blob: 4208338e72b6051da268abdbace9790c2186b346 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) STMicroelectronics SA 2017
* Author: Fabien Dessenne <fabien.dessenne@st.com>
* Ux500 support taken from snippets in the old Ux500 cryp driver
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <crypto/aes.h>
#include <crypto/internal/des.h>
#include <crypto/engine.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#define DRIVER_NAME "stm32-cryp"
/* Bit [0] encrypt / decrypt */
#define FLG_ENCRYPT BIT(0)
/* Bit [8..1] algo & operation mode */
#define FLG_AES BIT(1)
#define FLG_DES BIT(2)
#define FLG_TDES BIT(3)
#define FLG_ECB BIT(4)
#define FLG_CBC BIT(5)
#define FLG_CTR BIT(6)
#define FLG_GCM BIT(7)
#define FLG_CCM BIT(8)
/* Mode mask = bits [15..0] */
#define FLG_MODE_MASK GENMASK(15, 0)
/* Bit [31..16] status */
/* Registers */
#define CRYP_CR 0x00000000
#define CRYP_SR 0x00000004
#define CRYP_DIN 0x00000008
#define CRYP_DOUT 0x0000000C
#define CRYP_DMACR 0x00000010
#define CRYP_IMSCR 0x00000014
#define CRYP_RISR 0x00000018
#define CRYP_MISR 0x0000001C
#define CRYP_K0LR 0x00000020
#define CRYP_K0RR 0x00000024
#define CRYP_K1LR 0x00000028
#define CRYP_K1RR 0x0000002C
#define CRYP_K2LR 0x00000030
#define CRYP_K2RR 0x00000034
#define CRYP_K3LR 0x00000038
#define CRYP_K3RR 0x0000003C
#define CRYP_IV0LR 0x00000040
#define CRYP_IV0RR 0x00000044
#define CRYP_IV1LR 0x00000048
#define CRYP_IV1RR 0x0000004C
#define CRYP_CSGCMCCM0R 0x00000050
#define CRYP_CSGCM0R 0x00000070
#define UX500_CRYP_CR 0x00000000
#define UX500_CRYP_SR 0x00000004
#define UX500_CRYP_DIN 0x00000008
#define UX500_CRYP_DINSIZE 0x0000000C
#define UX500_CRYP_DOUT 0x00000010
#define UX500_CRYP_DOUSIZE 0x00000014
#define UX500_CRYP_DMACR 0x00000018
#define UX500_CRYP_IMSC 0x0000001C
#define UX500_CRYP_RIS 0x00000020
#define UX500_CRYP_MIS 0x00000024
#define UX500_CRYP_K1L 0x00000028
#define UX500_CRYP_K1R 0x0000002C
#define UX500_CRYP_K2L 0x00000030
#define UX500_CRYP_K2R 0x00000034
#define UX500_CRYP_K3L 0x00000038
#define UX500_CRYP_K3R 0x0000003C
#define UX500_CRYP_K4L 0x00000040
#define UX500_CRYP_K4R 0x00000044
#define UX500_CRYP_IV0L 0x00000048
#define UX500_CRYP_IV0R 0x0000004C
#define UX500_CRYP_IV1L 0x00000050
#define UX500_CRYP_IV1R 0x00000054
/* Registers values */
#define CR_DEC_NOT_ENC 0x00000004
#define CR_TDES_ECB 0x00000000
#define CR_TDES_CBC 0x00000008
#define CR_DES_ECB 0x00000010
#define CR_DES_CBC 0x00000018
#define CR_AES_ECB 0x00000020
#define CR_AES_CBC 0x00000028
#define CR_AES_CTR 0x00000030
#define CR_AES_KP 0x00000038 /* Not on Ux500 */
#define CR_AES_XTS 0x00000038 /* Only on Ux500 */
#define CR_AES_GCM 0x00080000
#define CR_AES_CCM 0x00080008
#define CR_AES_UNKNOWN 0xFFFFFFFF
#define CR_ALGO_MASK 0x00080038
#define CR_DATA32 0x00000000
#define CR_DATA16 0x00000040
#define CR_DATA8 0x00000080
#define CR_DATA1 0x000000C0
#define CR_KEY128 0x00000000
#define CR_KEY192 0x00000100
#define CR_KEY256 0x00000200
#define CR_KEYRDEN 0x00000400 /* Only on Ux500 */
#define CR_KSE 0x00000800 /* Only on Ux500 */
#define CR_FFLUSH 0x00004000
#define CR_CRYPEN 0x00008000
#define CR_PH_INIT 0x00000000
#define CR_PH_HEADER 0x00010000
#define CR_PH_PAYLOAD 0x00020000
#define CR_PH_FINAL 0x00030000
#define CR_PH_MASK 0x00030000
#define CR_NBPBL_SHIFT 20
#define SR_BUSY 0x00000010
#define SR_OFNE 0x00000004
#define IMSCR_IN BIT(0)
#define IMSCR_OUT BIT(1)
#define MISR_IN BIT(0)
#define MISR_OUT BIT(1)
/* Misc */
#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
#define GCM_CTR_INIT 2
#define CRYP_AUTOSUSPEND_DELAY 50
struct stm32_cryp_caps {
bool aeads_support;
bool linear_aes_key;
bool kp_mode;
bool iv_protection;
bool swap_final;
bool padding_wa;
u32 cr;
u32 sr;
u32 din;
u32 dout;
u32 imsc;
u32 mis;
u32 k1l;
u32 k1r;
u32 k3r;
u32 iv0l;
u32 iv0r;
u32 iv1l;
u32 iv1r;
};
struct stm32_cryp_ctx {
struct crypto_engine_ctx enginectx;
struct stm32_cryp *cryp;
int keylen;
__be32 key[AES_KEYSIZE_256 / sizeof(u32)];
unsigned long flags;
};
struct stm32_cryp_reqctx {
unsigned long mode;
};
struct stm32_cryp {
struct list_head list;
struct device *dev;
void __iomem *regs;
struct clk *clk;
unsigned long flags;
u32 irq_status;
const struct stm32_cryp_caps *caps;
struct stm32_cryp_ctx *ctx;
struct crypto_engine *engine;
struct skcipher_request *req;
struct aead_request *areq;
size_t authsize;
size_t hw_blocksize;
size_t payload_in;
size_t header_in;
size_t payload_out;
struct scatterlist *out_sg;
struct scatter_walk in_walk;
struct scatter_walk out_walk;
__be32 last_ctr[4];
u32 gcm_ctr;
};
struct stm32_cryp_list {
struct list_head dev_list;
spinlock_t lock; /* protect dev_list */
};
static struct stm32_cryp_list cryp_list = {
.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
};
static inline bool is_aes(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_AES;
}
static inline bool is_des(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_DES;
