| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (C) 2021, Intel Corporation. */ |
| |
| #include <linux/delay.h> |
| #include "ice_common.h" |
| #include "ice_ptp_hw.h" |
| #include "ice_ptp_consts.h" |
| #include "ice_cgu_regs.h" |
| |
| /* Low level functions for interacting with and managing the device clock used |
| * for the Precision Time Protocol. |
| * |
| * The ice hardware represents the current time using three registers: |
| * |
| * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R |
| * +---------------+ +---------------+ +---------------+ |
| * | 32 bits | | 32 bits | | 32 bits | |
| * +---------------+ +---------------+ +---------------+ |
| * |
| * The registers are incremented every clock tick using a 40bit increment |
| * value defined over two registers: |
| * |
| * GLTSYN_INCVAL_H GLTSYN_INCVAL_L |
| * +---------------+ +---------------+ |
| * | 8 bit s | | 32 bits | |
| * +---------------+ +---------------+ |
| * |
| * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L |
| * registers every clock source tick. Depending on the specific device |
| * configuration, the clock source frequency could be one of a number of |
| * values. |
| * |
| * For E810 devices, the increment frequency is 812.5 MHz |
| * |
| * For E822 devices the clock can be derived from different sources, and the |
| * increment has an effective frequency of one of the following: |
| * - 823.4375 MHz |
| * - 783.36 MHz |
| * - 796.875 MHz |
| * - 816 MHz |
| * - 830.078125 MHz |
| * - 783.36 MHz |
| * |
| * The hardware captures timestamps in the PHY for incoming packets, and for |
| * outgoing packets on request. To support this, the PHY maintains a timer |
| * that matches the lower 64 bits of the global source timer. |
| * |
| * In order to ensure that the PHY timers and the source timer are equivalent, |
| * shadow registers are used to prepare the desired initial values. A special |
| * sync command is issued to trigger copying from the shadow registers into |
| * the appropriate source and PHY registers simultaneously. |
| * |
| * The driver supports devices which have different PHYs with subtly different |
| * mechanisms to program and control the timers. We divide the devices into |
| * families named after the first major device, E810 and similar devices, and |
| * E822 and similar devices. |
| * |
| * - E822 based devices have additional support for fine grained Vernier |
| * calibration which requires significant setup |
| * - The layout of timestamp data in the PHY register blocks is different |
| * - The way timer synchronization commands are issued is different. |
| * |
| * To support this, very low level functions have an e810 or e822 suffix |
| * indicating what type of device they work on. Higher level abstractions for |
| * tasks that can be done on both devices do not have the suffix and will |
| * correctly look up the appropriate low level function when running. |
| * |
| * Functions which only make sense on a single device family may not have |
| * a suitable generic implementation |
| */ |
| |
| /** |
| * ice_get_ptp_src_clock_index - determine source clock index |
| * @hw: pointer to HW struct |
| * |
| * Determine the source clock index currently in use, based on device |
| * capabilities reported during initialization. |
| */ |
| u8 ice_get_ptp_src_clock_index(struct ice_hw *hw) |
| { |
| return hw->func_caps.ts_func_info.tmr_index_assoc; |
| } |
| |
| /** |
| * ice_ptp_read_src_incval - Read source timer increment value |
| * @hw: pointer to HW struct |
| * |
| * Read the increment value of the source timer and return it. |
| */ |
| static u64 ice_ptp_read_src_incval(struct ice_hw *hw) |
| { |
| u32 lo, hi; |
| u8 tmr_idx; |
| |
| tmr_idx = ice_get_ptp_src_clock_index(hw); |
| |
| lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); |
| hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); |
| |
| return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo; |
| } |
| |
| /** |
| * ice_ptp_src_cmd - Prepare source timer for a timer command |
| * @hw: pointer to HW structure |
| * @cmd: Timer command |
| * |
| * Prepare the source timer for an upcoming timer sync command. |
| */ |
| static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) |
| { |
| u32 cmd_val; |
| u8 tmr_idx; |
| |
| tmr_idx = ice_get_ptp_src_clock_index(hw); |
| cmd_val = tmr_idx << SEL_CPK_SRC; |
| |
| switch (cmd) { |
| case INIT_TIME: |
| cmd_val |= GLTSYN_CMD_INIT_TIME; |
| break; |
| case INIT_INCVAL: |
| cmd_val |= GLTSYN_CMD_INIT_INCVAL; |
| break; |
| case ADJ_TIME: |
| cmd_val |= GLTSYN_CMD_ADJ_TIME; |
| break; |
| case ADJ_TIME_AT_TIME: |
| cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME; |
| break; |
| case READ_TIME: |
| cmd_val |= GLTSYN_CMD_READ_TIME; |
| break; |
| } |
| |
| wr32(hw, GLTSYN_CMD, cmd_val); |
| } |
| |
| /** |
| * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands |
| * @hw: pointer to HW struct |
| * |
| * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the |
| * write immediately. This triggers the hardware to begin executing all of the |
| * source and PHY timer commands synchronously. |
| */ |
| static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw) |
| { |
| wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD); |
| ice_flush(hw); |
| } |
| |
| /* E822 family functions |
| * |
| * The following functions operate on the E822 family of devices. |
| */ |
| |
| /** |
| * ice_fill_phy_msg_e822 - Fill message data for a PHY register access |
| * @msg: the PHY message buffer to fill in |
| * @port: the port to access |
| * @offset: the register offset |
| */ |
| static void |
| ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset) |
| { |
| int phy_port, phy, quadtype; |
| |
| phy_port = port % ICE_PORTS_PER_PHY; |
| phy = port / ICE_PORTS_PER_PHY; |
| quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE; |
| |
| if (quadtype == 0) { |
| msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port); |
| msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port); |
| } else { |
| msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port); |
| msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port); |
| } |
| |
| if (phy == 0) |
| msg->dest_dev = rmn_0; |
| else if (phy == 1) |
| msg->dest_dev = rmn_1; |
| else |
| msg->dest_dev = rmn_2; |
| } |
| |
| /** |
| * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register |
| * @low_addr: the low address to check |
| * @high_addr: on return, contains the high address of the 64bit register |
| * |
| * Checks if the provided low address is one of the known 64bit PHY values |
| * represented as two 32bit registers. If it is, return the appropriate high |
