| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Freescale Memory Controller kernel module |
| * |
| * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and |
| * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally |
| * split out from mpc85xx_edac EDAC driver. |
| * |
| * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc. |
| * |
| * Author: Dave Jiang <djiang@mvista.com> |
| * |
| * 2006-2007 (c) MontaVista Software, Inc. |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/ctype.h> |
| #include <linux/io.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/edac.h> |
| #include <linux/smp.h> |
| #include <linux/gfp.h> |
| |
| #include <linux/of_platform.h> |
| #include <linux/of_device.h> |
| #include <linux/of_address.h> |
| #include "edac_module.h" |
| #include "fsl_ddr_edac.h" |
| |
| #define EDAC_MOD_STR "fsl_ddr_edac" |
| |
| static int edac_mc_idx; |
| |
| static u32 orig_ddr_err_disable; |
| static u32 orig_ddr_err_sbe; |
| static bool little_endian; |
| |
| static inline u32 ddr_in32(void __iomem *addr) |
| { |
| return little_endian ? ioread32(addr) : ioread32be(addr); |
| } |
| |
| static inline void ddr_out32(void __iomem *addr, u32 value) |
| { |
| if (little_endian) |
| iowrite32(value, addr); |
| else |
| iowrite32be(value, addr); |
| } |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| /************************ MC SYSFS parts ***********************************/ |
| |
| #define to_mci(k) container_of(k, struct mem_ctl_info, dev) |
| |
| static ssize_t fsl_mc_inject_data_hi_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| return sprintf(data, "0x%08x", |
| ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI)); |
| } |
| |
| static ssize_t fsl_mc_inject_data_lo_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| return sprintf(data, "0x%08x", |
| ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO)); |
| } |
| |
| static ssize_t fsl_mc_inject_ctrl_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| return sprintf(data, "0x%08x", |
| ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT)); |
| } |
| |
| static ssize_t fsl_mc_inject_data_hi_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| unsigned long val; |
| int rc; |
| |
| if (isdigit(*data)) { |
| rc = kstrtoul(data, 0, &val); |
| if (rc) |
| return rc; |
| |
| ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val); |
| return count; |
| } |
| return 0; |
| } |
| |
| static ssize_t fsl_mc_inject_data_lo_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| unsigned long val; |
| int rc; |
| |
| if (isdigit(*data)) { |
| rc = kstrtoul(data, 0, &val); |
| if (rc) |
| return rc; |
| |
| ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val); |
| return count; |
| } |
| return 0; |
| } |
| |
| static ssize_t fsl_mc_inject_ctrl_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| unsigned long val; |
| int rc; |
| |
| if (isdigit(*data)) { |
| rc = kstrtoul(data, 0, &val); |
| if (rc) |
| return rc; |
| |
| ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val); |
| return count; |
| } |
| return 0; |
| } |
| |
| static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR, |
| fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store); |
| static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR, |
| fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store); |
| static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR, |
| fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store); |
| #endif /* CONFIG_EDAC_DEBUG */ |
| |
| static struct attribute *fsl_ddr_dev_attrs[] = { |
| #ifdef CONFIG_EDAC_DEBUG |
| &dev_attr_inject_data_hi.attr, |
| &dev_attr_inject_data_lo.attr, |
| &dev_attr_inject_ctrl.attr, |
| #endif |
| NULL |
| }; |
| |
| ATTRIBUTE_GROUPS(fsl_ddr_dev); |
| |
| /**************************** MC Err device ***************************/ |
| |
| /* |
| * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the |
| * MPC8572 User's Manual. Each line represents a syndrome bit column as a |
| * 64-bit value, but split into an upper and lower 32-bit chunk. The labels |