}
static inline bool is_tdes(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_TDES;
}
static inline bool is_ecb(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_ECB;
}
static inline bool is_cbc(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_CBC;
}
static inline bool is_ctr(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_CTR;
}
static inline bool is_gcm(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_GCM;
}
static inline bool is_ccm(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_CCM;
}
static inline bool is_encrypt(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_ENCRYPT;
}
static inline bool is_decrypt(struct stm32_cryp *cryp)
{
return !is_encrypt(cryp);
}
static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
{
return readl_relaxed(cryp->regs + ofst);
}
static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
{
writel_relaxed(val, cryp->regs + ofst);
}
static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
{
u32 status;
return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
!(status & SR_BUSY), 10, 100000);
}
static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
{
writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
cryp->regs + cryp->caps->cr);
}
static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
{
u32 status;
return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
!(status & CR_CRYPEN), 10, 100000);
}
static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
{
u32 status;
return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
status & SR_OFNE, 10, 100000);
}
static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
{
writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
cryp->regs + cryp->caps->cr);
}
static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
{
writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
cryp->regs + cryp->caps->cr);
}
static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
{
struct stm32_cryp *tmp, *cryp = NULL;
spin_lock_bh(&cryp_list.lock);
if (!ctx->cryp) {
list_for_each_entry(tmp, &cryp_list.dev_list, list) {
cryp = tmp;
break;
}
ctx->cryp = cryp;
} else {
cryp = ctx->cryp;
}
spin_unlock_bh(&cryp_list.lock);
return cryp;
}
static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
{
if (!iv)
return;
stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
if (is_aes(cryp)) {
stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
}
}
static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
{
struct skcipher_request *req = cryp->req;
__be32 *tmp = (void *)req->iv;
if (!tmp)
return;
if (cryp->caps->iv_protection)
stm32_cryp_key_read_enable(cryp);
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
if (is_aes(cryp)) {
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
}
if (cryp->caps->iv_protection)
stm32_cryp_key_read_disable(cryp);
}
/**
* ux500_swap_bits_in_byte() - mirror the bits in a byte
* @b: the byte to be mirrored
*
* The bits are swapped the following way:
* Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
* nibble 2 (n2) bits 4-7.
*
* Nibble 1 (n1):
* (The "old" (moved) bit is replaced with a zero)
* 1. Move bit 6 and 7, 4 positions to the left.
* 2. Move bit 3 and 5, 2 positions to the left.
* 3. Move bit 1-4, 1 position to the left.
*
* Nibble 2 (n2):
* 1. Move bit 0 and 1, 4 positions to the right.
* 2. Move bit 2 and 4, 2 positions to the right.
* 3. Move bit 3-6, 1 position to the right.
*
* Combine the two nibbles to a complete and swapped byte.
*/
static inline u8 ux500_swap_bits_in_byte(u8 b)
{
#define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
#define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
right shift 2 */
#define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
right shift 1 */
#define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
#define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
left shift 2 */
#define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
left shift 1 */
u8 n1;
u8 n2;
/* Swap most significant nibble */
/* Right shift 4, bits 6 and 7 */
n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
/* Right shift 2, bits 3 and 5 */
n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
/* Right shift 1, bits 1-4 */
n1 = (n1 & R_SHIFT_1_MASK) >> 1;
/* Swap least significant nibble */
/* Left shift 4, bits 0 and 1 */
n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
/* Left shift 2, bits 2 and 4 */
n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
/* Left shift 1, bits 3-6 */
n2 = (n2 & L_SHIFT_1_MASK) << 1;
return n1 | n2;
}
/**
* ux500_swizzle_key() - Shuffle around words and bits in the AES key
* @in: key to swizzle
* @out: swizzled key
* @len: length of key, in bytes
*
* This "key swizzling procedure" is described in the examples in the
* DB8500 design specification. There is no real description of why
* the bits have been arranged like this in the hardware.