| * register offset to use. |
| */ |
| static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr) |
| { |
| switch (low_addr) { |
| case P_REG_PAR_PCS_TX_OFFSET_L: |
| *high_addr = P_REG_PAR_PCS_TX_OFFSET_U; |
| return true; |
| case P_REG_PAR_PCS_RX_OFFSET_L: |
| *high_addr = P_REG_PAR_PCS_RX_OFFSET_U; |
| return true; |
| case P_REG_PAR_TX_TIME_L: |
| *high_addr = P_REG_PAR_TX_TIME_U; |
| return true; |
| case P_REG_PAR_RX_TIME_L: |
| *high_addr = P_REG_PAR_RX_TIME_U; |
| return true; |
| case P_REG_TOTAL_TX_OFFSET_L: |
| *high_addr = P_REG_TOTAL_TX_OFFSET_U; |
| return true; |
| case P_REG_TOTAL_RX_OFFSET_L: |
| *high_addr = P_REG_TOTAL_RX_OFFSET_U; |
| return true; |
| case P_REG_UIX66_10G_40G_L: |
| *high_addr = P_REG_UIX66_10G_40G_U; |
| return true; |
| case P_REG_UIX66_25G_100G_L: |
| *high_addr = P_REG_UIX66_25G_100G_U; |
| return true; |
| case P_REG_TX_CAPTURE_L: |
| *high_addr = P_REG_TX_CAPTURE_U; |
| return true; |
| case P_REG_RX_CAPTURE_L: |
| *high_addr = P_REG_RX_CAPTURE_U; |
| return true; |
| case P_REG_TX_TIMER_INC_PRE_L: |
| *high_addr = P_REG_TX_TIMER_INC_PRE_U; |
| return true; |
| case P_REG_RX_TIMER_INC_PRE_L: |
| *high_addr = P_REG_RX_TIMER_INC_PRE_U; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /** |
| * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register |
| * @low_addr: the low address to check |
| * @high_addr: on return, contains the high address of the 40bit value |
| * |
| * Checks if the provided low address is one of the known 40bit PHY values |
| * split into two registers with the lower 8 bits in the low register and the |
| * upper 32 bits in the high register. If it is, return the appropriate high |
| * register offset to use. |
| */ |
| static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr) |
| { |
| switch (low_addr) { |
| case P_REG_TIMETUS_L: |
| *high_addr = P_REG_TIMETUS_U; |
| return true; |
| case P_REG_PAR_RX_TUS_L: |
| *high_addr = P_REG_PAR_RX_TUS_U; |
| return true; |
| case P_REG_PAR_TX_TUS_L: |
| *high_addr = P_REG_PAR_TX_TUS_U; |
| return true; |
| case P_REG_PCS_RX_TUS_L: |
| *high_addr = P_REG_PCS_RX_TUS_U; |
| return true; |
| case P_REG_PCS_TX_TUS_L: |
| *high_addr = P_REG_PCS_TX_TUS_U; |
| return true; |
| case P_REG_DESK_PAR_RX_TUS_L: |
| *high_addr = P_REG_DESK_PAR_RX_TUS_U; |
| return true; |
| case P_REG_DESK_PAR_TX_TUS_L: |
| *high_addr = P_REG_DESK_PAR_TX_TUS_U; |
| return true; |
| case P_REG_DESK_PCS_RX_TUS_L: |
| *high_addr = P_REG_DESK_PCS_RX_TUS_U; |
| return true; |
| case P_REG_DESK_PCS_TX_TUS_L: |
| *high_addr = P_REG_DESK_PCS_TX_TUS_U; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /** |
| * ice_read_phy_reg_e822 - Read a PHY register |
| * @hw: pointer to the HW struct |
| * @port: PHY port to read from |
| * @offset: PHY register offset to read |
| * @val: on return, the contents read from the PHY |
| * |
| * Read a PHY register for the given port over the device sideband queue. |
| */ |
| int |
| ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val) |
| { |
| struct ice_sbq_msg_input msg = {0}; |
| int err; |
| |
| ice_fill_phy_msg_e822(&msg, port, offset); |
| msg.opcode = ice_sbq_msg_rd; |
| |
| err = ice_sbq_rw_reg(hw, &msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", |
| err); |
| return err; |
| } |
| |
| *val = msg.data; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers |
| * @hw: pointer to the HW struct |
| * @port: PHY port to read from |
| * @low_addr: offset of the lower register to read from |
| * @val: on return, the contents of the 64bit value from the PHY registers |
| * |
| * Reads the two registers associated with a 64bit value and returns it in the |
| * val pointer. The offset always specifies the lower register offset to use. |
| * The high offset is looked up. This function only operates on registers |
| * known to be two parts of a 64bit value. |
| */ |
| static int |
| ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val) |
| { |
| u32 low, high; |
| u16 high_addr; |
| int err; |
| |
| /* Only operate on registers known to be split into two 32bit |
| * registers. |
| */ |
| if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { |
| ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", |
| low_addr); |
| return -EINVAL; |
| } |
| |
| err = ice_read_phy_reg_e822(hw, port, low_addr, &low); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d", |
| low_addr, err); |
| return err; |
| } |
| |
| err = ice_read_phy_reg_e822(hw, port, high_addr, &high); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d", |
| high_addr, err); |
| return err; |
| } |
| |
| *val = (u64)high << 32 | low; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_write_phy_reg_e822 - Write a PHY register |
| * @hw: pointer to the HW struct |
| * @port: PHY port to write to |
| * @offset: PHY register offset to write |
| * @val: The value to write to the register |
| * |
| * Write a PHY register for the given port over the device sideband queue. |
| */ |
| int |
| ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val) |
| { |
| struct ice_sbq_msg_input msg = {0}; |
| int err; |
| |
| ice_fill_phy_msg_e822(&msg, port, offset); |
| msg.opcode = ice_sbq_msg_wr; |
| msg.data = val; |
| |
| err = ice_sbq_rw_reg(hw, &msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY |
| * @hw: pointer to the HW struct |
| * @port: port to write to |
| * @low_addr: offset of the low register |
| * @val: 40b value to write |
| * |
| * Write the provided 40b value to the two associated registers by splitting |
| * it up into two chunks, the lower 8 bits and the upper 32 bits. |
| */ |
| static int |
| ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) |
| { |
| u32 low, high; |
| u16 high_addr; |
| int err; |
| |
| /* Only operate on registers known to be split into a lower 8 bit |
| * register and an upper 32 bit register. |
| */ |
| if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) { |
| ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n", |
| low_addr); |
| return -EINVAL; |
| } |
| |
| low = (u32)(val & P_REG_40B_LOW_M); |
| high = (u32)(val >> P_REG_40B_HIGH_S); |
| |
| err = ice_write_phy_reg_e822(hw, port, low_addr, low); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", |
| low_addr, err); |
| return err; |
| } |
| |
| err = ice_write_phy_reg_e822(hw, port, high_addr, high); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", |
| high_addr, err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers |
| * @hw: pointer to the HW struct |
| * @port: PHY port to read from |
| * @low_addr: offset of the lower register to read from |
| * @val: the contents of the 64bit value to write to PHY |