| * below correspond to Freescale's manuals. |
| */ |
| static unsigned int ecc_table[16] = { |
| /* MSB LSB */ |
| /* [0:31] [32:63] */ |
| 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */ |
| 0x00ff00ff, 0x00fff0ff, |
| 0x0f0f0f0f, 0x0f0fff00, |
| 0x11113333, 0x7777000f, |
| 0x22224444, 0x8888222f, |
| 0x44448888, 0xffff4441, |
| 0x8888ffff, 0x11118882, |
| 0xffff1111, 0x22221114, /* Syndrome bit 0 */ |
| }; |
| |
| /* |
| * Calculate the correct ECC value for a 64-bit value specified by high:low |
| */ |
| static u8 calculate_ecc(u32 high, u32 low) |
| { |
| u32 mask_low; |
| u32 mask_high; |
| int bit_cnt; |
| u8 ecc = 0; |
| int i; |
| int j; |
| |
| for (i = 0; i < 8; i++) { |
| mask_high = ecc_table[i * 2]; |
| mask_low = ecc_table[i * 2 + 1]; |
| bit_cnt = 0; |
| |
| for (j = 0; j < 32; j++) { |
| if ((mask_high >> j) & 1) |
| bit_cnt ^= (high >> j) & 1; |
| if ((mask_low >> j) & 1) |
| bit_cnt ^= (low >> j) & 1; |
| } |
| |
| ecc |= bit_cnt << i; |
| } |
| |
| return ecc; |
| } |
| |
| /* |
| * Create the syndrome code which is generated if the data line specified by |
| * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641 |
| * User's Manual and 9-61 in the MPC8572 User's Manual. |
| */ |
| static u8 syndrome_from_bit(unsigned int bit) { |
| int i; |
| u8 syndrome = 0; |
| |
| /* |
| * Cycle through the upper or lower 32-bit portion of each value in |
| * ecc_table depending on if 'bit' is in the upper or lower half of |
| * 64-bit data. |
| */ |
| for (i = bit < 32; i < 16; i += 2) |
| syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2); |
| |
| return syndrome; |
| } |
| |
| /* |
| * Decode data and ecc syndrome to determine what went wrong |
| * Note: This can only decode single-bit errors |
| */ |
| static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc, |
| int *bad_data_bit, int *bad_ecc_bit) |
| { |
| int i; |
| u8 syndrome; |
| |
| *bad_data_bit = -1; |
| *bad_ecc_bit = -1; |
| |
| /* |
| * Calculate the ECC of the captured data and XOR it with the captured |
| * ECC to find an ECC syndrome value we can search for |
| */ |
| syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc; |
| |
| /* Check if a data line is stuck... */ |
| for (i = 0; i < 64; i++) { |
| if (syndrome == syndrome_from_bit(i)) { |
| *bad_data_bit = i; |
| return; |
| } |
| } |
| |
| /* If data is correct, check ECC bits for errors... */ |
| for (i = 0; i < 8; i++) { |
| if ((syndrome >> i) & 0x1) { |
| *bad_ecc_bit = i; |
| return; |
| } |
| } |
| } |
| |
| #define make64(high, low) (((u64)(high) << 32) | (low)) |
| |
| static void fsl_mc_check(struct mem_ctl_info *mci) |
| { |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| struct csrow_info *csrow; |
| u32 bus_width; |
| u32 err_detect; |
| u32 syndrome; |
| u64 err_addr; |
| u32 pfn; |
| int row_index; |
| u32 cap_high; |
| u32 cap_low; |
| int bad_data_bit; |
| int bad_ecc_bit; |
| |
| err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); |
| if (!err_detect) |
| return; |
| |
| fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n", |
| err_detect); |
| |
| /* no more processing if not ECC bit errors */ |
| if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) { |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); |
| return; |
| } |
| |
| syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC); |
| |
| /* Mask off appropriate bits of syndrome based on bus width */ |
| bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) & |
| DSC_DBW_MASK) ? 32 : 64; |
| if (bus_width == 64) |
| syndrome &= 0xff; |
| else |
| syndrome &= 0xffff; |
| |
| err_addr = make64( |
| ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS), |
| ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS)); |
| pfn = err_addr >> PAGE_SHIFT; |
| |
| for (row_index = 0; row_index < mci->nr_csrows; row_index++) { |
| csrow = mci->csrows[row_index]; |
| if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page)) |
| break; |
| } |
| |
| cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI); |
| cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO); |