*/
static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
{
int i = 0;
int bpw = sizeof(u32);
int j;
int index = 0;
j = len - bpw;
while (j >= 0) {
for (i = 0; i < bpw; i++) {
index = len - j - bpw + i;
out[j + i] =
ux500_swap_bits_in_byte(in[index]);
}
j -= bpw;
}
}
static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
{
unsigned int i;
int r_id;
if (is_des(c)) {
stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
return;
}
/*
* On the Ux500 the AES key is considered as a single bit sequence
* of 128, 192 or 256 bits length. It is written linearly into the
* registers from K1L and down, and need to be processed to become
* a proper big-endian bit sequence.
*/
if (is_aes(c) && c->caps->linear_aes_key) {
u32 tmpkey[8];
ux500_swizzle_key((u8 *)c->ctx->key,
(u8 *)tmpkey, c->ctx->keylen);
r_id = c->caps->k1l;
for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
stm32_cryp_write(c, r_id, tmpkey[i]);
return;
}
r_id = c->caps->k3r;
for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
}
static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
{
if (is_aes(cryp) && is_ecb(cryp))
return CR_AES_ECB;
if (is_aes(cryp) && is_cbc(cryp))
return CR_AES_CBC;
if (is_aes(cryp) && is_ctr(cryp))
return CR_AES_CTR;
if (is_aes(cryp) && is_gcm(cryp))
return CR_AES_GCM;
if (is_aes(cryp) && is_ccm(cryp))
return CR_AES_CCM;
if (is_des(cryp) && is_ecb(cryp))
return CR_DES_ECB;
if (is_des(cryp) && is_cbc(cryp))
return CR_DES_CBC;
if (is_tdes(cryp) && is_ecb(cryp))
return CR_TDES_ECB;
if (is_tdes(cryp) && is_cbc(cryp))
return CR_TDES_CBC;
dev_err(cryp->dev, "Unknown mode\n");
return CR_AES_UNKNOWN;
}
static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
{
return is_encrypt(cryp) ? cryp->areq->cryptlen :
cryp->areq->cryptlen - cryp->authsize;
}
static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
{
int ret;
__be32 iv[4];
/* Phase 1 : init */
memcpy(iv, cryp->areq->iv, 12);
iv[3] = cpu_to_be32(GCM_CTR_INIT);
cryp->gcm_ctr = GCM_CTR_INIT;
stm32_cryp_hw_write_iv(cryp, iv);
stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
/* Wait for end of processing */
ret = stm32_cryp_wait_enable(cryp);
if (ret) {
dev_err(cryp->dev, "Timeout (gcm init)\n");
return ret;
}
/* Prepare next phase */
if (cryp->areq->assoclen) {
cfg |= CR_PH_HEADER;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
} else if (stm32_cryp_get_input_text_len(cryp)) {
cfg |= CR_PH_PAYLOAD;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
}
return 0;
}
static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
{
u32 cfg;
int err;
/* Check if whole header written */
if (!cryp->header_in) {
/* Wait for completion */
err = stm32_cryp_wait_busy(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
stm32_cryp_write(cryp, cryp->caps->imsc, 0);
stm32_cryp_finish_req(cryp, err);
return;
}
if (stm32_cryp_get_input_text_len(cryp)) {
/* Phase 3 : payload */
cfg = stm32_cryp_read(cryp, cryp->caps->cr);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
} else {
/*
* Phase 4 : tag.
* Nothing to read, nothing to write, caller have to
* end request
*/
}
}
}
static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
{
unsigned int i;
size_t written;
size_t len;
u32 alen = cryp->areq->assoclen;
u32 block[AES_BLOCK_32] = {0};
u8 *b8 = (u8 *)block;
if (alen <= 65280) {
/* Write first u32 of B1 */
b8[0] = (alen >> 8) & 0xFF;
b8[1] = alen & 0xFF;
len = 2;
} else {
/* Build the two first u32 of B1 */
b8[0] = 0xFF;
b8[1] = 0xFE;
b8[2] = (alen & 0xFF000000) >> 24;
b8[3] = (alen & 0x00FF0000) >> 16;
b8[4] = (alen & 0x0000FF00) >> 8;
b8[5] = alen & 0x000000FF;
len = 6;
}
written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
for (i = 0; i < AES_BLOCK_32; i++)
stm32_cryp_write(cryp, cryp->caps->din, block[i]);
cryp->header_in -= written;
stm32_crypt_gcmccm_end_header(cryp);
}
static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
{
int ret;
u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
__be32 *bd;
u32 *d;
unsigned int i, textlen;
/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
iv[AES_BLOCK_SIZE - 1] = 1;
stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
/* Build B0 */
memcpy(b0, iv, AES_BLOCK_SIZE);
b0[0] |= (8 * ((cryp->authsize - 2) / 2));
if (cryp->areq->assoclen)
b0[0] |= 0x40;
textlen = stm32_cryp_get_input_text_len(cryp);
b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
/* Enable HW */
stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
/* Write B0 */
d = (u32 *)b0;
bd = (__be32 *)b0;
for (i = 0; i < AES_BLOCK_32; i++) {
u32 xd = d[i];
if (!cryp->caps->padding_wa)
xd = be32_to_cpu(bd[i]);
stm32_cryp_write(cryp, cryp->caps->din, xd);
}
/* Wait for end of processing */
ret = stm32_cryp_wait_enable(cryp);
if (ret) {
dev_err(cryp->dev, "Timeout (ccm init)\n");
return ret;
}
/* Prepare next phase */
if (cryp->areq->assoclen) {
cfg |= CR_PH_HEADER | CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* Write first (special) block (may move to next phase [payload]) */
stm32_cryp_write_ccm_first_header(cryp);
} else if (stm32_cryp_get_input_text_len(cryp)) {
cfg |= CR_PH_PAYLOAD;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
}
return 0;
}
static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
{
int ret;
u32 cfg, hw_mode;
pm_runtime_get_sync(cryp->dev);
/* Disable interrupt */
stm32_cryp_write(cryp, cryp->caps->imsc, 0);
/* Set configuration */
cfg = CR_DATA8 | CR_FFLUSH;
switch (cryp->ctx->keylen) {
case AES_KEYSIZE_128:
cfg |= CR_KEY128;