| * |
| * Write the 64bit value to the two associated 32bit PHY registers. The offset |
| * is always specified as the lower register, and the high address is looked |
| * up. This function only operates on registers known to be two parts of |
| * a 64bit value. |
| */ |
| static int |
| ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val) |
| { |
| u32 low, high; |
| u16 high_addr; |
| int err; |
| |
| /* Only operate on registers known to be split into two 32bit |
| * registers. |
| */ |
| if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) { |
| ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n", |
| low_addr); |
| return -EINVAL; |
| } |
| |
| low = lower_32_bits(val); |
| high = upper_32_bits(val); |
| |
| err = ice_write_phy_reg_e822(hw, port, low_addr, low); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d", |
| low_addr, err); |
| return err; |
| } |
| |
| err = ice_write_phy_reg_e822(hw, port, high_addr, high); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d", |
| high_addr, err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_fill_quad_msg_e822 - Fill message data for quad register access |
| * @msg: the PHY message buffer to fill in |
| * @quad: the quad to access |
| * @offset: the register offset |
| * |
| * Fill a message buffer for accessing a register in a quad shared between |
| * multiple PHYs. |
| */ |
| static void |
| ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset) |
| { |
| u32 addr; |
| |
| msg->dest_dev = rmn_0; |
| |
| if ((quad % ICE_NUM_QUAD_TYPE) == 0) |
| addr = Q_0_BASE + offset; |
| else |
| addr = Q_1_BASE + offset; |
| |
| msg->msg_addr_low = lower_16_bits(addr); |
| msg->msg_addr_high = upper_16_bits(addr); |
| } |
| |
| /** |
| * ice_read_quad_reg_e822 - Read a PHY quad register |
| * @hw: pointer to the HW struct |
| * @quad: quad to read from |
| * @offset: quad register offset to read |
| * @val: on return, the contents read from the quad |
| * |
| * Read a quad register over the device sideband queue. Quad registers are |
| * shared between multiple PHYs. |
| */ |
| int |
| ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val) |
| { |
| struct ice_sbq_msg_input msg = {0}; |
| int err; |
| |
| if (quad >= ICE_MAX_QUAD) |
| return -EINVAL; |
| |
| ice_fill_quad_msg_e822(&msg, quad, offset); |
| msg.opcode = ice_sbq_msg_rd; |
| |
| err = ice_sbq_rw_reg(hw, &msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", |
| err); |
| return err; |
| } |
| |
| *val = msg.data; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_write_quad_reg_e822 - Write a PHY quad register |
| * @hw: pointer to the HW struct |
| * @quad: quad to write to |
| * @offset: quad register offset to write |
| * @val: The value to write to the register |
| * |
| * Write a quad register over the device sideband queue. Quad registers are |
| * shared between multiple PHYs. |
| */ |
| int |
| ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val) |
| { |
| struct ice_sbq_msg_input msg = {0}; |
| int err; |
| |
| if (quad >= ICE_MAX_QUAD) |
| return -EINVAL; |
| |
| ice_fill_quad_msg_e822(&msg, quad, offset); |
| msg.opcode = ice_sbq_msg_wr; |
| msg.data = val; |
| |
| err = ice_sbq_rw_reg(hw, &msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block |
| * @hw: pointer to the HW struct |
| * @quad: the quad to read from |
| * @idx: the timestamp index to read |
| * @tstamp: on return, the 40bit timestamp value |
| * |
| * Read a 40bit timestamp value out of the two associated registers in the |
| * quad memory block that is shared between the internal PHYs of the E822 |
| * family of devices. |
| */ |
| static int |
| ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp) |
| { |
| u16 lo_addr, hi_addr; |
| u32 lo, hi; |
| int err; |
| |
| lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); |
| hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); |
| |
| err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| /* For E822 based internal PHYs, the timestamp is reported with the |
| * lower 8 bits in the low register, and the upper 32 bits in the high |
| * register. |
| */ |
| *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block |
| * @hw: pointer to the HW struct |
| * @quad: the quad to read from |
| * @idx: the timestamp index to reset |
| * |
| * Clear a timestamp, resetting its valid bit, from the PHY quad block that is |
| * shared between the internal PHYs on the E822 devices. |
| */ |
| static int |
| ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx) |
| { |
| u16 lo_addr, hi_addr; |
| int err; |
| |
| lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx); |
| hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx); |
| |
| err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block |
| * @hw: pointer to the HW struct |
| * @quad: the quad to read from |
| * |
| * Clear all timestamps from the PHY quad block that is shared between the |
| * internal PHYs on the E822 devices. |
| */ |
| void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad) |
| { |
| ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); |
| ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); |
| } |
| |
| /** |
| * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks |
| * @hw: pointer to the HW struct |
| */ |
| static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw) |
| { |
| unsigned int quad; |
| |
| for (quad = 0; quad < ICE_MAX_QUAD; quad++) |
| ice_ptp_reset_ts_memory_quad_e822(hw, quad); |
| } |
| |
| /** |
| * ice_read_cgu_reg_e822 - Read a CGU register |
| * @hw: pointer to the HW struct |
| * @addr: Register address to read |
| * @val: storage for register value read |
| * |
| * Read the contents of a register of the Clock Generation Unit. Only |
| * applicable to E822 devices. |
| */ |
| static int |
| ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val) |
| { |
| struct ice_sbq_msg_input cgu_msg; |
| int err; |
| |
| cgu_msg.opcode = ice_sbq_msg_rd; |
| cgu_msg.dest_dev = cgu; |
| cgu_msg.msg_addr_low = addr; |
| cgu_msg.msg_addr_high = 0x0; |
| |
| err = ice_sbq_rw_reg(hw, &cgu_msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n", |
| addr, err); |
| return err; |
| } |
| |
| *val = cgu_msg.data; |
| |
| return err; |
| } |
| |
| /** |
| * ice_write_cgu_reg_e822 - Write a CGU register |
| * @hw: pointer to the HW struct |
| * @addr: Register address to write |
| * @val: value to write into the register |
| * |
| * Write the specified value to a register of the Clock Generation Unit. Only |
| * applicable to E822 devices. |
| */ |
| static int |
| ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val) |
| { |
| struct ice_sbq_msg_input cgu_msg; |
| int err; |
