| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (C) 2021, Intel Corporation. */ |
| |
| #include "ice.h" |
| #include "ice_lib.h" |
| #include "ice_trace.h" |
| |
| #define E810_OUT_PROP_DELAY_NS 1 |
| |
| #define UNKNOWN_INCVAL_E822 0x100000000ULL |
| |
| static const struct ptp_pin_desc ice_pin_desc_e810t[] = { |
| /* name idx func chan */ |
| { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, |
| { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, |
| { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, |
| { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, |
| { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, |
| }; |
| |
| /** |
| * ice_get_sma_config_e810t |
| * @hw: pointer to the hw struct |
| * @ptp_pins: pointer to the ptp_pin_desc struture |
| * |
| * Read the configuration of the SMA control logic and put it into the |
| * ptp_pin_desc structure |
| */ |
| static int |
| ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) |
| { |
| u8 data, i; |
| int status; |
| |
| /* Read initial pin state */ |
| status = ice_read_sma_ctrl_e810t(hw, &data); |
| if (status) |
| return status; |
| |
| /* initialize with defaults */ |
| for (i = 0; i < NUM_PTP_PINS_E810T; i++) { |
| snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name), |
| "%s", ice_pin_desc_e810t[i].name); |
| ptp_pins[i].index = ice_pin_desc_e810t[i].index; |
| ptp_pins[i].func = ice_pin_desc_e810t[i].func; |
| ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; |
| } |
| |
| /* Parse SMA1/UFL1 */ |
| switch (data & ICE_SMA1_MASK_E810T) { |
| case ICE_SMA1_MASK_E810T: |
| default: |
| ptp_pins[SMA1].func = PTP_PF_NONE; |
| ptp_pins[UFL1].func = PTP_PF_NONE; |
| break; |
| case ICE_SMA1_DIR_EN_E810T: |
| ptp_pins[SMA1].func = PTP_PF_PEROUT; |
| ptp_pins[UFL1].func = PTP_PF_NONE; |
| break; |
| case ICE_SMA1_TX_EN_E810T: |
| ptp_pins[SMA1].func = PTP_PF_EXTTS; |
| ptp_pins[UFL1].func = PTP_PF_NONE; |
| break; |
| case 0: |
| ptp_pins[SMA1].func = PTP_PF_EXTTS; |
| ptp_pins[UFL1].func = PTP_PF_PEROUT; |
| break; |
| } |
| |
| /* Parse SMA2/UFL2 */ |
| switch (data & ICE_SMA2_MASK_E810T) { |
| case ICE_SMA2_MASK_E810T: |
| default: |
| ptp_pins[SMA2].func = PTP_PF_NONE; |
| ptp_pins[UFL2].func = PTP_PF_NONE; |
| break; |
| case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): |
| ptp_pins[SMA2].func = PTP_PF_EXTTS; |
| ptp_pins[UFL2].func = PTP_PF_NONE; |
| break; |
| case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): |
| ptp_pins[SMA2].func = PTP_PF_PEROUT; |
| ptp_pins[UFL2].func = PTP_PF_NONE; |
| break; |
| case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): |
| ptp_pins[SMA2].func = PTP_PF_NONE; |
| ptp_pins[UFL2].func = PTP_PF_EXTTS; |
| break; |
| case ICE_SMA2_DIR_EN_E810T: |
| ptp_pins[SMA2].func = PTP_PF_PEROUT; |
| ptp_pins[UFL2].func = PTP_PF_EXTTS; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_set_sma_config_e810t |
| * @hw: pointer to the hw struct |
| * @ptp_pins: pointer to the ptp_pin_desc struture |
| * |
| * Set the configuration of the SMA control logic based on the configuration in |
| * num_pins parameter |
| */ |
| static int |
| ice_ptp_set_sma_config_e810t(struct ice_hw *hw, |
| const struct ptp_pin_desc *ptp_pins) |
| { |
| int status; |
| u8 data; |
| |
| /* SMA1 and UFL1 cannot be set to TX at the same time */ |
| if (ptp_pins[SMA1].func == PTP_PF_PEROUT && |
| ptp_pins[UFL1].func == PTP_PF_PEROUT) |
| return -EINVAL; |
| |
| /* SMA2 and UFL2 cannot be set to RX at the same time */ |
| if (ptp_pins[SMA2].func == PTP_PF_EXTTS && |
| ptp_pins[UFL2].func == PTP_PF_EXTTS) |
| return -EINVAL; |
| |
| /* Read initial pin state value */ |
| status = ice_read_sma_ctrl_e810t(hw, &data); |
| if (status) |
| return status; |
| |
| /* Set the right sate based on the desired configuration */ |
| data &= ~ICE_SMA1_MASK_E810T; |
| if (ptp_pins[SMA1].func == PTP_PF_NONE && |
| ptp_pins[UFL1].func == PTP_PF_NONE) { |
| dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); |
| data |= ICE_SMA1_MASK_E810T; |
| } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && |
| ptp_pins[UFL1].func == PTP_PF_NONE) { |
| dev_info(ice_hw_to_dev(hw), "SMA1 RX"); |
| data |= ICE_SMA1_TX_EN_E810T; |
| } else if (ptp_pins[SMA1].func == PTP_PF_NONE && |
| ptp_pins[UFL1].func == PTP_PF_PEROUT) { |
| /* U.FL 1 TX will always enable SMA 1 RX */ |
| dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); |
| } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && |
| ptp_pins[UFL1].func == PTP_PF_PEROUT) { |
| dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); |
| } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && |
| ptp_pins[UFL1].func == PTP_PF_NONE) { |
| dev_info(ice_hw_to_dev(hw), "SMA1 TX"); |
| data |= ICE_SMA1_DIR_EN_E810T; |
| } |
| |
| data &= ~ICE_SMA2_MASK_E810T; |
| if (ptp_pins[SMA2].func == PTP_PF_NONE && |
| ptp_pins[UFL2].func == PTP_PF_NONE) { |
| dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); |
| data |= ICE_SMA2_MASK_E810T; |
| } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && |
| ptp_pins[UFL2].func == PTP_PF_NONE) { |
| dev_info(ice_hw_to_dev(hw), "SMA2 RX"); |
| data |= (ICE_SMA2_TX_EN_E810T | |
| ICE_SMA2_UFL2_RX_DIS_E810T); |
| } else if (ptp_pins[SMA2].func == PTP_PF_NONE && |
| ptp_pins[UFL2].func == PTP_PF_EXTTS) { |
| dev_info(ice_hw_to_dev(hw), "UFL2 RX"); |
| data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); |
| } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && |
| ptp_pins[UFL2].func == PTP_PF_NONE) { |
| dev_info(ice_hw_to_dev(hw), "SMA2 TX"); |
| data |= (ICE_SMA2_DIR_EN_E810T | |
| ICE_SMA2_UFL2_RX_DIS_E810T); |
| } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && |
| ptp_pins[UFL2].func == PTP_PF_EXTTS) { |
| dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); |
| data |= ICE_SMA2_DIR_EN_E810T; |
| } |
| |
| return ice_write_sma_ctrl_e810t(hw, data); |
| } |
| |
| /** |
| * ice_ptp_set_sma_e810t |
| * @info: the driver's PTP info structure |
| * @pin: pin index in kernel structure |
| * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) |
| * |
| * Set the configuration of a single SMA pin |
| */ |
| static int |
| ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, |
| enum ptp_pin_function func) |
| { |
| struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_hw *hw = &pf->hw; |
| int err; |
| |
| if (pin < SMA1 || func > PTP_PF_PEROUT) |
| return -EOPNOTSUPP; |
| |
| err = ice_get_sma_config_e810t(hw, ptp_pins); |
| if (err) |
| return err; |
| |
| /* Disable the same function on the other pin sharing the channel */ |
| if (pin == SMA1 && ptp_pins[UFL1].func == func) |
| ptp_pins[UFL1].func = PTP_PF_NONE; |
| if (pin == UFL1 && ptp_pins[SMA1].func == func) |
| ptp_pins[SMA1].func = PTP_PF_NONE; |
| |
| if (pin == SMA2 && ptp_pins[UFL2].func == func) |
| ptp_pins[UFL2].func = PTP_PF_NONE; |
| if (pin == UFL2 && ptp_pins[SMA2].func == func) |
| ptp_pins[SMA2].func = PTP_PF_NONE; |
| |
| /* Set up new pin function in the temp table */ |
| ptp_pins[pin].func = func; |
| |
| return ice_ptp_set_sma_config_e810t(hw, ptp_pins); |
| } |
| |
| /** |
| * ice_verify_pin_e810t |
| * @info: the driver's PTP info structure |
| * @pin: Pin index |
| * @func: Assigned function |
| * @chan: Assigned channel |
| * |
| * Verify if pin supports requested pin function. If the Check pins consistency. |
| * Reconfigure the SMA logic attached to the given pin to enable its |
| * desired functionality |
| */ |
| static int |
| ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, |
| enum ptp_pin_function func, unsigned int chan) |
| { |
| /* Don't allow channel reassignment */ |
| if (chan != ice_pin_desc_e810t[pin].chan) |
| return -EOPNOTSUPP; |
| |
| /* Check if functions are properly assigned */ |
| switch (func) { |
| case PTP_PF_NONE: |
| break; |
| case PTP_PF_EXTTS: |
| if (pin == UFL1) |
| return -EOPNOTSUPP; |
| break; |
| case PTP_PF_PEROUT: |
| if (pin == UFL2 || pin == GNSS) |
| return -EOPNOTSUPP; |
| break; |
| case PTP_PF_PHYSYNC: |
| return -EOPNOTSUPP; |
| } |
| |
| return ice_ptp_set_sma_e810t(info, pin, func); |
| } |
| |
| /** |
| * ice_set_tx_tstamp - Enable or disable Tx timestamping |
| * @pf: The PF pointer to search in |
| * @on: bool value for whether timestamps are enabled or disabled |
| */ |
| static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) |
| { |
| struct ice_vsi *vsi; |
| u32 val; |
| u16 i; |
| |
| vsi = ice_get_main_vsi(pf); |
| if (!vsi) |
| return; |
| |
| /* Set the timestamp enable flag for all the Tx rings */ |
| ice_for_each_txq(vsi, i) { |
| if (!vsi->tx_rings[i]) |
| continue; |
| vsi->tx_rings[i]->ptp_tx = on; |
| } |
| |
| /* Configure the Tx timestamp interrupt */ |
| val = rd32(&pf->hw, PFINT_OICR_ENA); |
| if (on) |
| val |= PFINT_OICR_TSYN_TX_M; |
| else |
| val &= ~PFINT_OICR_TSYN_TX_M; |
| wr32(&pf->hw, PFINT_OICR_ENA, val); |
| |
| pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; |
| } |
| |
| /** |
| * ice_set_rx_tstamp - Enable or disable Rx timestamping |
| * @pf: The PF pointer to search in |
| * @on: bool value for whether timestamps are enabled or disabled |
| */ |
| static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) |
| { |
| struct ice_vsi *vsi; |
| u16 i; |
| |
| vsi = ice_get_main_vsi(pf); |
| if (!vsi) |
| return; |
| |
| /* Set the timestamp flag for all the Rx rings */ |
| ice_for_each_rxq(vsi, i) { |
| if (!vsi->rx_rings[i]) |
| continue; |
| vsi->rx_rings[i]->ptp_rx = on; |
| } |
| |
| pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL : |
| HWTSTAMP_FILTER_NONE; |
| } |
| |
| /** |
| * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit |
| * @pf: Board private structure |
| * @ena: bool value to enable or disable time stamp |
| * |
| * This function will configure timestamping during PTP initialization |
| * and deinitialization |
| */ |
| void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) |
| { |
| ice_set_tx_tstamp(pf, ena); |
| ice_set_rx_tstamp(pf, ena); |
| } |
| |
| /** |
| * ice_get_ptp_clock_index - Get the PTP clock index |
| * @pf: the PF pointer |