break;
case AES_KEYSIZE_192:
cfg |= CR_KEY192;
break;
default:
case AES_KEYSIZE_256:
cfg |= CR_KEY256;
break;
}
hw_mode = stm32_cryp_get_hw_mode(cryp);
if (hw_mode == CR_AES_UNKNOWN)
return -EINVAL;
/* AES ECB/CBC decrypt: run key preparation first */
if (is_decrypt(cryp) &&
((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
/* Configure in key preparation mode */
if (cryp->caps->kp_mode)
stm32_cryp_write(cryp, cryp->caps->cr,
cfg | CR_AES_KP);
else
stm32_cryp_write(cryp,
cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
/* Set key only after full configuration done */
stm32_cryp_hw_write_key(cryp);
/* Start prepare key */
stm32_cryp_enable(cryp);
/* Wait for end of processing */
ret = stm32_cryp_wait_busy(cryp);
if (ret) {
dev_err(cryp->dev, "Timeout (key preparation)\n");
return ret;
}
cfg |= hw_mode | CR_DEC_NOT_ENC;
/* Apply updated config (Decrypt + algo) and flush */
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
} else {
cfg |= hw_mode;
if (is_decrypt(cryp))
cfg |= CR_DEC_NOT_ENC;
/* Apply config and flush */
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* Set key only after configuration done */
stm32_cryp_hw_write_key(cryp);
}
switch (hw_mode) {
case CR_AES_GCM:
case CR_AES_CCM:
/* Phase 1 : init */
if (hw_mode == CR_AES_CCM)
ret = stm32_cryp_ccm_init(cryp, cfg);
else
ret = stm32_cryp_gcm_init(cryp, cfg);
if (ret)
return ret;
break;
case CR_DES_CBC:
case CR_TDES_CBC:
case CR_AES_CBC:
case CR_AES_CTR:
stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
break;
default:
break;
}
/* Enable now */
stm32_cryp_enable(cryp);
return 0;
}
static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
{
if (!err && (is_gcm(cryp) || is_ccm(cryp)))
/* Phase 4 : output tag */
err = stm32_cryp_read_auth_tag(cryp);
if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
stm32_cryp_get_iv(cryp);
pm_runtime_mark_last_busy(cryp->dev);
pm_runtime_put_autosuspend(cryp->dev);
if (is_gcm(cryp) || is_ccm(cryp))
crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
else
crypto_finalize_skcipher_request(cryp->engine, cryp->req,
err);
}
static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
{
/* Enable interrupt and let the IRQ handler do everything */
stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
return 0;
}
static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
void *areq);
static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
{
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
ctx->enginectx.op.unprepare_request = NULL;
return 0;
}
static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
void *areq);
static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
{
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
ctx->enginectx.op.unprepare_request = NULL;
return 0;
}
static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
{
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
if (!cryp)
return -ENODEV;
rctx->mode = mode;
return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
}
static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
{
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
if (!cryp)
return -ENODEV;
rctx->mode = mode;
return crypto_transfer_aead_request_to_engine(cryp->engine, req);
}
static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
else
return stm32_cryp_setkey(tfm, key, keylen);
}
static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
return verify_skcipher_des_key(tfm, key) ?:
stm32_cryp_setkey(tfm, key, keylen);
}
static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
return verify_skcipher_des3_key(tfm, key) ?:
stm32_cryp_setkey(tfm, key, keylen);
}
static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 8:
case 12:
case 13:
case 14:
case 15:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
{
if (req->cryptlen % AES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
}
static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
{
if (req->cryptlen % AES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
}
static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
{
if (req->cryptlen % AES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
}
static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
{
if (req->cryptlen % AES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
}
static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
{
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
}
static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
{
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
}
static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
{
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
}
static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
{
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
}
static inline int crypto_ccm_check_iv(const u8 *iv)
{
/* 2 <= L <= 8, so 1 <= L' <= 7. */
if (iv[0] < 1 || iv[0] > 7)
return -EINVAL;
return 0;
}
static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
{
int err;
err = crypto_ccm_check_iv(req->iv);
if (err)
return err;
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
}
static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
{
int err;
err = crypto_ccm_check_iv(req->iv);
if (err)
return err;
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
}
static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
}
static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
}
static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
}