| |
| cgu_msg.opcode = ice_sbq_msg_wr; |
| cgu_msg.dest_dev = cgu; |
| cgu_msg.msg_addr_low = addr; |
| cgu_msg.msg_addr_high = 0x0; |
| cgu_msg.data = val; |
| |
| err = ice_sbq_rw_reg(hw, &cgu_msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n", |
| addr, err); |
| return err; |
| } |
| |
| return err; |
| } |
| |
| /** |
| * ice_clk_freq_str - Convert time_ref_freq to string |
| * @clk_freq: Clock frequency |
| * |
| * Convert the specified TIME_REF clock frequency to a string. |
| */ |
| static const char *ice_clk_freq_str(u8 clk_freq) |
| { |
| switch ((enum ice_time_ref_freq)clk_freq) { |
| case ICE_TIME_REF_FREQ_25_000: |
| return "25 MHz"; |
| case ICE_TIME_REF_FREQ_122_880: |
| return "122.88 MHz"; |
| case ICE_TIME_REF_FREQ_125_000: |
| return "125 MHz"; |
| case ICE_TIME_REF_FREQ_153_600: |
| return "153.6 MHz"; |
| case ICE_TIME_REF_FREQ_156_250: |
| return "156.25 MHz"; |
| case ICE_TIME_REF_FREQ_245_760: |
| return "245.76 MHz"; |
| default: |
| return "Unknown"; |
| } |
| } |
| |
| /** |
| * ice_clk_src_str - Convert time_ref_src to string |
| * @clk_src: Clock source |
| * |
| * Convert the specified clock source to its string name. |
| */ |
| static const char *ice_clk_src_str(u8 clk_src) |
| { |
| switch ((enum ice_clk_src)clk_src) { |
| case ICE_CLK_SRC_TCX0: |
| return "TCX0"; |
| case ICE_CLK_SRC_TIME_REF: |
| return "TIME_REF"; |
| default: |
| return "Unknown"; |
| } |
| } |
| |
| /** |
| * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit |
| * @hw: pointer to the HW struct |
| * @clk_freq: Clock frequency to program |
| * @clk_src: Clock source to select (TIME_REF, or TCX0) |
| * |
| * Configure the Clock Generation Unit with the desired clock frequency and |
| * time reference, enabling the PLL which drives the PTP hardware clock. |
| */ |
| static int |
| ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq, |
| enum ice_clk_src clk_src) |
| { |
| union tspll_ro_bwm_lf bwm_lf; |
| union nac_cgu_dword19 dw19; |
| union nac_cgu_dword22 dw22; |
| union nac_cgu_dword24 dw24; |
| union nac_cgu_dword9 dw9; |
| int err; |
| |
| if (clk_freq >= NUM_ICE_TIME_REF_FREQ) { |
| dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n", |
| clk_freq); |
| return -EINVAL; |
| } |
| |
| if (clk_src >= NUM_ICE_CLK_SRC) { |
| dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n", |
| clk_src); |
| return -EINVAL; |
| } |
| |
| if (clk_src == ICE_CLK_SRC_TCX0 && |
| clk_freq != ICE_TIME_REF_FREQ_25_000) { |
| dev_warn(ice_hw_to_dev(hw), |
| "TCX0 only supports 25 MHz frequency\n"); |
| return -EINVAL; |
| } |
| |
| err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val); |
| if (err) |
| return err; |
| |
| err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); |
| if (err) |
| return err; |
| |
| err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); |
| if (err) |
| return err; |
| |
| /* Log the current clock configuration */ |
| ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", |
| dw24.field.ts_pll_enable ? "enabled" : "disabled", |
| ice_clk_src_str(dw24.field.time_ref_sel), |
| ice_clk_freq_str(dw9.field.time_ref_freq_sel), |
| bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); |
| |
| /* Disable the PLL before changing the clock source or frequency */ |
| if (dw24.field.ts_pll_enable) { |
| dw24.field.ts_pll_enable = 0; |
| |
| err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); |
| if (err) |
| return err; |
| } |
| |
| /* Set the frequency */ |
| dw9.field.time_ref_freq_sel = clk_freq; |
| err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val); |
| if (err) |
| return err; |
| |
| /* Configure the TS PLL feedback divisor */ |
| err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val); |
| if (err) |
| return err; |
| |
| dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div; |
| dw19.field.tspll_ndivratio = 1; |
| |
| err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val); |
| if (err) |
| return err; |
| |
| /* Configure the TS PLL post divisor */ |
| err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val); |
| if (err) |
| return err; |
| |
| dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div; |
| dw22.field.time1588clk_sel_div2 = 0; |
| |
| err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val); |
| if (err) |
| return err; |
| |
| /* Configure the TS PLL pre divisor and clock source */ |
| err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val); |
| if (err) |
| return err; |
| |
| dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div; |
| dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div; |
| dw24.field.time_ref_sel = clk_src; |
| |
| err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); |
| if (err) |
| return err; |
| |
| /* Finally, enable the PLL */ |
| dw24.field.ts_pll_enable = 1; |
| |
| err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val); |
| if (err) |
| return err; |
| |
| /* Wait to verify if the PLL locks */ |
| usleep_range(1000, 5000); |
| |
| err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val); |
| if (err) |
| return err; |
| |
| if (!bwm_lf.field.plllock_true_lock_cri) { |
| dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n"); |
| return -EBUSY; |
| } |
| |
| /* Log the current clock configuration */ |
| ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n", |
| dw24.field.ts_pll_enable ? "enabled" : "disabled", |
| ice_clk_src_str(dw24.field.time_ref_sel), |
| ice_clk_freq_str(dw9.field.time_ref_freq_sel), |
| bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked"); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_init_cgu_e822 - Initialize CGU with settings from firmware |
| * @hw: pointer to the HW structure |
| * |
| * Initialize the Clock Generation Unit of the E822 device. |
| */ |
| static int ice_init_cgu_e822(struct ice_hw *hw) |
| { |
| struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info; |
| union tspll_cntr_bist_settings cntr_bist; |
| int err; |
| |
| err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, |
| &cntr_bist.val); |
| if (err) |
| return err; |
| |
| /* Disable sticky lock detection so lock err reported is accurate */ |
| cntr_bist.field.i_plllock_sel_0 = 0; |
| cntr_bist.field.i_plllock_sel_1 = 0; |
| |
| err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS, |
| cntr_bist.val); |
| if (err) |
| return err; |
| |
| /* Configure the CGU PLL using the parameters from the function |
| * capabilities. |
| */ |
| err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref, |
| (enum ice_clk_src)ts_info->clk_src); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_set_vernier_wl - Set the window length for vernier calibration |