| * |
| * Determine the clock index of the PTP clock associated with this device. If |
| * this is the PF controlling the clock, just use the local access to the |
| * clock device pointer. |
| * |
| * Otherwise, read from the driver shared parameters to determine the clock |
| * index value. |
| * |
| * Returns: the index of the PTP clock associated with this device, or -1 if |
| * there is no associated clock. |
| */ |
| int ice_get_ptp_clock_index(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| enum ice_aqc_driver_params param_idx; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| u32 value; |
| int err; |
| |
| /* Use the ptp_clock structure if we're the main PF */ |
| if (pf->ptp.clock) |
| return ptp_clock_index(pf->ptp.clock); |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; |
| if (!tmr_idx) |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; |
| else |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; |
| |
| err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); |
| if (err) { |
| dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", |
| err, ice_aq_str(hw->adminq.sq_last_status)); |
| return -1; |
| } |
| |
| /* The PTP clock index is an integer, and will be between 0 and |
| * INT_MAX. The highest bit of the driver shared parameter is used to |
| * indicate whether or not the currently stored clock index is valid. |
| */ |
| if (!(value & PTP_SHARED_CLK_IDX_VALID)) |
| return -1; |
| |
| return value & ~PTP_SHARED_CLK_IDX_VALID; |
| } |
| |
| /** |
| * ice_set_ptp_clock_index - Set the PTP clock index |
| * @pf: the PF pointer |
| * |
| * Set the PTP clock index for this device into the shared driver parameters, |
| * so that other PFs associated with this device can read it. |
| * |
| * If the PF is unable to store the clock index, it will log an error, but |
| * will continue operating PTP. |
| */ |
| static void ice_set_ptp_clock_index(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| enum ice_aqc_driver_params param_idx; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| u32 value; |
| int err; |
| |
| if (!pf->ptp.clock) |
| return; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; |
| if (!tmr_idx) |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; |
| else |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; |
| |
| value = (u32)ptp_clock_index(pf->ptp.clock); |
| if (value > INT_MAX) { |
| dev_err(dev, "PTP Clock index is too large to store\n"); |
| return; |
| } |
| value |= PTP_SHARED_CLK_IDX_VALID; |
| |
| err = ice_aq_set_driver_param(hw, param_idx, value, NULL); |
| if (err) { |
| dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", |
| err, ice_aq_str(hw->adminq.sq_last_status)); |
| } |
| } |
| |
| /** |
| * ice_clear_ptp_clock_index - Clear the PTP clock index |
| * @pf: the PF pointer |
| * |
| * Clear the PTP clock index for this device. Must be called when |
| * unregistering the PTP clock, in order to ensure other PFs stop reporting |
| * a clock object that no longer exists. |
| */ |
| static void ice_clear_ptp_clock_index(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| enum ice_aqc_driver_params param_idx; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| int err; |
| |
| /* Do not clear the index if we don't own the timer */ |
| if (!hw->func_caps.ts_func_info.src_tmr_owned) |
| return; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; |
| if (!tmr_idx) |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; |
| else |
| param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; |
| |
| err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); |
| if (err) { |
| dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", |
| err, ice_aq_str(hw->adminq.sq_last_status)); |
| } |
| } |
| |
| /** |
| * ice_ptp_read_src_clk_reg - Read the source clock register |
| * @pf: Board private structure |
| * @sts: Optional parameter for holding a pair of system timestamps from |
| * the system clock. Will be ignored if NULL is given. |
| */ |
| static u64 |
| ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) |
| { |
| struct ice_hw *hw = &pf->hw; |
| u32 hi, lo, lo2; |
| u8 tmr_idx; |
| |
| tmr_idx = ice_get_ptp_src_clock_index(hw); |
| /* Read the system timestamp pre PHC read */ |
| ptp_read_system_prets(sts); |
| |
| lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); |
| |
| /* Read the system timestamp post PHC read */ |
| ptp_read_system_postts(sts); |
| |
| hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); |
| lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); |
| |
| if (lo2 < lo) { |
| /* if TIME_L rolled over read TIME_L again and update |
| * system timestamps |
| */ |
| ptp_read_system_prets(sts); |
| lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); |
| ptp_read_system_postts(sts); |
| hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); |
| } |
| |
| return ((u64)hi << 32) | lo; |
| } |
| |
| /** |
| * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b |
| * @cached_phc_time: recently cached copy of PHC time |
| * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value |
| * |
| * Hardware captures timestamps which contain only 32 bits of nominal |
| * nanoseconds, as opposed to the 64bit timestamps that the stack expects. |
| * Note that the captured timestamp values may be 40 bits, but the lower |
| * 8 bits are sub-nanoseconds and generally discarded. |
| * |
| * Extend the 32bit nanosecond timestamp using the following algorithm and |
| * assumptions: |
| * |
| * 1) have a recently cached copy of the PHC time |
| * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 |
| * seconds) before or after the PHC time was captured. |
| * 3) calculate the delta between the cached time and the timestamp |
| * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was |
| * captured after the PHC time. In this case, the full timestamp is just |
| * the cached PHC time plus the delta. |
| * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the |
| * timestamp was captured *before* the PHC time, i.e. because the PHC |
| * cache was updated after the timestamp was captured by hardware. In this |
| * case, the full timestamp is the cached time minus the inverse delta. |
| * |
| * This algorithm works even if the PHC time was updated after a Tx timestamp |
| * was requested, but before the Tx timestamp event was reported from |
| * hardware. |
| * |
| * This calculation primarily relies on keeping the cached PHC time up to |
| * date. If the timestamp was captured more than 2^31 nanoseconds after the |
| * PHC time, it is possible that the lower 32bits of PHC time have |
| * overflowed more than once, and we might generate an incorrect timestamp. |
| * |
| * This is prevented by (a) periodically updating the cached PHC time once |
| * a second, and (b) discarding any Tx timestamp packet if it has waited for |
| * a timestamp for more than one second. |
| */ |
| static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) |
| { |
| u32 delta, phc_time_lo; |
| u64 ns; |
| |
| /* Extract the lower 32 bits of the PHC time */ |
| phc_time_lo = (u32)cached_phc_time; |
| |
| /* Calculate the delta between the lower 32bits of the cached PHC |
| * time and the in_tstamp value |
| */ |
| delta = (in_tstamp - phc_time_lo); |
| |
| /* Do not assume that the in_tstamp is always more recent than the |
| * cached PHC time. If the delta is large, it indicates that the |
| * in_tstamp was taken in the past, and should be converted |
| * forward. |
| */ |
| if (delta > (U32_MAX / 2)) { |
| /* reverse the delta calculation here */ |
| delta = (phc_time_lo - in_tstamp); |
| ns = cached_phc_time - delta; |
| } else { |
| ns = cached_phc_time + delta; |
| } |
| |
| return ns; |
| } |
| |
| /** |
| * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds |
| * @pf: Board private structure |
| * @in_tstamp: Ingress/egress 40b timestamp value |
| * |
| * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal |
| * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. |
| * |
| * *--------------------------------------------------------------* |
| * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | |
| * *--------------------------------------------------------------* |
| * |
| * The low bit is an indicator of whether the timestamp is valid. The next |
| * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, |
| * and the remaining 32 bits are the lower 32 bits of the PHC timer. |
| * |
| * It is assumed that the caller verifies the timestamp is valid prior to |
| * calling this function. |
| * |
| * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC |
| * time stored in the device private PTP structure as the basis for timestamp |
| * extension. |
| * |
| * See ice_ptp_extend_32b_ts for a detailed explanation of the extension |
| * algorithm. |
| */ |
| static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) |
| { |
| const u64 mask = GENMASK_ULL(31, 0); |
| unsigned long discard_time; |
| |
| /* Discard the hardware timestamp if the cached PHC time is too old */ |
| discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); |
| if (time_is_before_jiffies(discard_time)) { |
| pf->ptp.tx_hwtstamp_discarded++; |
| return 0; |
| } |
| |
| return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, |
| (in_tstamp >> 8) & mask); |
| } |
| |
| /** |
| * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps |
| * @tx: the PTP Tx timestamp tracker to check |
| * |
| * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready |
| * to accept new timestamp requests. |
| * |
| * Assumes the tx->lock spinlock is already held. |
| */ |
| static bool |
| ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx) |
| { |
| lockdep_assert_held(&tx->lock); |
| |
| return tx->init && !tx->calibrating; |
| } |
| |
| /** |
| * ice_ptp_tx_tstamp - Process Tx timestamps for a port |
| * @tx: the PTP Tx timestamp tracker |
| * |
| * Process timestamps captured by the PHY associated with this port. To do |
| * this, loop over each index with a waiting skb. |
| * |
