TIF_ISOLATE_BP
stpt __LC_EXIT_TIMER
.Lpgm_exit_kernel:
mvc __LC_RETURN_PSW(16),STACK_FRAME_OVERHEAD+__PT_PSW(%r15)
LBEAR STACK_FRAME_OVERHEAD+__PT_LAST_BREAK(%r15)
lmg %r0,%r15,STACK_FRAME_OVERHEAD+__PT_R0(%r15)
LPSWEY __LC_RETURN_PSW,__LC_RETURN_LPSWE
#
# single stepped system call
#
.Lpgm_svcper:
mvc __LC_RETURN_PSW(8),__LC_SVC_NEW_PSW
larl %r14,.Lsysc_per
stg %r14,__LC_RETURN_PSW+8
lghi %r14,1
LBEAR __LC_PGM_LAST_BREAK
LPSWEY __LC_RETURN_PSW,__LC_RETURN_LPSWE # branch to .Lsysc_per
ENDPROC(pgm_check_handler)
/*
* Interrupt handler macro used for external and IO interrupts.
*/
.macro INT_HANDLER name,lc_old_psw,handler
ENTRY(\name)
stckf __LC_INT_CLOCK
stpt __LC_SYS_ENTER_TIMER
STBEAR __LC_LAST_BREAK
BPOFF
stmg %r8,%r15,__LC_SAVE_AREA_ASYNC
lg %r12,__LC_CURRENT
lmg %r8,%r9,\lc_old_psw
tmhh %r8,0x0001 # interrupting from user ?
jnz 1f
#if IS_ENABLED(CONFIG_KVM)
OUTSIDE %r9,.Lsie_gmap,.Lsie_done,0f
BPENTER __SF_SIE_FLAGS(%r15),(_TIF_ISOLATE_BP|_TIF_ISOLATE_BP_GUEST)
SIEEXIT
#endif
0: CHECK_STACK __LC_SAVE_AREA_ASYNC
aghi %r15,-(STACK_FRAME_OVERHEAD + __PT_SIZE)
j 2f
1: BPENTER __TI_flags(%r12),_TIF_ISOLATE_BP
lctlg %c1,%c1,__LC_KERNEL_ASCE
lg %r15,__LC_KERNEL_STACK
2: xc __SF_BACKCHAIN(8,%r15),__SF_BACKCHAIN(%r15)
la %r11,STACK_FRAME_OVERHEAD(%r15)
stmg %r0,%r7,__PT_R0(%r11)
# clear user controlled registers to prevent speculative use
xgr %r0,%r0
xgr %r1,%r1
xgr %r3,%r3
xgr %r4,%r4
xgr %r5,%r5
xgr %r6,%r6
xgr %r7,%r7
xgr %r10,%r10
xc __PT_FLAGS(8,%r11),__PT_FLAGS(%r11)
mvc __PT_R8(64,%r11),__LC_SAVE_AREA_ASYNC
MBEAR %r11
stmg %r8,%r9,__PT_PSW(%r11)
lgr %r2,%r11 # pass pointer to pt_regs
brasl %r14,\handler
mvc __LC_RETURN_PSW(16),__PT_PSW(%r11)
tmhh %r8,0x0001 # returning to user ?
jno 2f
lctlg %c1,%c1,__LC_USER_ASCE
BPEXIT __TI_flags(%r12),_TIF_ISOLATE_BP
stpt __LC_EXIT_TIMER
2: LBEAR __PT_LAST_BREAK(%r11)
lmg %r0,%r15,__PT_R0(%r11)
LPSWEY __LC_RETURN_PSW,__LC_RETURN_LPSWE
ENDPROC(\name)
.endm
INT_HANDLER ext_int_handler,__LC_EXT_OLD_PSW,do_ext_irq
INT_HANDLER io_int_handler,__LC_IO_OLD_PSW,do_io_irq
/*
* Load idle PSW.