| * @hw: pointer to the HW struct |
| * |
| * Set the window length used for the vernier port calibration process. |
| */ |
| static int ice_ptp_set_vernier_wl(struct ice_hw *hw) |
| { |
| u8 port; |
| |
| for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { |
| int err; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_WL, |
| PTP_VERNIER_WL); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n", |
| port, err); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization |
| * @hw: pointer to HW struct |
| * |
| * Perform PHC initialization steps specific to E822 devices. |
| */ |
| static int ice_ptp_init_phc_e822(struct ice_hw *hw) |
| { |
| int err; |
| u32 regval; |
| |
| /* Enable reading switch and PHY registers over the sideband queue */ |
| #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1) |
| #define PF_SB_REM_DEV_CTL_PHY0 BIT(2) |
| regval = rd32(hw, PF_SB_REM_DEV_CTL); |
| regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ | |
| PF_SB_REM_DEV_CTL_PHY0); |
| wr32(hw, PF_SB_REM_DEV_CTL, regval); |
| |
| /* Initialize the Clock Generation Unit */ |
| err = ice_init_cgu_e822(hw); |
| if (err) |
| return err; |
| |
| /* Set window length for all the ports */ |
| return ice_ptp_set_vernier_wl(hw); |
| } |
| |
| /** |
| * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time |
| * @hw: pointer to the HW struct |
| * @time: Time to initialize the PHY port clocks to |
| * |
| * Program the PHY port registers with a new initial time value. The port |
| * clock will be initialized once the driver issues an INIT_TIME sync |
| * command. The time value is the upper 32 bits of the PHY timer, usually in |
| * units of nominal nanoseconds. |
| */ |
| static int |
| ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time) |
| { |
| u64 phy_time; |
| u8 port; |
| int err; |
| |
| /* The time represents the upper 32 bits of the PHY timer, so we need |
| * to shift to account for this when programming. |
| */ |
| phy_time = (u64)time << 32; |
| |
| for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { |
| /* Tx case */ |
| err = ice_write_64b_phy_reg_e822(hw, port, |
| P_REG_TX_TIMER_INC_PRE_L, |
| phy_time); |
| if (err) |
| goto exit_err; |
| |
| /* Rx case */ |
| err = ice_write_64b_phy_reg_e822(hw, port, |
| P_REG_RX_TIMER_INC_PRE_L, |
| phy_time); |
| if (err) |
| goto exit_err; |
| } |
| |
| return 0; |
| |
| exit_err: |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n", |
| port, err); |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust |
| * @hw: pointer to HW struct |
| * @port: Port number to be programmed |
| * @time: time in cycles to adjust the port Tx and Rx clocks |
| * |
| * Program the port for an atomic adjustment by writing the Tx and Rx timer |
| * registers. The atomic adjustment won't be completed until the driver issues |
| * an ADJ_TIME command. |
| * |
| * Note that time is not in units of nanoseconds. It is in clock time |
| * including the lower sub-nanosecond portion of the port timer. |
| * |
| * Negative adjustments are supported using 2s complement arithmetic. |
| */ |
| int |
| ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time) |
| { |
| u32 l_time, u_time; |
| int err; |
| |
| l_time = lower_32_bits(time); |
| u_time = upper_32_bits(time); |
| |
| /* Tx case */ |
| err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L, |
| l_time); |
| if (err) |
| goto exit_err; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U, |
| u_time); |
| if (err) |
| goto exit_err; |
| |
| /* Rx case */ |
| err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L, |
| l_time); |
| if (err) |
| goto exit_err; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U, |
| u_time); |
| if (err) |
| goto exit_err; |
| |
| return 0; |
| |
| exit_err: |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n", |
| port, err); |
| return err; |
| } |
| |
| /** |
| * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment |
| * @hw: pointer to HW struct |
| * @adj: adjustment in nanoseconds |
| * |
| * Prepare the PHY ports for an atomic time adjustment by programming the PHY |
| * Tx and Rx port registers. The actual adjustment is completed by issuing an |
| * ADJ_TIME or ADJ_TIME_AT_TIME sync command. |
| */ |
| static int |
| ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj) |
| { |
| s64 cycles; |
| u8 port; |
| |
| /* The port clock supports adjustment of the sub-nanosecond portion of |
| * the clock. We shift the provided adjustment in nanoseconds to |
| * calculate the appropriate adjustment to program into the PHY ports. |
| */ |
| if (adj > 0) |
| cycles = (s64)adj << 32; |
| else |
| cycles = -(((s64)-adj) << 32); |
| |
| for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { |
| int err; |
| |
| err = ice_ptp_prep_port_adj_e822(hw, port, cycles); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment |
| * @hw: pointer to HW struct |
| * @incval: new increment value to prepare |
| * |
| * Prepare each of the PHY ports for a new increment value by programming the |
| * port's TIMETUS registers. The new increment value will be updated after |
| * issuing an INIT_INCVAL command. |
| */ |
| static int |
| ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval) |
| { |
| int err; |
| u8 port; |
| |
| for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, |
| incval); |
| if (err) |
| goto exit_err; |
| } |
| |
| return 0; |
| |
| exit_err: |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n", |
| port, err); |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_read_port_capture - Read a port's local time capture |
| * @hw: pointer to HW struct |
| * @port: Port number to read |
| * @tx_ts: on return, the Tx port time capture |
| * @rx_ts: on return, the Rx port time capture |
| * |
| * Read the port's Tx and Rx local time capture values. |
| * |
| * Note this has no equivalent for the E810 devices. |
| */ |
| static int |
| ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts) |
| { |
| int err; |
| |
| /* Tx case */ |
| err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n", |
| err); |
| return err; |
| } |
| |
| ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n", |
| (unsigned long long)*tx_ts); |
| |
| /* Rx case */ |
| err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n", |
| err); |
| return err; |
| } |
| |
| ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n", |
| (unsigned long long)*rx_ts); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command |
| * @hw: pointer to HW struct |
| * @port: Port to which cmd has to be sent |
| * @cmd: Command to be sent to the port |
| * |
| * Prepare the requested port for an upcoming timer sync command. |
| * |