| * If a given index has a valid timestamp, perform the following steps: |
| * |
| * 1) check that the timestamp request is not stale |
| * 2) check that a timestamp is ready and available in the PHY memory bank |
| * 3) read and copy the timestamp out of the PHY register |
| * 4) unlock the index by clearing the associated in_use bit |
| * 5) check if the timestamp is stale, and discard if so |
| * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value |
| * 7) send this 64 bit timestamp to the stack |
| * |
| * Returns true if all timestamps were handled, and false if any slots remain |
| * without a timestamp. |
| * |
| * After looping, if we still have waiting SKBs, return false. This may cause |
| * us effectively poll even when not strictly necessary. We do this because |
| * it's possible a new timestamp was requested around the same time as the |
| * interrupt. In some cases hardware might not interrupt us again when the |
| * timestamp is captured. |
| * |
| * Note that we do not hold the tracking lock while reading the Tx timestamp. |
| * This is because reading the timestamp requires taking a mutex that might |
| * sleep. |
| * |
| * The only place where we set in_use is when a new timestamp is initiated |
| * with a slot index. This is only called in the hard xmit routine where an |
| * SKB has a request flag set. The only places where we clear this bit is this |
| * function, or during teardown when the Tx timestamp tracker is being |
| * removed. A timestamp index will never be re-used until the in_use bit for |
| * that index is cleared. |
| * |
| * If a Tx thread starts a new timestamp, we might not begin processing it |
| * right away but we will notice it at the end when we re-queue the task. |
| * |
| * If a Tx thread starts a new timestamp just after this function exits, the |
| * interrupt for that timestamp should re-trigger this function once |
| * a timestamp is ready. |
| * |
| * In cases where the PTP hardware clock was directly adjusted, some |
| * timestamps may not be able to safely use the timestamp extension math. In |
| * this case, software will set the stale bit for any outstanding Tx |
| * timestamps when the clock is adjusted. Then this function will discard |
| * those captured timestamps instead of sending them to the stack. |
| * |
| * If a Tx packet has been waiting for more than 2 seconds, it is not possible |
| * to correctly extend the timestamp using the cached PHC time. It is |
| * extremely unlikely that a packet will ever take this long to timestamp. If |
| * we detect a Tx timestamp request that has waited for this long we assume |
| * the packet will never be sent by hardware and discard it without reading |
| * the timestamp register. |
| */ |
| static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) |
| { |
| struct ice_ptp_port *ptp_port; |
| bool more_timestamps; |
| struct ice_pf *pf; |
| struct ice_hw *hw; |
| u64 tstamp_ready; |
| int err; |
| u8 idx; |
| |
| if (!tx->init) |
| return true; |
| |
| ptp_port = container_of(tx, struct ice_ptp_port, tx); |
| pf = ptp_port_to_pf(ptp_port); |
| hw = &pf->hw; |
| |
| /* Read the Tx ready status first */ |
| err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); |
| if (err) |
| return false; |
| |
| for_each_set_bit(idx, tx->in_use, tx->len) { |
| struct skb_shared_hwtstamps shhwtstamps = {}; |
| u8 phy_idx = idx + tx->offset; |
| u64 raw_tstamp = 0, tstamp; |
| bool drop_ts = false; |
| struct sk_buff *skb; |
| |
| /* Drop packets which have waited for more than 2 seconds */ |
| if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { |
| drop_ts = true; |
| |
| /* Count the number of Tx timestamps that timed out */ |
| pf->ptp.tx_hwtstamp_timeouts++; |
| } |
| |
| /* Only read a timestamp from the PHY if its marked as ready |
| * by the tstamp_ready register. This avoids unnecessary |
| * reading of timestamps which are not yet valid. This is |
| * important as we must read all timestamps which are valid |
| * and only timestamps which are valid during each interrupt. |
| * If we do not, the hardware logic for generating a new |
| * interrupt can get stuck on some devices. |
| */ |
| if (!(tstamp_ready & BIT_ULL(phy_idx))) { |
| if (drop_ts) |
| goto skip_ts_read; |
| |
| continue; |
| } |
| |
| ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); |
| |
| err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp); |
| if (err) |
| continue; |
| |
| ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); |
| |
| /* For PHYs which don't implement a proper timestamp ready |
| * bitmap, verify that the timestamp value is different |
| * from the last cached timestamp. If it is not, skip this for |
| * now assuming it hasn't yet been captured by hardware. |
| */ |
| if (!drop_ts && tx->verify_cached && |
| raw_tstamp == tx->tstamps[idx].cached_tstamp) |
| continue; |
| |
| /* Discard any timestamp value without the valid bit set */ |
| if (!(raw_tstamp & ICE_PTP_TS_VALID)) |
| drop_ts = true; |
| |
| skip_ts_read: |
| spin_lock(&tx->lock); |
| if (tx->verify_cached && raw_tstamp) |
| tx->tstamps[idx].cached_tstamp = raw_tstamp; |
| clear_bit(idx, tx->in_use); |
| skb = tx->tstamps[idx].skb; |
| tx->tstamps[idx].skb = NULL; |
| if (test_and_clear_bit(idx, tx->stale)) |
| drop_ts = true; |
| spin_unlock(&tx->lock); |
| |
| /* It is unlikely but possible that the SKB will have been |
| * flushed at this point due to link change or teardown. |
| */ |
| if (!skb) |
| continue; |
| |
| if (drop_ts) { |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| |
| /* Extend the timestamp using cached PHC time */ |
| tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); |
| if (tstamp) { |
| shhwtstamps.hwtstamp = ns_to_ktime(tstamp); |
| ice_trace(tx_tstamp_complete, skb, idx); |
| } |
| |
| skb_tstamp_tx(skb, &shhwtstamps); |
| dev_kfree_skb_any(skb); |
| } |
| |
| /* Check if we still have work to do. If so, re-queue this task to |
| * poll for remaining timestamps. |
| */ |
| spin_lock(&tx->lock); |
| more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); |
| spin_unlock(&tx->lock); |
| |
| return !more_timestamps; |
| } |
| |
| /** |
| * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps |
| * @tx: Tx tracking structure to initialize |
| * |
| * Assumes that the length has already been initialized. Do not call directly, |
| * use the ice_ptp_init_tx_* instead. |
| */ |
| static int |
| ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) |
| { |
| unsigned long *in_use, *stale; |
| struct ice_tx_tstamp *tstamps; |
| |
| tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL); |
| in_use = bitmap_zalloc(tx->len, GFP_KERNEL); |
| stale = bitmap_zalloc(tx->len, GFP_KERNEL); |
| |
| if (!tstamps || !in_use || !stale) { |
| kfree(tstamps); |
| bitmap_free(in_use); |
| bitmap_free(stale); |
| |
| return -ENOMEM; |
| } |
| |
| tx->tstamps = tstamps; |
| tx->in_use = in_use; |
| tx->stale = stale; |
| tx->init = 1; |
| |
| spin_lock_init(&tx->lock); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker |
| * @pf: Board private structure |
| * @tx: the tracker to flush |
| * |
| * Called during teardown when a Tx tracker is being removed. |
| */ |
| static void |
| ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) |
| { |
| struct ice_hw *hw = &pf->hw; |
| u64 tstamp_ready; |
| int err; |
| u8 idx; |
| |
| err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); |
| if (err) { |
| dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n", |
| tx->block, err); |
| |
| /* If we fail to read the Tx timestamp ready bitmap just |
| * skip clearing the PHY timestamps. |
| */ |
| tstamp_ready = 0; |
| } |
| |
| for_each_set_bit(idx, tx->in_use, tx->len) { |
| u8 phy_idx = idx + tx->offset; |
| struct sk_buff *skb; |
| |
| /* In case this timestamp is ready, we need to clear it. */ |
| if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx))) |
| ice_clear_phy_tstamp(hw, tx->block, phy_idx); |
| |
| spin_lock(&tx->lock); |
| skb = tx->tstamps[idx].skb; |
| tx->tstamps[idx].skb = NULL; |
| clear_bit(idx, tx->in_use); |
| clear_bit(idx, tx->stale); |
| spin_unlock(&tx->lock); |
| |
| /* Count the number of Tx timestamps flushed */ |
| pf->ptp.tx_hwtstamp_flushed++; |
| |
| /* Free the SKB after we've cleared the bit */ |
| dev_kfree_skb_any(skb); |
| } |
| } |
| |
| /** |
| * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale |
| * @tx: the tracker to mark |
| * |
| * Mark currently outstanding Tx timestamps as stale. This prevents sending |
| * their timestamp value to the stack. This is required to prevent extending |
| * the 40bit hardware timestamp incorrectly. |
| * |
| * This should be called when the PTP clock is modified such as after a set |
| * time request. |
| */ |
| static void |
| ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx) |
| { |
| spin_lock(&tx->lock); |
| bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len); |
| spin_unlock(&tx->lock); |
| } |
| |
| /** |
| * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker |
| * @pf: Board private structure |
| * @tx: Tx tracking structure to release |
| * |
| * Free memory associated with the Tx timestamp tracker. |
| */ |
| static void |
| ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) |
| { |
| spin_lock(&tx->lock); |
| tx->init = 0; |
| spin_unlock(&tx->lock); |
| |
| /* wait for potentially outstanding interrupt to complete */ |
| synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); |
| |
| ice_ptp_flush_tx_tracker(pf, tx); |
| |
| kfree(tx->tstamps); |
| tx->tstamps = NULL; |
| |
| bitmap_free(tx->in_use); |
| tx->in_use = NULL; |
| |
| bitmap_free(tx->stale); |
| tx->stale = NULL; |
| |
| tx->len = 0; |
| } |
| |
| /** |
| * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps |
| * @pf: Board private structure |
| * @tx: the Tx tracking structure to initialize |
| * @port: the port this structure tracks |
| * |
| * Initialize the Tx timestamp tracker for this port. For generic MAC devices, |
| * the timestamp block is shared for all ports in the same quad. To avoid |