*/
ENTRY(psw_idle)
stg %r14,(__SF_GPRS+8*8)(%r15)
stg %r3,__SF_EMPTY(%r15)
larl %r1,psw_idle_exit
stg %r1,__SF_EMPTY+8(%r15)
larl %r1,smp_cpu_mtid
llgf %r1,0(%r1)
ltgr %r1,%r1
jz .Lpsw_idle_stcctm
.insn rsy,0xeb0000000017,%r1,5,__MT_CYCLES_ENTER(%r2)
.Lpsw_idle_stcctm:
oi __LC_CPU_FLAGS+7,_CIF_ENABLED_WAIT
BPON
stckf __CLOCK_IDLE_ENTER(%r2)
stpt __TIMER_IDLE_ENTER(%r2)
lpswe __SF_EMPTY(%r15)
.globl psw_idle_exit
psw_idle_exit:
BR_EX %r14
ENDPROC(psw_idle)
/*
* Machine check handler routines
*/
ENTRY(mcck_int_handler)
stckf __LC_MCCK_CLOCK
BPOFF
la %r1,4095 # validate r1
spt __LC_CPU_TIMER_SAVE_AREA-4095(%r1) # validate cpu timer
LBEAR __LC_LAST_BREAK_SAVE_AREA-4095(%r1) # validate bear
lmg %r0,%r15,__LC_GPREGS_SAVE_AREA-4095(%r1)# validate gprs
lg %r12,__LC_CURRENT
lmg %r8,%r9,__LC_MCK_OLD_PSW
TSTMSK __LC_MCCK_CODE,MCCK_CODE_SYSTEM_DAMAGE
jo .Lmcck_panic # yes -> rest of mcck code invalid
TSTMSK __LC_MCCK_CODE,MCCK_CODE_CR_VALID
jno .Lmcck_panic # control registers invalid -> panic
la %r14,4095
lctlg %c0,%c15,__LC_CREGS_SAVE_AREA-4095(%r14) # validate ctl regs
ptlb
lghi %r14,__LC_CPU_TIMER_SAVE_AREA
mvc __LC_MCCK_ENTER_TIMER(8),0(%r14)
TSTMSK __LC_MCCK_CODE,MCCK_CODE_CPU_TIMER_VALID
jo 3f
la %r14,__LC_SYS_ENTER_TIMER
clc 0(8,%r14),__LC_EXIT_TIMER
jl 1f
la %r14,__LC_EXIT_TIMER
1: clc 0(8,%r14),__LC_LAST_UPDATE_TIMER
jl 2f
la %r14,__LC_LAST_UPDATE_TIMER
2: spt 0(%r14)
mvc __LC_MCCK_ENTER_TIMER(8),0(%r14)
3: TSTMSK __LC_MCCK_CODE,MCCK_CODE_PSW_MWP_VALID
jno .Lmcck_panic
tmhh %r8,0x0001 # interrupting from user ?
jnz .Lmcck_user
TSTMSK __LC_MCCK_CODE,MCCK_CODE_PSW_IA_VALID
jno .Lmcck_panic
#if IS_ENABLED(CONFIG_KVM)
OUTSIDE %r9,.Lsie_gmap,.Lsie_done,.Lmcck_stack
OUTSIDE %r9,.Lsie_entry,.Lsie_leave,4f
oi __LC_CPU_FLAGS+7, _CIF_MCCK_GUEST
4: BPENTER __SF_SIE_FLAGS(%r15),(_TIF_ISOLATE_BP|_TIF_ISOLATE_BP_GUEST)
SIEEXIT
j .Lmcck_stack
#endif
.Lmcck_user:
BPENTER __TI_flags(%r12),_TIF_ISOLATE_BP
.Lmcck_stack:
lg %r15,__LC_MCCK_STACK
la %r11,STACK_FRAME_OVERHEAD(%r15)
stctg %c1,%c1,__PT_CR1(%r11)
lctlg %c1,%c1,__LC_KERNEL_ASCE
xc __SF_BACKCHAIN(8,%r15),__SF_BACKCHAIN(%r15)
lghi %r14,__LC_GPREGS_SAVE_AREA+64
stmg %r0,%r7,__PT_R0(%r11)
# clear user controlled registers to prevent speculative use
xgr %r0,%r0
xgr %r1,%r1
xgr %r3,%r3
xgr %r4,%r4
xgr %r5,%r5
xgr %r6,%r6
xgr %r7,%r7
xgr %r10,%r10
mvc __PT_R8(64,%r11),0(%r14)
stmg %r8,%r9,__PT_PSW(%r11)
xc __PT_FLAGS(8,%r11),__PT_FLAGS(%r11)
xc __SF_BACKCHAIN(8,%r15),__SF_BACKCHAIN(%r15)
lgr %r2,%r11 # pass pointer to pt_regs
brasl %r14,s390_do_machine_check
cghi %r2,0
je .Lmcck_return
lg %r1,__LC_KERNEL_STACK # switch to kernel stack
mvc STACK_FRAME_OVERHEAD(__PT_SIZE,%r1),0(%r11)
xc __SF_BACKCHAIN(8,%r1),__SF_BACKCHAIN(%r1)
la %r11,STACK_FRAME_OVERHEAD(%r1)
lgr %r2,%r11
lgr %r15,%r1
brasl %r14,s390_handle_mcck
.Lmcck_return:
lctlg %c1,%c1,__PT_CR1(%r11)
lmg %r0,%r10,__PT_R0(%r11)
mvc __LC_RETURN_MCCK_PSW(16),__PT_PSW(%r11) # move return PSW
tm __LC_RETURN_MCCK_PSW+1,0x01 # returning to user ?
jno 0f
BPEXIT __TI_flags(%r12),_TIF_ISOLATE_BP
stpt __LC_EXIT_TIMER
0: ALTERNATIVE "nop", __stringify(lghi %r12,__LC_LAST_BREAK_SAVE_AREA),193
LBEAR 0(%r12)
lmg %r11,%r15,__PT_R11(%r11)
LPSWEY __LC_RETURN_MCCK_PSW,__LC_RETURN_MCCK_LPSWE
.Lmcck_panic:
/*
* Iterate over all possible CPU addresses in the range 0..0xffff
* and stop each CPU using signal processor. Use compare and swap
* to allow just one CPU-stopper and prevent concurrent CPUs from
* stopping each other while leaving the others running.