static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
}
static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
}
static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
}
static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
}
static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
{
if (req->cryptlen % DES_BLOCK_SIZE)
return -EINVAL;
if (req->cryptlen == 0)
return 0;
return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
}
static int stm32_cryp_prepare_req(struct skcipher_request *req,
struct aead_request *areq)
{
struct stm32_cryp_ctx *ctx;
struct stm32_cryp *cryp;
struct stm32_cryp_reqctx *rctx;
struct scatterlist *in_sg;
int ret;
if (!req && !areq)
return -EINVAL;
ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
crypto_aead_ctx(crypto_aead_reqtfm(areq));
cryp = ctx->cryp;
if (!cryp)
return -ENODEV;
rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
rctx->mode &= FLG_MODE_MASK;
ctx->cryp = cryp;
cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
cryp->ctx = ctx;
if (req) {
cryp->req = req;
cryp->areq = NULL;
cryp->header_in = 0;
cryp->payload_in = req->cryptlen;
cryp->payload_out = req->cryptlen;
cryp->authsize = 0;
} else {
/*
* Length of input and output data:
* Encryption case:
* INPUT = AssocData || PlainText
* <- assoclen -> <- cryptlen ->
*
* OUTPUT = AssocData || CipherText || AuthTag
* <- assoclen -> <-- cryptlen --> <- authsize ->
*
* Decryption case:
* INPUT = AssocData || CipherTex || AuthTag
* <- assoclen ---> <---------- cryptlen ---------->
*
* OUTPUT = AssocData || PlainText
* <- assoclen -> <- cryptlen - authsize ->
*/
cryp->areq = areq;
cryp->req = NULL;
cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
if (is_encrypt(cryp)) {
cryp->payload_in = areq->cryptlen;
cryp->header_in = areq->assoclen;
cryp->payload_out = areq->cryptlen;
} else {
cryp->payload_in = areq->cryptlen - cryp->authsize;
cryp->header_in = areq->assoclen;
cryp->payload_out = cryp->payload_in;
}
}
in_sg = req ? req->src : areq->src;
scatterwalk_start(&cryp->in_walk, in_sg);
cryp->out_sg = req ? req->dst : areq->dst;
scatterwalk_start(&cryp->out_walk, cryp->out_sg);
if (is_gcm(cryp) || is_ccm(cryp)) {
/* In output, jump after assoc data */
scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
}
if (is_ctr(cryp))
memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
ret = stm32_cryp_hw_init(cryp);
return ret;
}
static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
void *areq)
{
struct skcipher_request *req = container_of(areq,
struct skcipher_request,
base);
return stm32_cryp_prepare_req(req, NULL);
}
static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
{
struct skcipher_request *req = container_of(areq,
struct skcipher_request,
base);
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
struct stm32_cryp *cryp = ctx->cryp;
if (!cryp)
return -ENODEV;
return stm32_cryp_cpu_start(cryp);
}
static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request,
base);
return stm32_cryp_prepare_req(NULL, req);
}
static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request,
base);
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct stm32_cryp *cryp = ctx->cryp;
if (!cryp)
return -ENODEV;
if (unlikely(!cryp->payload_in && !cryp->header_in)) {
/* No input data to process: get tag and finish */
stm32_cryp_finish_req(cryp, 0);
return 0;
}
return stm32_cryp_cpu_start(cryp);
}
static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
{
u32 cfg, size_bit;
unsigned int i;
int ret = 0;
/* Update Config */
cfg = stm32_cryp_read(cryp, cryp->caps->cr);
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_FINAL;
cfg &= ~CR_DEC_NOT_ENC;
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
if (is_gcm(cryp)) {
/* GCM: write aad and payload size (in bits) */
size_bit = cryp->areq->assoclen * 8;
if (cryp->caps->swap_final)
size_bit = (__force u32)cpu_to_be32(size_bit);
stm32_cryp_write(cryp, cryp->caps->din, 0);
stm32_cryp_write(cryp, cryp->caps->din, size_bit);
size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
cryp->areq->cryptlen - cryp->authsize;
size_bit *= 8;
if (cryp->caps->swap_final)
size_bit = (__force u32)cpu_to_be32(size_bit);
stm32_cryp_write(cryp, cryp->caps->din, 0);
stm32_cryp_write(cryp, cryp->caps->din, size_bit);
} else {
/* CCM: write CTR0 */
u32 iv32[AES_BLOCK_32];
u8 *iv = (u8 *)iv32;
__be32 *biv = (__be32 *)iv32;
memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
for (i = 0; i < AES_BLOCK_32; i++) {
u32 xiv = iv32[i];
if (!cryp->caps->padding_wa)
xiv = be32_to_cpu(biv[i]);
stm32_cryp_write(cryp, cryp->caps->din, xiv);
}
}
/* Wait for output data */
ret = stm32_cryp_wait_output(cryp);
if (ret) {
dev_err(cryp->dev, "Timeout (read tag)\n");
return ret;
}
if (is_encrypt(cryp)) {
u32 out_tag[AES_BLOCK_32];
/* Get and write tag */
for (i = 0; i < AES_BLOCK_32; i++)
out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
} else {
/* Get and check tag */
u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
for (i = 0; i < AES_BLOCK_32; i++)
out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
if (crypto_memneq(in_tag, out_tag, cryp->authsize))
ret = -EBADMSG;
}
/* Disable cryp */
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
return ret;
}
static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
{
u32 cr;
if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
/*
* In this case, we need to increment manually the ctr counter,
* as HW doesn't handle the U32 carry.