| * ports using the same timestamp index, logically break the block of |
| * registers into chunks based on the port number. |
| */ |
| static int |
| ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) |
| { |
| tx->block = port / ICE_PORTS_PER_QUAD; |
| tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822; |
| tx->len = INDEX_PER_PORT_E822; |
| tx->verify_cached = 0; |
| |
| return ice_ptp_alloc_tx_tracker(tx); |
| } |
| |
| /** |
| * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps |
| * @pf: Board private structure |
| * @tx: the Tx tracking structure to initialize |
| * |
| * Initialize the Tx timestamp tracker for this PF. For E810 devices, each |
| * port has its own block of timestamps, independent of the other ports. |
| */ |
| static int |
| ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) |
| { |
| tx->block = pf->hw.port_info->lport; |
| tx->offset = 0; |
| tx->len = INDEX_PER_PORT_E810; |
| /* The E810 PHY does not provide a timestamp ready bitmap. Instead, |
| * verify new timestamps against cached copy of the last read |
| * timestamp. |
| */ |
| tx->verify_cached = 1; |
| |
| return ice_ptp_alloc_tx_tracker(tx); |
| } |
| |
| /** |
| * ice_ptp_update_cached_phctime - Update the cached PHC time values |
| * @pf: Board specific private structure |
| * |
| * This function updates the system time values which are cached in the PF |
| * structure and the Rx rings. |
| * |
| * This function must be called periodically to ensure that the cached value |
| * is never more than 2 seconds old. |
| * |
| * Note that the cached copy in the PF PTP structure is always updated, even |
| * if we can't update the copy in the Rx rings. |
| * |
| * Return: |
| * * 0 - OK, successfully updated |
| * * -EAGAIN - PF was busy, need to reschedule the update |
| */ |
| static int ice_ptp_update_cached_phctime(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| unsigned long update_before; |
| u64 systime; |
| int i; |
| |
| update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); |
| if (pf->ptp.cached_phc_time && |
| time_is_before_jiffies(update_before)) { |
| unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; |
| |
| dev_warn(dev, "%u msecs passed between update to cached PHC time\n", |
| jiffies_to_msecs(time_taken)); |
| pf->ptp.late_cached_phc_updates++; |
| } |
| |
| /* Read the current PHC time */ |
| systime = ice_ptp_read_src_clk_reg(pf, NULL); |
| |
| /* Update the cached PHC time stored in the PF structure */ |
| WRITE_ONCE(pf->ptp.cached_phc_time, systime); |
| WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); |
| |
| if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) |
| return -EAGAIN; |
| |
| ice_for_each_vsi(pf, i) { |
| struct ice_vsi *vsi = pf->vsi[i]; |
| int j; |
| |
| if (!vsi) |
| continue; |
| |
| if (vsi->type != ICE_VSI_PF) |
| continue; |
| |
| ice_for_each_rxq(vsi, j) { |
| if (!vsi->rx_rings[j]) |
| continue; |
| WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); |
| } |
| } |
| clear_bit(ICE_CFG_BUSY, pf->state); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update |
| * @pf: Board specific private structure |
| * |
| * This function must be called when the cached PHC time is no longer valid, |
| * such as after a time adjustment. It marks any currently outstanding Tx |
| * timestamps as stale and updates the cached PHC time for both the PF and Rx |
| * rings. |
| * |
| * If updating the PHC time cannot be done immediately, a warning message is |
| * logged and the work item is scheduled immediately to minimize the window |
| * with a wrong cached timestamp. |
| */ |
| static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| /* Update the cached PHC time immediately if possible, otherwise |
| * schedule the work item to execute soon. |
| */ |
| err = ice_ptp_update_cached_phctime(pf); |
| if (err) { |
| /* If another thread is updating the Rx rings, we won't |
| * properly reset them here. This could lead to reporting of |
| * invalid timestamps, but there isn't much we can do. |
| */ |
| dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", |
| __func__); |
| |
| /* Queue the work item to update the Rx rings when possible */ |
| kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, |
| msecs_to_jiffies(10)); |
| } |
| |
| /* Mark any outstanding timestamps as stale, since they might have |
| * been captured in hardware before the time update. This could lead |
| * to us extending them with the wrong cached value resulting in |
| * incorrect timestamp values. |
| */ |
| ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx); |
| } |
| |
| /** |
| * ice_ptp_read_time - Read the time from the device |
| * @pf: Board private structure |
| * @ts: timespec structure to hold the current time value |
| * @sts: Optional parameter for holding a pair of system timestamps from |
| * the system clock. Will be ignored if NULL is given. |
| * |
| * This function reads the source clock registers and stores them in a timespec. |
| * However, since the registers are 64 bits of nanoseconds, we must convert the |
| * result to a timespec before we can return. |
| */ |
| static void |
| ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); |
| |
| *ts = ns_to_timespec64(time_ns); |
| } |
| |
| /** |
| * ice_ptp_write_init - Set PHC time to provided value |
| * @pf: Board private structure |
| * @ts: timespec structure that holds the new time value |
| * |
| * Set the PHC time to the specified time provided in the timespec. |
| */ |
| static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) |
| { |
| u64 ns = timespec64_to_ns(ts); |
| struct ice_hw *hw = &pf->hw; |
| |
| return ice_ptp_init_time(hw, ns); |
| } |
| |
| /** |
| * ice_ptp_write_adj - Adjust PHC clock time atomically |
| * @pf: Board private structure |
| * @adj: Adjustment in nanoseconds |
| * |
| * Perform an atomic adjustment of the PHC time by the specified number of |
| * nanoseconds. |
| */ |
| static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) |
| { |
| struct ice_hw *hw = &pf->hw; |
| |
| return ice_ptp_adj_clock(hw, adj); |
| } |
| |
| /** |
| * ice_base_incval - Get base timer increment value |
| * @pf: Board private structure |
| * |
| * Look up the base timer increment value for this device. The base increment |
| * value is used to define the nominal clock tick rate. This increment value |
| * is programmed during device initialization. It is also used as the basis |
| * for calculating adjustments using scaled_ppm. |
| */ |
| static u64 ice_base_incval(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| u64 incval; |
| |
| if (ice_is_e810(hw)) |
| incval = ICE_PTP_NOMINAL_INCVAL_E810; |
| else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) |
| incval = ice_e822_nominal_incval(ice_e822_time_ref(hw)); |
| else |
| incval = UNKNOWN_INCVAL_E822; |
| |
| dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", |
| incval); |
| |
| return incval; |
| } |
| |
| /** |
| * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state |
| * @port: PTP port for which Tx FIFO is checked |
| */ |
| static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) |
| { |
| int quad = port->port_num / ICE_PORTS_PER_QUAD; |
| int offs = port->port_num % ICE_PORTS_PER_QUAD; |
| struct ice_pf *pf; |
| struct ice_hw *hw; |
| u32 val, phy_sts; |
| int err; |
| |
| pf = ptp_port_to_pf(port); |
| hw = &pf->hw; |
| |
| if (port->tx_fifo_busy_cnt == FIFO_OK) |
| return 0; |
| |
| /* need to read FIFO state */ |
| if (offs == 0 || offs == 1) |
| err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS, |
| &val); |
| else |
| err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS, |
| &val); |
| |
| if (err) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", |
| port->port_num, err); |
| return err; |
| } |
| |
| if (offs & 0x1) |
| phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S; |
| else |
| phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S; |
| |
| if (phy_sts & FIFO_EMPTY) { |
| port->tx_fifo_busy_cnt = FIFO_OK; |
| return 0; |
| } |
| |
| port->tx_fifo_busy_cnt++; |
| |
| dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", |
| port->tx_fifo_busy_cnt, port->port_num); |
| |
| if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { |
| dev_dbg(ice_pf_to_dev(pf), |
| "Port %d Tx FIFO still not empty; resetting quad %d\n", |
| port->port_num, quad); |
| ice_ptp_reset_ts_memory_quad_e822(hw, quad); |
| port->tx_fifo_busy_cnt = FIFO_OK; |
| return 0; |
| } |
| |
| return -EAGAIN; |
| } |
| |
| /** |
| * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets |
| * @work: Pointer to the kthread_work structure for this task |
| * |
| * Check whether hardware has completed measuring the Tx and Rx offset values |
| * used to configure and enable vernier timestamp calibration. |
| * |
| * Once the offset in either direction is measured, configure the associated |
| * registers with the calibrated offset values and enable timestamping. The Tx |
| * and Rx directions are configured independently as soon as their associated |
| * offsets are known. |
| * |
| * This function reschedules itself until both Tx and Rx calibration have |
| * completed. |
| */ |
| static void ice_ptp_wait_for_offsets(struct kthread_work *work) |
| { |
| struct ice_ptp_port *port; |
| struct ice_pf *pf; |
| struct ice_hw *hw; |
| int tx_err; |
| int rx_err; |
| |
| port = container_of(work, struct ice_ptp_port, ov_work.work); |
| pf = ptp_port_to_pf(port); |
| hw = &pf->hw; |
| |
| if (ice_is_reset_in_progress(pf->state)) { |
| /* wait for device driver to complete reset */ |
| kthread_queue_delayed_work(pf->ptp.kworker, |
| &port->ov_work, |
| msecs_to_jiffies(100)); |
| return; |
| } |
| |
| tx_err = ice_ptp_check_tx_fifo(port); |
| if (!tx_err) |
| tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num); |
| rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num); |
| if (tx_err || rx_err) { |
| /* Tx and/or Rx offset not yet configured, try again later */ |
| kthread_queue_delayed_work(pf->ptp.kworker, |
| &port->ov_work, |
| msecs_to_jiffies(100)); |