| * Note there is no equivalent of this operation on E810, as that device |
| * always handles all external PHYs internally. |
| */ |
| static int |
| ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd) |
| { |
| u32 cmd_val, val; |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = ice_get_ptp_src_clock_index(hw); |
| cmd_val = tmr_idx << SEL_PHY_SRC; |
| switch (cmd) { |
| case INIT_TIME: |
| cmd_val |= PHY_CMD_INIT_TIME; |
| break; |
| case INIT_INCVAL: |
| cmd_val |= PHY_CMD_INIT_INCVAL; |
| break; |
| case ADJ_TIME: |
| cmd_val |= PHY_CMD_ADJ_TIME; |
| break; |
| case READ_TIME: |
| cmd_val |= PHY_CMD_READ_TIME; |
| break; |
| case ADJ_TIME_AT_TIME: |
| cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME; |
| break; |
| } |
| |
| /* Tx case */ |
| /* Read, modify, write */ |
| err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n", |
| err); |
| return err; |
| } |
| |
| /* Modify necessary bits only and perform write */ |
| val &= ~TS_CMD_MASK; |
| val |= cmd_val; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n", |
| err); |
| return err; |
| } |
| |
| /* Rx case */ |
| /* Read, modify, write */ |
| err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n", |
| err); |
| return err; |
| } |
| |
| /* Modify necessary bits only and perform write */ |
| val &= ~TS_CMD_MASK; |
| val |= cmd_val; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command |
| * @hw: pointer to the HW struct |
| * @cmd: timer command to prepare |
| * |
| * Prepare all ports connected to this device for an upcoming timer sync |
| * command. |
| */ |
| static int |
| ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) |
| { |
| u8 port; |
| |
| for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) { |
| int err; |
| |
| err = ice_ptp_one_port_cmd(hw, port, cmd); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* E822 Vernier calibration functions |
| * |
| * The following functions are used as part of the vernier calibration of |
| * a port. This calibration increases the precision of the timestamps on the |
| * port. |
| */ |
| |
| /** |
| * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode |
| * @hw: pointer to HW struct |
| * @port: the port to read from |
| * @link_out: if non-NULL, holds link speed on success |
| * @fec_out: if non-NULL, holds FEC algorithm on success |
| * |
| * Read the serdes data for the PHY port and extract the link speed and FEC |
| * algorithm. |
| */ |
| static int |
| ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port, |
| enum ice_ptp_link_spd *link_out, |
| enum ice_ptp_fec_mode *fec_out) |
| { |
| enum ice_ptp_link_spd link; |
| enum ice_ptp_fec_mode fec; |
| u32 serdes; |
| int err; |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n"); |
| return err; |
| } |
| |
| /* Determine the FEC algorithm */ |
| fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes); |
| |
| serdes &= P_REG_LINK_SPEED_SERDES_M; |
| |
| /* Determine the link speed */ |
| if (fec == ICE_PTP_FEC_MODE_RS_FEC) { |
| switch (serdes) { |
| case ICE_PTP_SERDES_25G: |
| link = ICE_PTP_LNK_SPD_25G_RS; |
| break; |
| case ICE_PTP_SERDES_50G: |
| link = ICE_PTP_LNK_SPD_50G_RS; |
| break; |
| case ICE_PTP_SERDES_100G: |
| link = ICE_PTP_LNK_SPD_100G_RS; |
| break; |
| default: |
| return -EIO; |
| } |
| } else { |
| switch (serdes) { |
| case ICE_PTP_SERDES_1G: |
| link = ICE_PTP_LNK_SPD_1G; |
| break; |
| case ICE_PTP_SERDES_10G: |
| link = ICE_PTP_LNK_SPD_10G; |
| break; |
| case ICE_PTP_SERDES_25G: |
| link = ICE_PTP_LNK_SPD_25G; |
| break; |
| case ICE_PTP_SERDES_40G: |
| link = ICE_PTP_LNK_SPD_40G; |
| break; |
| case ICE_PTP_SERDES_50G: |
| link = ICE_PTP_LNK_SPD_50G; |
| break; |
| default: |
| return -EIO; |
| } |
| } |
| |
| if (link_out) |
| *link_out = link; |
| if (fec_out) |
| *fec_out = fec; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp |
| * @hw: pointer to HW struct |
| * @port: to configure the quad for |
| */ |
| static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port) |
| { |
| enum ice_ptp_link_spd link_spd; |
| int err; |
| u32 val; |
| u8 quad; |
| |
| err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n", |
| err); |
| return; |
| } |
| |
| quad = port / ICE_PORTS_PER_QUAD; |
| |
| err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n", |
| err); |
| return; |
| } |
| |
| if (link_spd >= ICE_PTP_LNK_SPD_40G) |
| val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; |
| else |
| val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M; |
| |
| err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n", |
| err); |
| return; |
| } |
| } |
| |
| /** |
| * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822 |
| * @hw: pointer to the HW structure |
| * @port: the port to configure |
| * |
| * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC |
| * hardware clock time units (TUs). That is, determine the number of TUs per |
| * serdes unit interval, and program the UIX registers with this conversion. |
| * |
| * This conversion is used as part of the calibration process when determining |
| * the additional error of a timestamp vs the real time of transmission or |
| * receipt of the packet. |
| * |
| * Hardware uses the number of TUs per 66 UIs, written to the UIX registers |
| * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks. |
| * |
| * To calculate the conversion ratio, we use the following facts: |
| * |
| * a) the clock frequency in Hz (cycles per second) |
| * b) the number of TUs per cycle (the increment value of the clock) |
| * c) 1 second per 1 billion nanoseconds |
| * d) the duration of 66 UIs in nanoseconds |
| * |
| * Given these facts, we can use the following table to work out what ratios |
| * to multiply in order to get the number of TUs per 66 UIs: |
| * |
| * cycles | 1 second | incval (TUs) | nanoseconds |
| * -------+--------------+--------------+------------- |
| * second | 1 billion ns | cycle | 66 UIs |
| * |
| * To perform the multiplication using integers without too much loss of |
| * precision, we can take use the following equation: |
| * |
| * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion) |
| * |
| * We scale up to using 6600 UI instead of 66 in order to avoid fractional |
| * nanosecond UIs (66 UI at 10G/40G is 6.4 ns) |
| * |
| * The increment value has a maximum expected range of about 34 bits, while |
| * the frequency value is about 29 bits. Multiplying these values shouldn't |
| * overflow the 64 bits. However, we must then further multiply them again by |
| * the Serdes unit interval duration. To avoid overflow here, we split the |
| * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and |