*/
crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
cr = stm32_cryp_read(cryp, cryp->caps->cr);
stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
stm32_cryp_write(cryp, cryp->caps->cr, cr);
}
/* The IV registers are BE */
cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
}
static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
{
unsigned int i;
u32 block[AES_BLOCK_32];
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
cryp->payload_out), 1);
cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
cryp->payload_out);
}
static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
{
unsigned int i;
u32 block[AES_BLOCK_32] = {0};
scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
cryp->payload_in), 0);
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
stm32_cryp_write(cryp, cryp->caps->din, block[i]);
cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
}
static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
{
int err;
u32 cfg, block[AES_BLOCK_32] = {0};
unsigned int i;
/* 'Special workaround' procedure described in the datasheet */
/* a) disable ip */
stm32_cryp_write(cryp, cryp->caps->imsc, 0);
cfg = stm32_cryp_read(cryp, cryp->caps->cr);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* b) Update IV1R */
stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
/* c) change mode to CTR */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_CTR;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* a) enable IP */
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* b) pad and write the last block */
stm32_cryp_irq_write_block(cryp);
/* wait end of process */
err = stm32_cryp_wait_output(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (write gcm last data)\n");
return stm32_cryp_finish_req(cryp, err);
}
/* c) get and store encrypted data */
/*
* Same code as stm32_cryp_irq_read_data(), but we want to store
* block value
*/
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
cryp->payload_out), 1);
cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
cryp->payload_out);
/* d) change mode back to AES GCM */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_GCM;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* e) change phase to Final */
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_FINAL;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* f) write padded data */
for (i = 0; i < AES_BLOCK_32; i++)
stm32_cryp_write(cryp, cryp->caps->din, block[i]);
/* g) Empty fifo out */
err = stm32_cryp_wait_output(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
return stm32_cryp_finish_req(cryp, err);
}
for (i = 0; i < AES_BLOCK_32; i++)
stm32_cryp_read(cryp, cryp->caps->dout);
/* h) run the he normal Final phase */
stm32_cryp_finish_req(cryp, 0);
}
static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
{
u32 cfg;
/* disable ip, set NPBLB and reneable ip */
cfg = stm32_cryp_read(cryp, cryp->caps->cr);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
}
static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
{
int err = 0;
u32 cfg, iv1tmp;
u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
u32 block[AES_BLOCK_32] = {0};
unsigned int i;
/* 'Special workaround' procedure described in the datasheet */
/* a) disable ip */
stm32_cryp_write(cryp, cryp->caps->imsc, 0);
cfg = stm32_cryp_read(cryp, cryp->caps->cr);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* b) get IV1 from CRYP_CSGCMCCM7 */
iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
/* c) Load CRYP_CSGCMCCMxR */
for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
/* d) Write IV1R */
stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
/* e) change mode to CTR */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_CTR;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* a) enable IP */
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* b) pad and write the last block */
stm32_cryp_irq_write_block(cryp);
/* wait end of process */
err = stm32_cryp_wait_output(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
return stm32_cryp_finish_req(cryp, err);
}
/* c) get and store decrypted data */
/*
* Same code as stm32_cryp_irq_read_data(), but we want to store
* block value
*/
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
cryp->payload_out), 1);
cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
/* d) Load again CRYP_CSGCMCCMxR */
for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
/* e) change mode back to AES CCM */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_CCM;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* f) change phase to header */
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_HEADER;
stm32_cryp_write(cryp, cryp->caps->cr, cfg);
/* g) XOR and write padded data */
for (i = 0; i < ARRAY_SIZE(block); i++) {
block[i] ^= cstmp1[i];
block[i] ^= cstmp2[i];
stm32_cryp_write(cryp, cryp->caps->din, block[i]);
}
/* h) wait for completion */
err = stm32_cryp_wait_busy(cryp);
if (err)
dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
/* i) run the he normal Final phase */
stm32_cryp_finish_req(cryp, err);
}
static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
{
if (unlikely(!cryp->payload_in)) {