| return; |
| } |
| } |
| |
| /** |
| * ice_ptp_port_phy_stop - Stop timestamping for a PHY port |
| * @ptp_port: PTP port to stop |
| */ |
| static int |
| ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) |
| { |
| struct ice_pf *pf = ptp_port_to_pf(ptp_port); |
| u8 port = ptp_port->port_num; |
| struct ice_hw *hw = &pf->hw; |
| int err; |
| |
| if (ice_is_e810(hw)) |
| return 0; |
| |
| mutex_lock(&ptp_port->ps_lock); |
| |
| kthread_cancel_delayed_work_sync(&ptp_port->ov_work); |
| |
| err = ice_stop_phy_timer_e822(hw, port, true); |
| if (err) |
| dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", |
| port, err); |
| |
| mutex_unlock(&ptp_port->ps_lock); |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping |
| * @ptp_port: PTP port for which the PHY start is set |
| * |
| * Start the PHY timestamping block, and initiate Vernier timestamping |
| * calibration. If timestamping cannot be calibrated (such as if link is down) |
| * then disable the timestamping block instead. |
| */ |
| static int |
| ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) |
| { |
| struct ice_pf *pf = ptp_port_to_pf(ptp_port); |
| u8 port = ptp_port->port_num; |
| struct ice_hw *hw = &pf->hw; |
| int err; |
| |
| if (ice_is_e810(hw)) |
| return 0; |
| |
| if (!ptp_port->link_up) |
| return ice_ptp_port_phy_stop(ptp_port); |
| |
| mutex_lock(&ptp_port->ps_lock); |
| |
| kthread_cancel_delayed_work_sync(&ptp_port->ov_work); |
| |
| /* temporarily disable Tx timestamps while calibrating PHY offset */ |
| spin_lock(&ptp_port->tx.lock); |
| ptp_port->tx.calibrating = true; |
| spin_unlock(&ptp_port->tx.lock); |
| ptp_port->tx_fifo_busy_cnt = 0; |
| |
| /* Start the PHY timer in Vernier mode */ |
| err = ice_start_phy_timer_e822(hw, port); |
| if (err) |
| goto out_unlock; |
| |
| /* Enable Tx timestamps right away */ |
| spin_lock(&ptp_port->tx.lock); |
| ptp_port->tx.calibrating = false; |
| spin_unlock(&ptp_port->tx.lock); |
| |
| kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); |
| |
| out_unlock: |
| if (err) |
| dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", |
| port, err); |
| |
| mutex_unlock(&ptp_port->ps_lock); |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_link_change - Reconfigure PTP after link status change |
| * @pf: Board private structure |
| * @port: Port for which the PHY start is set |
| * @linkup: Link is up or down |
| */ |
| void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) |
| { |
| struct ice_ptp_port *ptp_port; |
| |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return; |
| |
| if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS)) |
| return; |
| |
| ptp_port = &pf->ptp.port; |
| if (WARN_ON_ONCE(ptp_port->port_num != port)) |
| return; |
| |
| /* Update cached link status for this port immediately */ |
| ptp_port->link_up = linkup; |
| |
| /* E810 devices do not need to reconfigure the PHY */ |
| if (ice_is_e810(&pf->hw)) |
| return; |
| |
| ice_ptp_port_phy_restart(ptp_port); |
| } |
| |
| /** |
| * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt |
| * @pf: PF private structure |
| * @ena: bool value to enable or disable interrupt |
| * @threshold: Minimum number of packets at which intr is triggered |
| * |
| * Utility function to enable or disable Tx timestamp interrupt and threshold |
| */ |
| static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) |
| { |
| struct ice_hw *hw = &pf->hw; |
| int err = 0; |
| int quad; |
| u32 val; |
| |
| ice_ptp_reset_ts_memory(hw); |
| |
| for (quad = 0; quad < ICE_MAX_QUAD; quad++) { |
| err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, |
| &val); |
| if (err) |
| break; |
| |
| if (ena) { |
| val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; |
| val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; |
| val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) & |
| Q_REG_TX_MEM_GBL_CFG_INTR_THR_M); |
| } else { |
| val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; |
| } |
| |
| err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, |
| val); |
| if (err) |
| break; |
| } |
| |
| if (err) |
| dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", |
| err); |
| return err; |
| } |
| |
| /** |
| * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block |
| * @pf: Board private structure |
| */ |
| static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) |
| { |
| ice_ptp_port_phy_restart(&pf->ptp.port); |
| } |
| |
| /** |
| * ice_ptp_adjfine - Adjust clock increment rate |
| * @info: the driver's PTP info structure |
| * @scaled_ppm: Parts per million with 16-bit fractional field |
| * |
| * Adjust the frequency of the clock by the indicated scaled ppm from the |
| * base frequency. |
| */ |
| static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_hw *hw = &pf->hw; |
| u64 incval; |
| int err; |
| |
| incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm); |
| err = ice_ptp_write_incval_locked(hw, incval); |
| if (err) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", |
| err); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_extts_work - Workqueue task function |
| * @work: external timestamp work structure |
| * |
| * Service for PTP external clock event |
| */ |
| static void ice_ptp_extts_work(struct kthread_work *work) |
| { |
| struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work); |
| struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); |
| struct ptp_clock_event event; |
| struct ice_hw *hw = &pf->hw; |
| u8 chan, tmr_idx; |
| u32 hi, lo; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| /* Event time is captured by one of the two matched registers |
| * GLTSYN_EVNT_L: 32 LSB of sampled time event |
| * GLTSYN_EVNT_H: 32 MSB of sampled time event |
| * Event is defined in GLTSYN_EVNT_0 register |
| */ |
| for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { |
| /* Check if channel is enabled */ |
| if (pf->ptp.ext_ts_irq & (1 << chan)) { |
| lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); |
| hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); |
| event.timestamp = (((u64)hi) << 32) | lo; |
| event.type = PTP_CLOCK_EXTTS; |
| event.index = chan; |
| |
| /* Fire event */ |
| ptp_clock_event(pf->ptp.clock, &event); |
| pf->ptp.ext_ts_irq &= ~(1 << chan); |
| } |
| } |
| } |
| |
| /** |
| * ice_ptp_cfg_extts - Configure EXTTS pin and channel |
| * @pf: Board private structure |
| * @ena: true to enable; false to disable |
| * @chan: GPIO channel (0-3) |
| * @gpio_pin: GPIO pin |
| * @extts_flags: request flags from the ptp_extts_request.flags |
| */ |
| static int |
| ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, |
| unsigned int extts_flags) |
| { |
| u32 func, aux_reg, gpio_reg, irq_reg; |
| struct ice_hw *hw = &pf->hw; |
| u8 tmr_idx; |
| |
| if (chan > (unsigned int)pf->ptp.info.n_ext_ts) |
| return -EINVAL; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| irq_reg = rd32(hw, PFINT_OICR_ENA); |
| |
| if (ena) { |
| /* Enable the interrupt */ |
| irq_reg |= PFINT_OICR_TSYN_EVNT_M; |
| aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; |
| |
| #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) |
| #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) |
| |
| /* set event level to requested edge */ |
| if (extts_flags & PTP_FALLING_EDGE) |
| aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; |
| if (extts_flags & PTP_RISING_EDGE) |
| aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; |
| |
| /* Write GPIO CTL reg. |
| * 0x1 is input sampled by EVENT register(channel) |
| * + num_in_channels * tmr_idx |
| */ |
| func = 1 + chan + (tmr_idx * 3); |
| gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & |
| GLGEN_GPIO_CTL_PIN_FUNC_M); |
| pf->ptp.ext_ts_chan |= (1 << chan); |
| } else { |
| /* clear the values we set to reset defaults */ |
| aux_reg = 0; |
| gpio_reg = 0; |
| pf->ptp.ext_ts_chan &= ~(1 << chan); |
| if (!pf->ptp.ext_ts_chan) |
| irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; |
| } |
| |
| wr32(hw, PFINT_OICR_ENA, irq_reg); |
| wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); |
| wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_cfg_clkout - Configure clock to generate periodic wave |
| * @pf: Board private structure |
| * @chan: GPIO channel (0-3) |
| * @config: desired periodic clk configuration. NULL will disable channel |
| * @store: If set to true the values will be stored |
| * |
| * Configure the internal clock generator modules to generate the clock wave of |
| * specified period. |
| */ |
| static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, |
| struct ice_perout_channel *config, bool store) |
| { |
| u64 current_time, period, start_time, phase; |
| struct ice_hw *hw = &pf->hw; |
| u32 func, val, gpio_pin; |
| u8 tmr_idx; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* 0. Reset mode & out_en in AUX_OUT */ |
| wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); |
| |
| /* If we're disabling the output, clear out CLKO and TGT and keep |
| * output level low |
| */ |
| if (!config || !config->ena) { |
| wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); |
| wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); |
| wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); |
| |
| val = GLGEN_GPIO_CTL_PIN_DIR_M; |
| gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; |
| wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); |
| |
| /* Store the value if requested */ |
| if (store) |
| memset(&pf->ptp.perout_channels[chan], 0, |
| sizeof(struct ice_perout_channel)); |
| |
| return 0; |
| } |
| period = config->period; |
| start_time = config->start_time; |
| div64_u64_rem(start_time, period, &phase); |
| gpio_pin = config->gpio_pin; |
| |
| /* 1. Write clkout with half of required period value */ |
| if (period & 0x1) { |
| dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); |
| goto err; |
| } |
| |
| period >>= 1; |
| |
| /* For proper operation, the GLTSYN_CLKO must be larger than clock tick |
| */ |
| #define MIN_PULSE 3 |