| |
| /* |
| * Analyze single-bit errors on 64-bit wide buses |
| * TODO: Add support for 32-bit wide buses |
| */ |
| if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) { |
| sbe_ecc_decode(cap_high, cap_low, syndrome, |
| &bad_data_bit, &bad_ecc_bit); |
| |
| if (bad_data_bit != -1) |
| fsl_mc_printk(mci, KERN_ERR, |
| "Faulty Data bit: %d\n", bad_data_bit); |
| if (bad_ecc_bit != -1) |
| fsl_mc_printk(mci, KERN_ERR, |
| "Faulty ECC bit: %d\n", bad_ecc_bit); |
| |
| fsl_mc_printk(mci, KERN_ERR, |
| "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n", |
| cap_high ^ (1 << (bad_data_bit - 32)), |
| cap_low ^ (1 << bad_data_bit), |
| syndrome ^ (1 << bad_ecc_bit)); |
| } |
| |
| fsl_mc_printk(mci, KERN_ERR, |
| "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n", |
| cap_high, cap_low, syndrome); |
| fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr); |
| fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn); |
| |
| /* we are out of range */ |
| if (row_index == mci->nr_csrows) |
| fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n"); |
| |
| if (err_detect & DDR_EDE_SBE) |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
| pfn, err_addr & ~PAGE_MASK, syndrome, |
| row_index, 0, -1, |
| mci->ctl_name, ""); |
| |
| if (err_detect & DDR_EDE_MBE) |
| edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
| pfn, err_addr & ~PAGE_MASK, syndrome, |
| row_index, 0, -1, |
| mci->ctl_name, ""); |
| |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); |
| } |
| |
| static irqreturn_t fsl_mc_isr(int irq, void *dev_id) |
| { |
| struct mem_ctl_info *mci = dev_id; |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| u32 err_detect; |
| |
| err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); |
| if (!err_detect) |
| return IRQ_NONE; |
| |
| fsl_mc_check(mci); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void fsl_ddr_init_csrows(struct mem_ctl_info *mci) |
| { |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| struct csrow_info *csrow; |
| struct dimm_info *dimm; |
| u32 sdram_ctl; |
| u32 sdtype; |
| enum mem_type mtype; |
| u32 cs_bnds; |
| int index; |
| |
| sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); |
| |
| sdtype = sdram_ctl & DSC_SDTYPE_MASK; |
| if (sdram_ctl & DSC_RD_EN) { |
| switch (sdtype) { |
| case 0x02000000: |
| mtype = MEM_RDDR; |
| break; |
| case 0x03000000: |
| mtype = MEM_RDDR2; |
| break; |
| case 0x07000000: |
| mtype = MEM_RDDR3; |
| break; |
| case 0x05000000: |
| mtype = MEM_RDDR4; |
| break; |
| default: |
| mtype = MEM_UNKNOWN; |
| break; |
| } |
| } else { |
| switch (sdtype) { |
| case 0x02000000: |
| mtype = MEM_DDR; |
| break; |
| case 0x03000000: |
| mtype = MEM_DDR2; |
| break; |
| case 0x07000000: |
| mtype = MEM_DDR3; |
| break; |
| case 0x05000000: |
| mtype = MEM_DDR4; |
| break; |
| default: |
| mtype = MEM_UNKNOWN; |
| break; |
| } |
| } |
| |
| for (index = 0; index < mci->nr_csrows; index++) { |
| u32 start; |
| u32 end; |
| |
| csrow = mci->csrows[index]; |
| dimm = csrow->channels[0]->dimm; |
| |
| cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 + |
| (index * FSL_MC_CS_BNDS_OFS)); |
| |
| start = (cs_bnds & 0xffff0000) >> 16; |
| end = (cs_bnds & 0x0000ffff); |
| |
| if (start == end) |
| continue; /* not populated */ |
| |
| start <<= (24 - PAGE_SHIFT); |
| end <<= (24 - PAGE_SHIFT); |
| end |= (1 << (24 - PAGE_SHIFT)) - 1; |
| |
| csrow->first_page = start; |
| csrow->last_page = end; |
| |
| dimm->nr_pages = end + 1 - start; |
| dimm->grain = 8; |
| dimm->mtype = mtype; |
| dimm->dtype = DEV_UNKNOWN; |
| if (sdram_ctl & DSC_X32_EN) |
| dimm->dtype = DEV_X32; |
| dimm->edac_mode = EDAC_SECDED; |
| } |
| } |
| |
| int fsl_mc_err_probe(struct platform_device *op) |
| { |
| struct mem_ctl_info *mci; |
| struct edac_mc_layer layers[2]; |
| struct fsl_mc_pdata *pdata; |
| struct resource r; |
| u32 sdram_ctl; |
| int res; |
| |
| if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; |
| layers[0].size = 4; |
| layers[0].is_virt_csrow = true; |
| layers[1].type = EDAC_MC_LAYER_CHANNEL; |