*/
lhi %r5,0
lhi %r6,1
larl %r7,.Lstop_lock
cs %r5,%r6,0(%r7) # single CPU-stopper only
jnz 4f
larl %r7,.Lthis_cpu
stap 0(%r7) # this CPU address
lh %r4,0(%r7)
nilh %r4,0
lhi %r0,1
sll %r0,16 # CPU counter
lhi %r3,0 # next CPU address
0: cr %r3,%r4
je 2f
1: sigp %r1,%r3,SIGP_STOP # stop next CPU
brc SIGP_CC_BUSY,1b
2: ahi %r3,1
brct %r0,0b
3: sigp %r1,%r4,SIGP_STOP # stop this CPU
brc SIGP_CC_BUSY,3b
4: j 4b
ENDPROC(mcck_int_handler)
ENTRY(restart_int_handler)
ALTERNATIVE "nop", "lpp _LPP_OFFSET", 40
stg %r15,__LC_SAVE_AREA_RESTART
TSTMSK __LC_RESTART_FLAGS,RESTART_FLAG_CTLREGS,4
jz 0f
la %r15,4095
lctlg %c0,%c15,__LC_CREGS_SAVE_AREA-4095(%r15)
0: larl %r15,.Lstosm_tmp
stosm 0(%r15),0x04 # turn dat on, keep irqs off
lg %r15,__LC_RESTART_STACK
xc STACK_FRAME_OVERHEAD(__PT_SIZE,%r15),STACK_FRAME_OVERHEAD(%r15)
stmg %r0,%r14,STACK_FRAME_OVERHEAD+__PT_R0(%r15)
mvc STACK_FRAME_OVERHEAD+__PT_R15(8,%r15),__LC_SAVE_AREA_RESTART
mvc STACK_FRAME_OVERHEAD+__PT_PSW(16,%r15),__LC_RST_OLD_PSW
xc 0(STACK_FRAME_OVERHEAD,%r15),0(%r15)
lg %r1,__LC_RESTART_FN # load fn, parm & source cpu
lg %r2,__LC_RESTART_DATA
lgf %r3,__LC_RESTART_SOURCE
ltgr %r3,%r3 # test source cpu address
jm 1f # negative -> skip source stop
0: sigp %r4,%r3,SIGP_SENSE # sigp sense to source cpu
brc 10,0b # wait for status stored
1: basr %r14,%r1 # call function
stap __SF_EMPTY(%r15) # store cpu address
llgh %r3,__SF_EMPTY(%r15)
2: sigp %r4,%r3,SIGP_STOP # sigp stop to current cpu
brc 2,2b
3: j 3b
ENDPROC(restart_int_handler)
.section .kprobes.text, "ax"
#if defined(CONFIG_CHECK_STACK) || defined(CONFIG_VMAP_STACK)
/*
* The synchronous or the asynchronous stack overflowed. We are dead.
* No need to properly save the registers, we are going to panic anyway.
* Setup a pt_regs so that show_trace can provide a good call trace.
*/
ENTRY(stack_overflow)
lg %r15,__LC_NODAT_STACK # change to panic stack
la %r11,STACK_FRAME_OVERHEAD(%r15)
stmg %r0,%r7,__PT_R0(%r11)
stmg %r8,%r9,__PT_PSW(%r11)
mvc __PT_R8(64,%r11),0(%r14)
stg %r10,__PT_ORIG_GPR2(%r11) # store last break to orig_gpr2
xc __SF_BACKCHAIN(8,%r15),__SF_BACKCHAIN(%r15)
lgr %r2,%r11 # pass pointer to pt_regs
jg kernel_stack_overflow
ENDPROC(stack_overflow)
#endif
.section .data, "aw"
.align 4
.Lstop_lock: .long 0
.Lthis_cpu: .short 0
.Lstosm_tmp: .byte 0
.section .rodata, "a"
#define SYSCALL(esame,emu) .quad __s390x_ ## esame
.globl sys_call_table
sys_call_table:
#include "asm/syscall_table.h"
#undef SYSCALL
#ifdef CONFIG_COMPAT
#define SYSCALL(esame,emu) .quad __s390_ ## emu
.globl sys_call_table_emu
sys_call_table_emu:
#include "asm/syscall_table.h"
#undef SYSCALL
#endif