| * a divide by 390,625,000. This does lose some precision, but avoids |
| * miscalculation due to arithmetic overflow. |
| */ |
| static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port) |
| { |
| u64 cur_freq, clk_incval, tu_per_sec, uix; |
| int err; |
| |
| cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); |
| clk_incval = ice_ptp_read_src_incval(hw); |
| |
| /* Calculate TUs per second divided by 256 */ |
| tu_per_sec = (cur_freq * clk_incval) >> 8; |
| |
| #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */ |
| #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */ |
| |
| /* Program the 10Gb/40Gb conversion ratio */ |
| uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000); |
| |
| err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L, |
| uix); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n", |
| err); |
| return err; |
| } |
| |
| /* Program the 25Gb/100Gb conversion ratio */ |
| uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000); |
| |
| err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L, |
| uix); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle |
| * @hw: pointer to the HW struct |
| * @port: port to configure |
| * |
| * Configure the number of TUs for the PAR and PCS clocks used as part of the |
| * timestamp calibration process. This depends on the link speed, as the PHY |
| * uses different markers depending on the speed. |
| * |
| * 1Gb/10Gb/25Gb: |
| * - Tx/Rx PAR/PCS markers |
| * |
| * 25Gb RS: |
| * - Tx/Rx Reed Solomon gearbox PAR/PCS markers |
| * |
| * 40Gb/50Gb: |
| * - Tx/Rx PAR/PCS markers |
| * - Rx Deskew PAR/PCS markers |
| * |
| * 50G RS and 100GB RS: |
| * - Tx/Rx Reed Solomon gearbox PAR/PCS markers |
| * - Rx Deskew PAR/PCS markers |
| * - Tx PAR/PCS markers |
| * |
| * To calculate the conversion, we use the PHC clock frequency (cycles per |
| * second), the increment value (TUs per cycle), and the related PHY clock |
| * frequency to calculate the TUs per unit of the PHY link clock. The |
| * following table shows how the units convert: |
| * |
| * cycles | TUs | second |
| * -------+-------+-------- |
| * second | cycle | cycles |
| * |
| * For each conversion register, look up the appropriate frequency from the |
| * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program |
| * this to the appropriate register, preparing hardware to perform timestamp |
| * calibration to calculate the total Tx or Rx offset to adjust the timestamp |
| * in order to calibrate for the internal PHY delays. |
| * |
| * Note that the increment value ranges up to ~34 bits, and the clock |
| * frequency is ~29 bits, so multiplying them together should fit within the |
| * 64 bit arithmetic. |
| */ |
| static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port) |
| { |
| u64 cur_freq, clk_incval, tu_per_sec, phy_tus; |
| enum ice_ptp_link_spd link_spd; |
| enum ice_ptp_fec_mode fec_mode; |
| int err; |
| |
| err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); |
| if (err) |
| return err; |
| |
| cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); |
| clk_incval = ice_ptp_read_src_incval(hw); |
| |
| /* Calculate TUs per cycle of the PHC clock */ |
| tu_per_sec = cur_freq * clk_incval; |
| |
| /* For each PHY conversion register, look up the appropriate link |
| * speed frequency and determine the TUs per that clock's cycle time. |
| * Split this into a high and low value and then program the |
| * appropriate register. If that link speed does not use the |
| * associated register, write zeros to clear it instead. |
| */ |
| |
| /* P_REG_PAR_TX_TUS */ |
| if (e822_vernier[link_spd].tx_par_clk) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].tx_par_clk); |
| else |
| phy_tus = 0; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L, |
| phy_tus); |
| if (err) |
| return err; |
| |
| /* P_REG_PAR_RX_TUS */ |
| if (e822_vernier[link_spd].rx_par_clk) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].rx_par_clk); |
| else |
| phy_tus = 0; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L, |
| phy_tus); |
| if (err) |
| return err; |
| |
| /* P_REG_PCS_TX_TUS */ |
| if (e822_vernier[link_spd].tx_pcs_clk) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].tx_pcs_clk); |
| else |
| phy_tus = 0; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L, |
| phy_tus); |
| if (err) |
| return err; |
| |
| /* P_REG_PCS_RX_TUS */ |
| if (e822_vernier[link_spd].rx_pcs_clk) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].rx_pcs_clk); |
| else |
| phy_tus = 0; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L, |
| phy_tus); |
| if (err) |
| return err; |
| |
| /* P_REG_DESK_PAR_TX_TUS */ |
| if (e822_vernier[link_spd].tx_desk_rsgb_par) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].tx_desk_rsgb_par); |
| else |
| phy_tus = 0; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L, |
| phy_tus); |
| if (err) |
| return err; |
| |
| /* P_REG_DESK_PAR_RX_TUS */ |
| if (e822_vernier[link_spd].rx_desk_rsgb_par) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].rx_desk_rsgb_par); |
| else |
| phy_tus = 0; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L, |
| phy_tus); |
| if (err) |
| return err; |
| |
| /* P_REG_DESK_PCS_TX_TUS */ |
| if (e822_vernier[link_spd].tx_desk_rsgb_pcs) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].tx_desk_rsgb_pcs); |
| else |
| phy_tus = 0; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L, |
| phy_tus); |
| if (err) |
| return err; |
| |
| /* P_REG_DESK_PCS_RX_TUS */ |
| if (e822_vernier[link_spd].rx_desk_rsgb_pcs) |
| phy_tus = div_u64(tu_per_sec, |
| e822_vernier[link_spd].rx_desk_rsgb_pcs); |
| else |
| phy_tus = 0; |
| |
| return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L, |
| phy_tus); |
| } |
| |
| /** |
| * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port |
| * @hw: pointer to the HW struct |
| * @link_spd: the Link speed to calculate for |
| * |
| * Calculate the fixed offset due to known static latency data. |
| */ |
| static u64 |
| ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) |
| { |
| u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; |
| |
| cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); |
| clk_incval = ice_ptp_read_src_incval(hw); |
| |
| /* Calculate TUs per second */ |
| tu_per_sec = cur_freq * clk_incval; |
| |
| /* Calculate number of TUs to add for the fixed Tx latency. Since the |
| * latency measurement is in 1/100th of a nanosecond, we need to |
| * multiply by tu_per_sec and then divide by 1e11. This calculation |
| * overflows 64 bit integer arithmetic, so break it up into two |
| * divisions by 1e4 first then by 1e7. |
| */ |
| fixed_offset = div_u64(tu_per_sec, 10000); |