dev_warn(cryp->dev, "No more data to process\n");
return;
}
if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
(stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
is_encrypt(cryp))) {
/* Padding for AES GCM encryption */
if (cryp->caps->padding_wa) {
/* Special case 1 */
stm32_cryp_irq_write_gcm_padded_data(cryp);
return;
}
/* Setting padding bytes (NBBLB) */
stm32_cryp_irq_set_npblb(cryp);
}
if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
(stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
is_decrypt(cryp))) {
/* Padding for AES CCM decryption */
if (cryp->caps->padding_wa) {
/* Special case 2 */
stm32_cryp_irq_write_ccm_padded_data(cryp);
return;
}
/* Setting padding bytes (NBBLB) */
stm32_cryp_irq_set_npblb(cryp);
}
if (is_aes(cryp) && is_ctr(cryp))
stm32_cryp_check_ctr_counter(cryp);
stm32_cryp_irq_write_block(cryp);
}
static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
{
unsigned int i;
u32 block[AES_BLOCK_32] = {0};
size_t written;
written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
for (i = 0; i < AES_BLOCK_32; i++)
stm32_cryp_write(cryp, cryp->caps->din, block[i]);
cryp->header_in -= written;
stm32_crypt_gcmccm_end_header(cryp);
}
static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
{
struct stm32_cryp *cryp = arg;
u32 ph;
u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
if (cryp->irq_status & MISR_OUT)
/* Output FIFO IRQ: read data */
stm32_cryp_irq_read_data(cryp);
if (cryp->irq_status & MISR_IN) {
if (is_gcm(cryp) || is_ccm(cryp)) {
ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
if (unlikely(ph == CR_PH_HEADER))
/* Write Header */
stm32_cryp_irq_write_gcmccm_header(cryp);
else
/* Input FIFO IRQ: write data */
stm32_cryp_irq_write_data(cryp);
if (is_gcm(cryp))
cryp->gcm_ctr++;
} else {
/* Input FIFO IRQ: write data */
stm32_cryp_irq_write_data(cryp);
}
}
/* Mask useless interrupts */
if (!cryp->payload_in && !cryp->header_in)
it_mask &= ~IMSCR_IN;
if (!cryp->payload_out)
it_mask &= ~IMSCR_OUT;
stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
stm32_cryp_finish_req(cryp, 0);
return IRQ_HANDLED;
}
static irqreturn_t stm32_cryp_irq(int irq, void *arg)
{
struct stm32_cryp *cryp = arg;
cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
return IRQ_WAKE_THREAD;
}
static struct skcipher_alg crypto_algs[] = {
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "stm32-ecb-aes",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = stm32_cryp_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = stm32_cryp_aes_setkey,
.encrypt = stm32_cryp_aes_ecb_encrypt,
.decrypt = stm32_cryp_aes_ecb_decrypt,
},
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "stm32-cbc-aes",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = stm32_cryp_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = stm32_cryp_aes_setkey,
.encrypt = stm32_cryp_aes_cbc_encrypt,
.decrypt = stm32_cryp_aes_cbc_decrypt,
},
{
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "stm32-ctr-aes",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = stm32_cryp_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = stm32_cryp_aes_setkey,
.encrypt = stm32_cryp_aes_ctr_encrypt,
.decrypt = stm32_cryp_aes_ctr_decrypt,
},
{
.base.cra_name = "ecb(des)",
.base.cra_driver_name = "stm32-ecb-des",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = stm32_cryp_init_tfm,
.min_keysize = DES_BLOCK_SIZE,
.max_keysize = DES_BLOCK_SIZE,
.setkey = stm32_cryp_des_setkey,
.encrypt = stm32_cryp_des_ecb_encrypt,
.decrypt = stm32_cryp_des_ecb_decrypt,
},
{
.base.cra_name = "cbc(des)",
.base.cra_driver_name = "stm32-cbc-des",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = stm32_cryp_init_tfm,
.min_keysize = DES_BLOCK_SIZE,
.max_keysize = DES_BLOCK_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = stm32_cryp_des_setkey,
.encrypt = stm32_cryp_des_cbc_encrypt,
.decrypt = stm32_cryp_des_cbc_decrypt,
},
{
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "stm32-ecb-des3",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = stm32_cryp_init_tfm,
.min_keysize = 3 * DES_BLOCK_SIZE,
.max_keysize = 3 * DES_BLOCK_SIZE,
.setkey = stm32_cryp_tdes_setkey,
.encrypt = stm32_cryp_tdes_ecb_encrypt,
.decrypt = stm32_cryp_tdes_ecb_decrypt,
},
{
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "stm32-cbc-des3",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.base.cra_alignmask = 0,
.base.cra_module = THIS_MODULE,
.init = stm32_cryp_init_tfm,
.min_keysize = 3 * DES_BLOCK_SIZE,
.max_keysize = 3 * DES_BLOCK_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = stm32_cryp_tdes_setkey,
.encrypt = stm32_cryp_tdes_cbc_encrypt,
.decrypt = stm32_cryp_tdes_cbc_decrypt,
},
};
static struct aead_alg aead_algs[] = {
{
.setkey = stm32_cryp_aes_aead_setkey,
.setauthsize = stm32_cryp_aes_gcm_setauthsize,
.encrypt = stm32_cryp_aes_gcm_encrypt,
.decrypt = stm32_cryp_aes_gcm_decrypt,
.init = stm32_cryp_aes_aead_init,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "stm32-gcm-aes",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
},
{
.setkey = stm32_cryp_aes_aead_setkey,
.setauthsize = stm32_cryp_aes_ccm_setauthsize,
.encrypt = stm32_cryp_aes_ccm_encrypt,
.decrypt = stm32_cryp_aes_ccm_decrypt,