| if (period <= MIN_PULSE || period > U32_MAX) { |
| dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", |
| MIN_PULSE * 2); |
| goto err; |
| } |
| |
| wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); |
| |
| /* Allow time for programming before start_time is hit */ |
| current_time = ice_ptp_read_src_clk_reg(pf, NULL); |
| |
| /* if start time is in the past start the timer at the nearest second |
| * maintaining phase |
| */ |
| if (start_time < current_time) |
| start_time = div64_u64(current_time + NSEC_PER_SEC - 1, |
| NSEC_PER_SEC) * NSEC_PER_SEC + phase; |
| |
| if (ice_is_e810(hw)) |
| start_time -= E810_OUT_PROP_DELAY_NS; |
| else |
| start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw)); |
| |
| /* 2. Write TARGET time */ |
| wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); |
| wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); |
| |
| /* 3. Write AUX_OUT register */ |
| val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; |
| wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); |
| |
| /* 4. write GPIO CTL reg */ |
| func = 8 + chan + (tmr_idx * 4); |
| val = GLGEN_GPIO_CTL_PIN_DIR_M | |
| ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); |
| wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); |
| |
| /* Store the value if requested */ |
| if (store) { |
| memcpy(&pf->ptp.perout_channels[chan], config, |
| sizeof(struct ice_perout_channel)); |
| pf->ptp.perout_channels[chan].start_time = phase; |
| } |
| |
| return 0; |
| err: |
| dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); |
| return -EFAULT; |
| } |
| |
| /** |
| * ice_ptp_disable_all_clkout - Disable all currently configured outputs |
| * @pf: pointer to the PF structure |
| * |
| * Disable all currently configured clock outputs. This is necessary before |
| * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to |
| * re-enable the clocks again. |
| */ |
| static void ice_ptp_disable_all_clkout(struct ice_pf *pf) |
| { |
| uint i; |
| |
| for (i = 0; i < pf->ptp.info.n_per_out; i++) |
| if (pf->ptp.perout_channels[i].ena) |
| ice_ptp_cfg_clkout(pf, i, NULL, false); |
| } |
| |
| /** |
| * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs |
| * @pf: pointer to the PF structure |
| * |
| * Enable all currently configured clock outputs. Use this after |
| * ice_ptp_disable_all_clkout to reconfigure the output signals according to |
| * their configuration. |
| */ |
| static void ice_ptp_enable_all_clkout(struct ice_pf *pf) |
| { |
| uint i; |
| |
| for (i = 0; i < pf->ptp.info.n_per_out; i++) |
| if (pf->ptp.perout_channels[i].ena) |
| ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], |
| false); |
| } |
| |
| /** |
| * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC |
| * @info: the driver's PTP info structure |
| * @rq: The requested feature to change |
| * @on: Enable/disable flag |
| */ |
| static int |
| ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, |
| struct ptp_clock_request *rq, int on) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_perout_channel clk_cfg = {0}; |
| bool sma_pres = false; |
| unsigned int chan; |
| u32 gpio_pin; |
| int err; |
| |
| if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) |
| sma_pres = true; |
| |
| switch (rq->type) { |
| case PTP_CLK_REQ_PEROUT: |
| chan = rq->perout.index; |
| if (sma_pres) { |
| if (chan == ice_pin_desc_e810t[SMA1].chan) |
| clk_cfg.gpio_pin = GPIO_20; |
| else if (chan == ice_pin_desc_e810t[SMA2].chan) |
| clk_cfg.gpio_pin = GPIO_22; |
| else |
| return -1; |
| } else if (ice_is_e810t(&pf->hw)) { |
| if (chan == 0) |
| clk_cfg.gpio_pin = GPIO_20; |
| else |
| clk_cfg.gpio_pin = GPIO_22; |
| } else if (chan == PPS_CLK_GEN_CHAN) { |
| clk_cfg.gpio_pin = PPS_PIN_INDEX; |
| } else { |
| clk_cfg.gpio_pin = chan; |
| } |
| |
| clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + |
| rq->perout.period.nsec); |
| clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + |
| rq->perout.start.nsec); |
| clk_cfg.ena = !!on; |
| |
| err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); |
| break; |
| case PTP_CLK_REQ_EXTTS: |
| chan = rq->extts.index; |
| if (sma_pres) { |
| if (chan < ice_pin_desc_e810t[SMA2].chan) |
| gpio_pin = GPIO_21; |
| else |
| gpio_pin = GPIO_23; |
| } else if (ice_is_e810t(&pf->hw)) { |
| if (chan == 0) |
| gpio_pin = GPIO_21; |
| else |
| gpio_pin = GPIO_23; |
| } else { |
| gpio_pin = chan; |
| } |
| |
| err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, |
| rq->extts.flags); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_gettimex64 - Get the time of the clock |
| * @info: the driver's PTP info structure |
| * @ts: timespec64 structure to hold the current time value |
| * @sts: Optional parameter for holding a pair of system timestamps from |
| * the system clock. Will be ignored if NULL is given. |
| * |
| * Read the device clock and return the correct value on ns, after converting it |
| * into a timespec struct. |
| */ |
| static int |
| ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_hw *hw = &pf->hw; |
| |
| if (!ice_ptp_lock(hw)) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); |
| return -EBUSY; |
| } |
| |
| ice_ptp_read_time(pf, ts, sts); |
| ice_ptp_unlock(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_settime64 - Set the time of the clock |
| * @info: the driver's PTP info structure |
| * @ts: timespec64 structure that holds the new time value |
| * |
| * Set the device clock to the user input value. The conversion from timespec |
| * to ns happens in the write function. |
| */ |
| static int |
| ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct timespec64 ts64 = *ts; |
| struct ice_hw *hw = &pf->hw; |
| int err; |
| |
| /* For Vernier mode, we need to recalibrate after new settime |
| * Start with disabling timestamp block |
| */ |
| if (pf->ptp.port.link_up) |
| ice_ptp_port_phy_stop(&pf->ptp.port); |
| |
| if (!ice_ptp_lock(hw)) { |
| err = -EBUSY; |
| goto exit; |
| } |
| |
| /* Disable periodic outputs */ |
| ice_ptp_disable_all_clkout(pf); |
| |
| err = ice_ptp_write_init(pf, &ts64); |
| ice_ptp_unlock(hw); |
| |
| if (!err) |
| ice_ptp_reset_cached_phctime(pf); |
| |
| /* Reenable periodic outputs */ |
| ice_ptp_enable_all_clkout(pf); |
| |
| /* Recalibrate and re-enable timestamp block */ |
| if (pf->ptp.port.link_up) |
| ice_ptp_port_phy_restart(&pf->ptp.port); |
| exit: |
| if (err) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment |
| * @info: the driver's PTP info structure |
| * @delta: Offset in nanoseconds to adjust the time by |
| */ |
| static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) |
| { |
| struct timespec64 now, then; |
| int ret; |
| |
| then = ns_to_timespec64(delta); |
| ret = ice_ptp_gettimex64(info, &now, NULL); |
| if (ret) |
| return ret; |
| now = timespec64_add(now, then); |
| |
| return ice_ptp_settime64(info, (const struct timespec64 *)&now); |
| } |
| |
| /** |
| * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta |
| * @info: the driver's PTP info structure |
| * @delta: Offset in nanoseconds to adjust the time by |
| */ |
| static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| struct ice_hw *hw = &pf->hw; |
| struct device *dev; |
| int err; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| /* Hardware only supports atomic adjustments using signed 32-bit |
| * integers. For any adjustment outside this range, perform |
| * a non-atomic get->adjust->set flow. |
| */ |
| if (delta > S32_MAX || delta < S32_MIN) { |
| dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); |
| return ice_ptp_adjtime_nonatomic(info, delta); |
| } |
| |
| if (!ice_ptp_lock(hw)) { |
| dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); |
| return -EBUSY; |
| } |
| |
| /* Disable periodic outputs */ |
| ice_ptp_disable_all_clkout(pf); |
| |
| err = ice_ptp_write_adj(pf, delta); |
| |
| /* Reenable periodic outputs */ |
| ice_ptp_enable_all_clkout(pf); |
| |
| ice_ptp_unlock(hw); |
| |
| if (err) { |
| dev_err(dev, "PTP failed to adjust time, err %d\n", err); |
| return err; |
| } |
| |
| ice_ptp_reset_cached_phctime(pf); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_ICE_HWTS |
| /** |
| * ice_ptp_get_syncdevicetime - Get the cross time stamp info |
| * @device: Current device time |
| * @system: System counter value read synchronously with device time |
| * @ctx: Context provided by timekeeping code |
| * |
| * Read device and system (ART) clock simultaneously and return the corrected |
| * clock values in ns. |
| */ |
| static int |
| ice_ptp_get_syncdevicetime(ktime_t *device, |
| struct system_counterval_t *system, |
| void *ctx) |
| { |
| struct ice_pf *pf = (struct ice_pf *)ctx; |
| struct ice_hw *hw = &pf->hw; |
| u32 hh_lock, hh_art_ctl; |
| int i; |
| |
| /* Get the HW lock */ |
| hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); |
| if (hh_lock & PFHH_SEM_BUSY_M) { |
| dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); |
| return -EFAULT; |
| } |
| |
| /* Start the ART and device clock sync sequence */ |
| hh_art_ctl = rd32(hw, GLHH_ART_CTL); |
| hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; |
| wr32(hw, GLHH_ART_CTL, hh_art_ctl); |
| |
| #define MAX_HH_LOCK_TRIES 100 |
| |
| for (i = 0; i < MAX_HH_LOCK_TRIES; i++) { |
| /* Wait for sync to complete */ |
| hh_art_ctl = rd32(hw, GLHH_ART_CTL); |
| if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { |
| udelay(1); |
| continue; |
| } else { |
| u32 hh_ts_lo, hh_ts_hi, tmr_idx; |
| u64 hh_ts; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; |
| /* Read ART time */ |
| hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); |
| hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); |
| hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; |
| *system = convert_art_ns_to_tsc(hh_ts); |
| /* Read Device source clock time */ |
| hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); |
| hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); |
| hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; |
| *device = ns_to_ktime(hh_ts); |