| layers[1].size = 1; |
| layers[1].is_virt_csrow = false; |
| mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers, |
| sizeof(*pdata)); |
| if (!mci) { |
| devres_release_group(&op->dev, fsl_mc_err_probe); |
| return -ENOMEM; |
| } |
| |
| pdata = mci->pvt_info; |
| pdata->name = "fsl_mc_err"; |
| mci->pdev = &op->dev; |
| pdata->edac_idx = edac_mc_idx++; |
| dev_set_drvdata(mci->pdev, mci); |
| mci->ctl_name = pdata->name; |
| mci->dev_name = pdata->name; |
| |
| /* |
| * Get the endianness of DDR controller registers. |
| * Default is big endian. |
| */ |
| little_endian = of_property_read_bool(op->dev.of_node, "little-endian"); |
| |
| res = of_address_to_resource(op->dev.of_node, 0, &r); |
| if (res) { |
| pr_err("%s: Unable to get resource for MC err regs\n", |
| __func__); |
| goto err; |
| } |
| |
| if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r), |
| pdata->name)) { |
| pr_err("%s: Error while requesting mem region\n", |
| __func__); |
| res = -EBUSY; |
| goto err; |
| } |
| |
| pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r)); |
| if (!pdata->mc_vbase) { |
| pr_err("%s: Unable to setup MC err regs\n", __func__); |
| res = -ENOMEM; |
| goto err; |
| } |
| |
| sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); |
| if (!(sdram_ctl & DSC_ECC_EN)) { |
| /* no ECC */ |
| pr_warn("%s: No ECC DIMMs discovered\n", __func__); |
| res = -ENODEV; |
| goto err; |
| } |
| |
| edac_dbg(3, "init mci\n"); |
| mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR | |
| MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 | |
| MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 | |
| MEM_FLAG_DDR4 | MEM_FLAG_RDDR4; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; |
| mci->edac_cap = EDAC_FLAG_SECDED; |
| mci->mod_name = EDAC_MOD_STR; |
| |
| if (edac_op_state == EDAC_OPSTATE_POLL) |
| mci->edac_check = fsl_mc_check; |
| |
| mci->ctl_page_to_phys = NULL; |
| |
| mci->scrub_mode = SCRUB_SW_SRC; |
| |
| fsl_ddr_init_csrows(mci); |
| |
| /* store the original error disable bits */ |
| orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE); |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0); |
| |
| /* clear all error bits */ |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0); |
| |
| res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups); |
| if (res) { |
| edac_dbg(3, "failed edac_mc_add_mc()\n"); |
| goto err; |
| } |
| |
| if (edac_op_state == EDAC_OPSTATE_INT) { |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, |
| DDR_EIE_MBEE | DDR_EIE_SBEE); |
| |
| /* store the original error management threshold */ |
| orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase + |
| FSL_MC_ERR_SBE) & 0xff0000; |
| |
| /* set threshold to 1 error per interrupt */ |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000); |
| |
| /* register interrupts */ |
| pdata->irq = platform_get_irq(op, 0); |
| res = devm_request_irq(&op->dev, pdata->irq, |
| fsl_mc_isr, |
| IRQF_SHARED, |
| "[EDAC] MC err", mci); |
| if (res < 0) { |
| pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n", |
| __func__, pdata->irq); |
| res = -ENODEV; |
| goto err2; |
| } |
| |
| pr_info(EDAC_MOD_STR " acquired irq %d for MC\n", |
| pdata->irq); |
| } |
| |
| devres_remove_group(&op->dev, fsl_mc_err_probe); |
| edac_dbg(3, "success\n"); |
| pr_info(EDAC_MOD_STR " MC err registered\n"); |
| |
| return 0; |
| |
| err2: |
| edac_mc_del_mc(&op->dev); |
| err: |
| devres_release_group(&op->dev, fsl_mc_err_probe); |
| edac_mc_free(mci); |
| return res; |
| } |
| |
| int fsl_mc_err_remove(struct platform_device *op) |
| { |
| struct mem_ctl_info *mci = dev_get_drvdata(&op->dev); |
| struct fsl_mc_pdata *pdata = mci->pvt_info; |
| |
| edac_dbg(0, "\n"); |
| |
| if (edac_op_state == EDAC_OPSTATE_INT) { |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0); |
| } |
| |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, |
| orig_ddr_err_disable); |
| ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe); |
| |
| edac_mc_del_mc(&op->dev); |
| edac_mc_free(mci); |
| return 0; |
| } |