.init = stm32_cryp_aes_aead_init,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "stm32-ccm-aes",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
},
};
static const struct stm32_cryp_caps ux500_data = {
.aeads_support = false,
.linear_aes_key = true,
.kp_mode = false,
.iv_protection = true,
.swap_final = true,
.padding_wa = true,
.cr = UX500_CRYP_CR,
.sr = UX500_CRYP_SR,
.din = UX500_CRYP_DIN,
.dout = UX500_CRYP_DOUT,
.imsc = UX500_CRYP_IMSC,
.mis = UX500_CRYP_MIS,
.k1l = UX500_CRYP_K1L,
.k1r = UX500_CRYP_K1R,
.k3r = UX500_CRYP_K3R,
.iv0l = UX500_CRYP_IV0L,
.iv0r = UX500_CRYP_IV0R,
.iv1l = UX500_CRYP_IV1L,
.iv1r = UX500_CRYP_IV1R,
};
static const struct stm32_cryp_caps f7_data = {
.aeads_support = true,
.linear_aes_key = false,
.kp_mode = true,
.iv_protection = false,
.swap_final = true,
.padding_wa = true,
.cr = CRYP_CR,
.sr = CRYP_SR,
.din = CRYP_DIN,
.dout = CRYP_DOUT,
.imsc = CRYP_IMSCR,
.mis = CRYP_MISR,
.k1l = CRYP_K1LR,
.k1r = CRYP_K1RR,
.k3r = CRYP_K3RR,
.iv0l = CRYP_IV0LR,
.iv0r = CRYP_IV0RR,
.iv1l = CRYP_IV1LR,
.iv1r = CRYP_IV1RR,
};
static const struct stm32_cryp_caps mp1_data = {
.aeads_support = true,
.linear_aes_key = false,
.kp_mode = true,
.iv_protection = false,
.swap_final = false,
.padding_wa = false,
.cr = CRYP_CR,
.sr = CRYP_SR,
.din = CRYP_DIN,
.dout = CRYP_DOUT,
.imsc = CRYP_IMSCR,
.mis = CRYP_MISR,
.k1l = CRYP_K1LR,
.k1r = CRYP_K1RR,
.k3r = CRYP_K3RR,
.iv0l = CRYP_IV0LR,
.iv0r = CRYP_IV0RR,
.iv1l = CRYP_IV1LR,
.iv1r = CRYP_IV1RR,
};
static const struct of_device_id stm32_dt_ids[] = {
{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
{},
};
MODULE_DEVICE_TABLE(of, stm32_dt_ids);
static int stm32_cryp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_cryp *cryp;
struct reset_control *rst;
int irq, ret;
cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
if (!cryp)
return -ENOMEM;
cryp->caps = of_device_get_match_data(dev);
if (!cryp->caps)
return -ENODEV;
cryp->dev = dev;
cryp->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(cryp->regs))
return PTR_ERR(cryp->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
stm32_cryp_irq_thread, IRQF_ONESHOT,
dev_name(dev), cryp);
if (ret) {
dev_err(dev, "Cannot grab IRQ\n");
return ret;
}
cryp->clk = devm_clk_get(dev, NULL);
if (IS_ERR(cryp->clk)) {
dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
return PTR_ERR(cryp->clk);
}
ret = clk_prepare_enable(cryp->clk);
if (ret) {
dev_err(cryp->dev, "Failed to enable clock\n");
return ret;
}
pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
rst = devm_reset_control_get(dev, NULL);
if (IS_ERR(rst)) {
ret = PTR_ERR(rst);
if (ret == -EPROBE_DEFER)
goto err_rst;
} else {
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
}
platform_set_drvdata(pdev, cryp);
spin_lock(&cryp_list.lock);
list_add(&cryp->list, &cryp_list.dev_list);
spin_unlock(&cryp_list.lock);
/* Initialize crypto engine */
cryp->engine = crypto_engine_alloc_init(dev, 1);
if (!cryp->engine) {
dev_err(dev, "Could not init crypto engine\n");
ret = -ENOMEM;
goto err_engine1;
}
ret = crypto_engine_start(cryp->engine);
if (ret) {
dev_err(dev, "Could not start crypto engine\n");
goto err_engine2;
}
ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
if (ret) {
dev_err(dev, "Could not register algs\n");
goto err_algs;
}
if (cryp->caps->aeads_support) {
ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
if (ret)
goto err_aead_algs;
}
dev_info(dev, "Initialized\n");
pm_runtime_put_sync(dev);
return 0;
err_aead_algs:
crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
err_algs:
err_engine2:
crypto_engine_exit(cryp->engine);
err_engine1:
spin_lock(&cryp_list.lock);
list_del(&cryp->list);
spin_unlock(&cryp_list.lock);
err_rst:
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
clk_disable_unprepare(cryp->clk);
return ret;
}
static int stm32_cryp_remove(struct platform_device *pdev)
{
struct stm32_cryp *cryp = platform_get_drvdata(pdev);
int ret;
if (!cryp)
return -ENODEV;
ret = pm_runtime_resume_and_get(cryp->dev);
if (ret < 0)
return ret;
if (cryp->caps->aeads_support)
crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
crypto_engine_exit(cryp->engine);
spin_lock(&cryp_list.lock);
list_del(&cryp->list);
spin_unlock(&cryp_list.lock);
pm_runtime_disable(cryp->dev);
pm_runtime_put_noidle(cryp->dev);
clk_disable_unprepare(cryp->clk);
return 0;
}
#ifdef CONFIG_PM
static int stm32_cryp_runtime_suspend(struct device *dev)
{
struct stm32_cryp *cryp = dev_get_drvdata(dev);
clk_disable_unprepare(cryp->clk);
return 0;
}
static int stm32_cryp_runtime_resume(struct device *dev)
{
struct stm32_cryp *cryp = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(cryp->clk);
if (ret) {
dev_err(cryp->dev, "Failed to prepare_enable clock\n");
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops stm32_cryp_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
stm32_cryp_runtime_resume, NULL)
};
static struct platform_driver stm32_cryp_driver = {
.probe = stm32_cryp_probe,
.remove = stm32_cryp_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &stm32_cryp_pm_ops,
.of_match_table = stm32_dt_ids,
},
};
module_platform_driver(stm32_cryp_driver);
MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
MODULE_LICENSE("GPL");