| break; |
| } |
| } |
| /* Release HW lock */ |
| hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); |
| hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; |
| wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); |
| |
| if (i == MAX_HH_LOCK_TRIES) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp |
| * @info: the driver's PTP info structure |
| * @cts: The memory to fill the cross timestamp info |
| * |
| * Capture a cross timestamp between the ART and the device PTP hardware |
| * clock. Fill the cross timestamp information and report it back to the |
| * caller. |
| * |
| * This is only valid for E822 devices which have support for generating the |
| * cross timestamp via PCIe PTM. |
| * |
| * In order to correctly correlate the ART timestamp back to the TSC time, the |
| * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. |
| */ |
| static int |
| ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info, |
| struct system_device_crosststamp *cts) |
| { |
| struct ice_pf *pf = ptp_info_to_pf(info); |
| |
| return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, |
| pf, NULL, cts); |
| } |
| #endif /* CONFIG_ICE_HWTS */ |
| |
| /** |
| * ice_ptp_get_ts_config - ioctl interface to read the timestamping config |
| * @pf: Board private structure |
| * @ifr: ioctl data |
| * |
| * Copy the timestamping config to user buffer |
| */ |
| int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) |
| { |
| struct hwtstamp_config *config; |
| |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return -EIO; |
| |
| config = &pf->ptp.tstamp_config; |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode |
| * @pf: Board private structure |
| * @config: hwtstamp settings requested or saved |
| */ |
| static int |
| ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) |
| { |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| ice_set_tx_tstamp(pf, false); |
| break; |
| case HWTSTAMP_TX_ON: |
| ice_set_tx_tstamp(pf, true); |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| ice_set_rx_tstamp(pf, false); |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_NTP_ALL: |
| case HWTSTAMP_FILTER_ALL: |
| ice_set_rx_tstamp(pf, true); |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_set_ts_config - ioctl interface to control the timestamping |
| * @pf: Board private structure |
| * @ifr: ioctl data |
| * |
| * Get the user config and store it |
| */ |
| int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) |
| { |
| struct hwtstamp_config config; |
| int err; |
| |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return -EAGAIN; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| err = ice_ptp_set_timestamp_mode(pf, &config); |
| if (err) |
| return err; |
| |
| /* Return the actual configuration set */ |
| config = pf->ptp.tstamp_config; |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * ice_ptp_rx_hwtstamp - Check for an Rx timestamp |
| * @rx_ring: Ring to get the VSI info |
| * @rx_desc: Receive descriptor |
| * @skb: Particular skb to send timestamp with |
| * |
| * The driver receives a notification in the receive descriptor with timestamp. |
| * The timestamp is in ns, so we must convert the result first. |
| */ |
| void |
| ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, |
| union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) |
| { |
| struct skb_shared_hwtstamps *hwtstamps; |
| u64 ts_ns, cached_time; |
| u32 ts_high; |
| |
| if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) |
| return; |
| |
| cached_time = READ_ONCE(rx_ring->cached_phctime); |
| |
| /* Do not report a timestamp if we don't have a cached PHC time */ |
| if (!cached_time) |
| return; |
| |
| /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached |
| * PHC value, rather than accessing the PF. This also allows us to |
| * simply pass the upper 32bits of nanoseconds directly. Calling |
| * ice_ptp_extend_40b_ts is unnecessary as it would just discard these |
| * bits itself. |
| */ |
| ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); |
| ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); |
| |
| hwtstamps = skb_hwtstamps(skb); |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| hwtstamps->hwtstamp = ns_to_ktime(ts_ns); |
| } |
| |
| /** |
| * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins |
| * @pf: pointer to the PF structure |
| * @info: PTP clock info structure |
| * |
| * Disable the OS access to the SMA pins. Called to clear out the OS |
| * indications of pin support when we fail to setup the E810-T SMA control |
| * register. |
| */ |
| static void |
| ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| |
| dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); |
| |
| info->enable = NULL; |
| info->verify = NULL; |
| info->n_pins = 0; |
| info->n_ext_ts = 0; |
| info->n_per_out = 0; |
| } |
| |
| /** |
| * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins |
| * @pf: pointer to the PF structure |
| * @info: PTP clock info structure |
| * |
| * Finish setting up the SMA pins by allocating pin_config, and setting it up |
| * according to the current status of the SMA. On failure, disable all of the |
| * extended SMA pin support. |
| */ |
| static void |
| ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| /* Allocate memory for kernel pins interface */ |
| info->pin_config = devm_kcalloc(dev, info->n_pins, |
| sizeof(*info->pin_config), GFP_KERNEL); |
| if (!info->pin_config) { |
| ice_ptp_disable_sma_pins_e810t(pf, info); |
| return; |
| } |
| |
| /* Read current SMA status */ |
| err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); |
| if (err) |
| ice_ptp_disable_sma_pins_e810t(pf, info); |
| } |
| |
| /** |
| * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs |
| * @pf: pointer to the PF instance |
| * @info: PTP clock capabilities |
| */ |
| static void |
| ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) |
| { |
| info->n_per_out = N_PER_OUT_E810; |
| |
| if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) |
| info->n_ext_ts = N_EXT_TS_E810; |
| |
| if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { |
| info->n_ext_ts = N_EXT_TS_E810; |
| info->n_pins = NUM_PTP_PINS_E810T; |
| info->verify = ice_verify_pin_e810t; |
| |
| /* Complete setup of the SMA pins */ |
| ice_ptp_setup_sma_pins_e810t(pf, info); |
| } |
| } |
| |
| /** |
| * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support |
| * @pf: Board private structure |
| * @info: PTP info to fill |
| * |
| * Assign functions to the PTP capabiltiies structure for E822 devices. |
| * Functions which operate across all device families should be set directly |
| * in ice_ptp_set_caps. Only add functions here which are distinct for E822 |
| * devices. |
| */ |
| static void |
| ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info) |
| { |
| #ifdef CONFIG_ICE_HWTS |
| if (boot_cpu_has(X86_FEATURE_ART) && |
| boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) |
| info->getcrosststamp = ice_ptp_getcrosststamp_e822; |
| #endif /* CONFIG_ICE_HWTS */ |
| } |
| |
| /** |
| * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support |
| * @pf: Board private structure |
| * @info: PTP info to fill |
| * |
| * Assign functions to the PTP capabiltiies structure for E810 devices. |
| * Functions which operate across all device families should be set directly |
| * in ice_ptp_set_caps. Only add functions here which are distinct for e810 |
| * devices. |
| */ |
| static void |
| ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) |
| { |
| info->enable = ice_ptp_gpio_enable_e810; |
| ice_ptp_setup_pins_e810(pf, info); |
| } |
| |
| /** |
| * ice_ptp_set_caps - Set PTP capabilities |
| * @pf: Board private structure |
| */ |
| static void ice_ptp_set_caps(struct ice_pf *pf) |
| { |
| struct ptp_clock_info *info = &pf->ptp.info; |
| struct device *dev = ice_pf_to_dev(pf); |
| |
| snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", |
| dev_driver_string(dev), dev_name(dev)); |
| info->owner = THIS_MODULE; |
| info->max_adj = 999999999; |
| info->adjtime = ice_ptp_adjtime; |
| info->adjfine = ice_ptp_adjfine; |
| info->gettimex64 = ice_ptp_gettimex64; |
| info->settime64 = ice_ptp_settime64; |
| |
| if (ice_is_e810(&pf->hw)) |
| ice_ptp_set_funcs_e810(pf, info); |
| else |
| ice_ptp_set_funcs_e822(pf, info); |
| } |
| |
| /** |
| * ice_ptp_create_clock - Create PTP clock device for userspace |
| * @pf: Board private structure |
| * |
| * This function creates a new PTP clock device. It only creates one if we |
| * don't already have one. Will return error if it can't create one, but success |
| * if we already have a device. Should be used by ice_ptp_init to create clock |
| * initially, and prevent global resets from creating new clock devices. |
| */ |
| static long ice_ptp_create_clock(struct ice_pf *pf) |
| { |
| struct ptp_clock_info *info; |
| struct ptp_clock *clock; |
| struct device *dev; |
| |
| /* No need to create a clock device if we already have one */ |
| if (pf->ptp.clock) |
| return 0; |
| |
| ice_ptp_set_caps(pf); |
| |
| info = &pf->ptp.info; |
| dev = ice_pf_to_dev(pf); |
| |
| /* Attempt to register the clock before enabling the hardware. */ |
| clock = ptp_clock_register(info, dev); |
| if (IS_ERR(clock)) |
| return PTR_ERR(clock); |
| |
| pf->ptp.clock = clock; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_request_ts - Request an available Tx timestamp index |
| * @tx: the PTP Tx timestamp tracker to request from |
| * @skb: the SKB to associate with this timestamp request |
| */ |
| s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) |
| { |
| u8 idx; |
| |
| spin_lock(&tx->lock); |
| |
| /* Check that this tracker is accepting new timestamp requests */ |
| if (!ice_ptp_is_tx_tracker_up(tx)) { |
| spin_unlock(&tx->lock); |
| return -1; |
| } |
| |
| /* Find and set the first available index */ |
| idx = find_first_zero_bit(tx->in_use, tx->len); |
| if (idx < tx->len) { |
| /* We got a valid index that no other thread could have set. Store |
| * a reference to the skb and the start time to allow discarding old |
| * requests. |
| */ |
| set_bit(idx, tx->in_use); |
| clear_bit(idx, tx->stale); |
| tx->tstamps[idx].start = jiffies; |
| tx->tstamps[idx].skb = skb_get(skb); |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| ice_trace(tx_tstamp_request, skb, idx); |
| } |
| |
| spin_unlock(&tx->lock); |
| |
| /* return the appropriate PHY timestamp register index, -1 if no |
| * indexes were available. |
| */ |
| if (idx >= tx->len) |
| return -1; |
| else |
| return idx + tx->offset; |
| } |
| |
| /** |
| * ice_ptp_process_ts - Process the PTP Tx timestamps |
| * @pf: Board private structure |
| * |
| * Returns true if timestamps are processed. |
| */ |
| bool ice_ptp_process_ts(struct ice_pf *pf) |
| { |
| return ice_ptp_tx_tstamp(&pf->ptp.port.tx); |
| } |
| |
| static void ice_ptp_periodic_work(struct kthread_work *work) |
| { |
| struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); |
| struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); |
| int err; |
| |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return; |
| |
| err = ice_ptp_update_cached_phctime(pf); |
| |
| /* Run twice a second or reschedule if phc update failed */ |
| kthread_queue_delayed_work(ptp->kworker, &ptp->work, |
| msecs_to_jiffies(err ? 10 : 500)); |
| } |
| |
| /** |
| * ice_ptp_reset - Initialize PTP hardware clock support after reset |
| * @pf: Board private structure |
| */ |
| void ice_ptp_reset(struct ice_pf *pf) |
| { |
| struct ice_ptp *ptp = &pf->ptp; |
| struct ice_hw *hw = &pf->hw; |
| struct timespec64 ts; |
| int err, itr = 1; |
| u64 time_diff; |
| |
| if (test_bit(ICE_PFR_REQ, pf->state)) |
| goto pfr; |
| |
| if (!hw->func_caps.ts_func_info.src_tmr_owned) |
| goto reset_ts; |
| |
| err = ice_ptp_init_phc(hw); |
| if (err) |
| goto err; |
| |
| /* Acquire the global hardware lock */ |
| if (!ice_ptp_lock(hw)) { |
| err = -EBUSY; |
| goto err; |
| } |
| |
| /* Write the increment time value to PHY and LAN */ |
| err = ice_ptp_write_incval(hw, ice_base_incval(pf)); |
| if (err) { |
| ice_ptp_unlock(hw); |
| goto err; |
| } |
| |
| /* Write the initial Time value to PHY and LAN using the cached PHC |
| * time before the reset and time difference between stopping and |
| * starting the clock. |
| */ |
| if (ptp->cached_phc_time) { |
| time_diff = ktime_get_real_ns() - ptp->reset_time; |
| ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); |
| } else { |
| ts = ktime_to_timespec64(ktime_get_real()); |
| } |
| err = ice_ptp_write_init(pf, &ts); |
| if (err) { |
| ice_ptp_unlock(hw); |
| goto err; |
| } |
| |
| /* Release the global hardware lock */ |
| ice_ptp_unlock(hw); |
| |
| if (!ice_is_e810(hw)) { |
| /* Enable quad interrupts */ |
| err = ice_ptp_tx_ena_intr(pf, true, itr); |
| if (err) |
| goto err; |
| } |
| |
| reset_ts: |
| /* Restart the PHY timestamping block */ |
| ice_ptp_reset_phy_timestamping(pf); |
| |
| pfr: |
| /* Init Tx structures */ |
| if (ice_is_e810(&pf->hw)) { |
| err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); |
| } else { |
| kthread_init_delayed_work(&ptp->port.ov_work, |
| ice_ptp_wait_for_offsets); |
| err = ice_ptp_init_tx_e822(pf, &ptp->port.tx, |
| ptp->port.port_num); |
| } |
| if (err) |
| goto err; |
| |
| set_bit(ICE_FLAG_PTP, pf->flags); |
| |
| /* Start periodic work going */ |
| kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); |
| |
| dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); |
| return; |
| |
| err: |
| dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); |
| } |
| |
| /** |
| * ice_ptp_prepare_for_reset - Prepare PTP for reset |
| * @pf: Board private structure |
| */ |
| void ice_ptp_prepare_for_reset(struct ice_pf *pf) |
| { |
| struct ice_ptp *ptp = &pf->ptp; |
| u8 src_tmr; |
| |
| clear_bit(ICE_FLAG_PTP, pf->flags); |
| |
| /* Disable timestamping for both Tx and Rx */ |
| ice_ptp_cfg_timestamp(pf, false); |
| |
| kthread_cancel_delayed_work_sync(&ptp->work); |
| kthread_cancel_work_sync(&ptp->extts_work); |
| |
| if (test_bit(ICE_PFR_REQ, pf->state)) |
| return; |
| |
| ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); |
| |
| /* Disable periodic outputs */ |
| ice_ptp_disable_all_clkout(pf); |
| |
| src_tmr = ice_get_ptp_src_clock_index(&pf->hw); |
| |
| /* Disable source clock */ |
| wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); |
| |
| /* Acquire PHC and system timer to restore after reset */ |
| ptp->reset_time = ktime_get_real_ns(); |
| } |
| |
| /** |
| * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device |
| * @pf: Board private structure |
| * |
| * Setup and initialize a PTP clock device that represents the device hardware |
| * clock. Save the clock index for other functions connected to the same |
| * hardware resource. |
| */ |
| static int ice_ptp_init_owner(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| struct timespec64 ts; |
| int err, itr = 1; |
| |
| err = ice_ptp_init_phc(hw); |
| if (err) { |
| dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", |
| err); |
| return err; |
| } |
| |
| /* Acquire the global hardware lock */ |
| if (!ice_ptp_lock(hw)) { |
| err = -EBUSY; |
| goto err_exit; |
| } |
| |
| /* Write the increment time value to PHY and LAN */ |
| err = ice_ptp_write_incval(hw, ice_base_incval(pf)); |
| if (err) { |
| ice_ptp_unlock(hw); |
| goto err_exit; |
| } |
| |
| ts = ktime_to_timespec64(ktime_get_real()); |
| /* Write the initial Time value to PHY and LAN */ |
| err = ice_ptp_write_init(pf, &ts); |
| if (err) { |
| ice_ptp_unlock(hw); |
| goto err_exit; |
| } |
| |
| /* Release the global hardware lock */ |
| ice_ptp_unlock(hw); |
| |
| if (!ice_is_e810(hw)) { |
| /* Enable quad interrupts */ |
| err = ice_ptp_tx_ena_intr(pf, true, itr); |
| if (err) |
| goto err_exit; |
| } |
| |
| /* Ensure we have a clock device */ |
| err = ice_ptp_create_clock(pf); |
| if (err) |
| goto err_clk; |
| |
| /* Store the PTP clock index for other PFs */ |
| ice_set_ptp_clock_index(pf); |
| |
| return 0; |
| |
| err_clk: |
| pf->ptp.clock = NULL; |
| err_exit: |
| return err; |
| } |
| |
| /** |
| * ice_ptp_init_work - Initialize PTP work threads |
| * @pf: Board private structure |
| * @ptp: PF PTP structure |
| */ |
| static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) |
| { |
| struct kthread_worker *kworker; |
| |
| /* Initialize work functions */ |
| kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); |
| kthread_init_work(&ptp->extts_work, ice_ptp_extts_work); |
| |
| /* Allocate a kworker for handling work required for the ports |
| * connected to the PTP hardware clock. |
| */ |
| kworker = kthread_create_worker(0, "ice-ptp-%s", |
| dev_name(ice_pf_to_dev(pf))); |
| if (IS_ERR(kworker)) |
| return PTR_ERR(kworker); |
| |
| ptp->kworker = kworker; |
| |
| /* Start periodic work going */ |
| kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_init_port - Initialize PTP port structure |
| * @pf: Board private structure |
| * @ptp_port: PTP port structure |
| */ |
| static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) |
| { |
| mutex_init(&ptp_port->ps_lock); |
| |
| if (ice_is_e810(&pf->hw)) |
| return ice_ptp_init_tx_e810(pf, &ptp_port->tx); |
| |
| kthread_init_delayed_work(&ptp_port->ov_work, |
| ice_ptp_wait_for_offsets); |
| return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num); |
| } |
| |
| /** |
| * ice_ptp_init - Initialize PTP hardware clock support |
| * @pf: Board private structure |
| * |
| * Set up the device for interacting with the PTP hardware clock for all |
| * functions, both the function that owns the clock hardware, and the |
| * functions connected to the clock hardware. |
| * |
| * The clock owner will allocate and register a ptp_clock with the |
| * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work |
| * items used for asynchronous work such as Tx timestamps and periodic work. |
| */ |
| void ice_ptp_init(struct ice_pf *pf) |
| { |
| struct ice_ptp *ptp = &pf->ptp; |
| struct ice_hw *hw = &pf->hw; |
| int err; |
| |
| /* If this function owns the clock hardware, it must allocate and |
| * configure the PTP clock device to represent it. |
| */ |
| if (hw->func_caps.ts_func_info.src_tmr_owned) { |
| err = ice_ptp_init_owner(pf); |
| if (err) |
| goto err; |
| } |
| |
| ptp->port.port_num = hw->pf_id; |
| err = ice_ptp_init_port(pf, &ptp->port); |
| if (err) |
| goto err; |
| |
| /* Start the PHY timestamping block */ |
| ice_ptp_reset_phy_timestamping(pf); |
| |
| set_bit(ICE_FLAG_PTP, pf->flags); |
| err = ice_ptp_init_work(pf, ptp); |
| if (err) |
| goto err; |
| |
| dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); |
| return; |
| |
| err: |
| /* If we registered a PTP clock, release it */ |
| if (pf->ptp.clock) { |
| ptp_clock_unregister(ptp->clock); |
| pf->ptp.clock = NULL; |
| } |
| clear_bit(ICE_FLAG_PTP, pf->flags); |
| dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); |
| } |
| |
| /** |
| * ice_ptp_release - Disable the driver/HW support and unregister the clock |
| * @pf: Board private structure |
| * |
| * This function handles the cleanup work required from the initialization by |
| * clearing out the important information and unregistering the clock |
| */ |
| void ice_ptp_release(struct ice_pf *pf) |
| { |
| if (!test_bit(ICE_FLAG_PTP, pf->flags)) |
| return; |
| |
| /* Disable timestamping for both Tx and Rx */ |
| ice_ptp_cfg_timestamp(pf, false); |
| |
| ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); |
| |
| clear_bit(ICE_FLAG_PTP, pf->flags); |
| |
| kthread_cancel_delayed_work_sync(&pf->ptp.work); |
| |
| ice_ptp_port_phy_stop(&pf->ptp.port); |
| mutex_destroy(&pf->ptp.port.ps_lock); |
| if (pf->ptp.kworker) { |
| kthread_destroy_worker(pf->ptp.kworker); |
| pf->ptp.kworker = NULL; |
| } |
| |
| if (!pf->ptp.clock) |
| return; |
| |
| /* Disable periodic outputs */ |
| ice_ptp_disable_all_clkout(pf); |
| |
| ice_clear_ptp_clock_index(pf); |
| ptp_clock_unregister(pf->ptp.clock); |
| pf->ptp.clock = NULL; |
| |
| dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); |
| } |