| fixed_offset *= e822_vernier[link_spd].tx_fixed_delay; |
| fixed_offset = div_u64(fixed_offset, 10000000); |
| |
| return fixed_offset; |
| } |
| |
| /** |
| * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to configure |
| * |
| * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to |
| * adjust Tx timestamps by. This is calculated by combining some known static |
| * latency along with the Vernier offset computations done by hardware. |
| * |
| * This function will not return successfully until the Tx offset calculations |
| * have been completed, which requires waiting until at least one packet has |
| * been transmitted by the device. It is safe to call this function |
| * periodically until calibration succeeds, as it will only program the offset |
| * once. |
| * |
| * To avoid overflow, when calculating the offset based on the known static |
| * latency values, we use measurements in 1/100th of a nanosecond, and divide |
| * the TUs per second up front. This avoids overflow while allowing |
| * calculation of the adjustment using integer arithmetic. |
| * |
| * Returns zero on success, -EBUSY if the hardware vernier offset |
| * calibration has not completed, or another error code on failure. |
| */ |
| int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port) |
| { |
| enum ice_ptp_link_spd link_spd; |
| enum ice_ptp_fec_mode fec_mode; |
| u64 total_offset, val; |
| int err; |
| u32 reg; |
| |
| /* Nothing to do if we've already programmed the offset */ |
| err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, ®); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n", |
| port, err); |
| return err; |
| } |
| |
| if (reg) |
| return 0; |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, ®); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n", |
| port, err); |
| return err; |
| } |
| |
| if (!(reg & P_REG_TX_OV_STATUS_OV_M)) |
| return -EBUSY; |
| |
| err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); |
| if (err) |
| return err; |
| |
| total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd); |
| |
| /* Read the first Vernier offset from the PHY register and add it to |
| * the total offset. |
| */ |
| if (link_spd == ICE_PTP_LNK_SPD_1G || |
| link_spd == ICE_PTP_LNK_SPD_10G || |
| link_spd == ICE_PTP_LNK_SPD_25G || |
| link_spd == ICE_PTP_LNK_SPD_25G_RS || |
| link_spd == ICE_PTP_LNK_SPD_40G || |
| link_spd == ICE_PTP_LNK_SPD_50G) { |
| err = ice_read_64b_phy_reg_e822(hw, port, |
| P_REG_PAR_PCS_TX_OFFSET_L, |
| &val); |
| if (err) |
| return err; |
| |
| total_offset += val; |
| } |
| |
| /* For Tx, we only need to use the second Vernier offset for |
| * multi-lane link speeds with RS-FEC. The lanes will always be |
| * aligned. |
| */ |
| if (link_spd == ICE_PTP_LNK_SPD_50G_RS || |
| link_spd == ICE_PTP_LNK_SPD_100G_RS) { |
| err = ice_read_64b_phy_reg_e822(hw, port, |
| P_REG_PAR_TX_TIME_L, |
| &val); |
| if (err) |
| return err; |
| |
| total_offset += val; |
| } |
| |
| /* Now that the total offset has been calculated, program it to the |
| * PHY and indicate that the Tx offset is ready. After this, |
| * timestamps will be enabled. |
| */ |
| err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L, |
| total_offset); |
| if (err) |
| return err; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1); |
| if (err) |
| return err; |
| |
| dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n", |
| port); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to adjust for |
| * @link_spd: the current link speed of the PHY |
| * @fec_mode: the current FEC mode of the PHY |
| * @pmd_adj: on return, the amount to adjust the Rx total offset by |
| * |
| * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY. |
| * This varies by link speed and FEC mode. The value calculated accounts for |
| * various delays caused when receiving a packet. |
| */ |
| static int |
| ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port, |
| enum ice_ptp_link_spd link_spd, |
| enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj) |
| { |
| u64 cur_freq, clk_incval, tu_per_sec, mult, adj; |
| u8 pmd_align; |
| u32 val; |
| int err; |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n", |
| err); |
| return err; |
| } |
| |
| pmd_align = (u8)val; |
| |
| cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); |
| clk_incval = ice_ptp_read_src_incval(hw); |
| |
| /* Calculate TUs per second */ |
| tu_per_sec = cur_freq * clk_incval; |
| |
| /* The PMD alignment adjustment measurement depends on the link speed, |
| * and whether FEC is enabled. For each link speed, the alignment |
| * adjustment is calculated by dividing a value by the length of |
| * a Time Unit in nanoseconds. |
| * |
| * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8 |
| * 10G: align == 65 ? 0 : (align * 0.1 * 32/33) |
| * 10G w/FEC: align * 0.1 * 32/33 |
| * 25G: align == 65 ? 0 : (align * 0.4 * 32/33) |
| * 25G w/FEC: align * 0.4 * 32/33 |
| * 40G: align == 65 ? 0 : (align * 0.1 * 32/33) |
| * 40G w/FEC: align * 0.1 * 32/33 |
| * 50G: align == 65 ? 0 : (align * 0.4 * 32/33) |
| * 50G w/FEC: align * 0.8 * 32/33 |
| * |
| * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33. |
| * |
| * To allow for calculating this value using integer arithmetic, we |
| * instead start with the number of TUs per second, (inverse of the |
| * length of a Time Unit in nanoseconds), multiply by a value based |
| * on the PMD alignment register, and then divide by the right value |
| * calculated based on the table above. To avoid integer overflow this |
| * division is broken up into a step of dividing by 125 first. |
| */ |
| if (link_spd == ICE_PTP_LNK_SPD_1G) { |
| if (pmd_align == 4) |
| mult = 10; |
| else |
| mult = (pmd_align + 6) % 10; |
| } else if (link_spd == ICE_PTP_LNK_SPD_10G || |
| link_spd == ICE_PTP_LNK_SPD_25G || |
| link_spd == ICE_PTP_LNK_SPD_40G || |
| link_spd == ICE_PTP_LNK_SPD_50G) { |
| /* If Clause 74 FEC, always calculate PMD adjust */ |
| if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74) |
| mult = pmd_align; |
| else |
| mult = 0; |
| } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS || |
| link_spd == ICE_PTP_LNK_SPD_50G_RS || |
| link_spd == ICE_PTP_LNK_SPD_100G_RS) { |
| if (pmd_align < 17) |
| mult = pmd_align + 40; |
| else |
| mult = pmd_align; |
| } else { |
| ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n", |
| link_spd); |
| mult = 0; |
| } |
| |
| /* In some cases, there's no need to adjust for the PMD alignment */ |
| if (!mult) { |
| *pmd_adj = 0; |
| return 0; |
| } |
| |
| /* Calculate the adjustment by multiplying TUs per second by the |
| * appropriate multiplier and divisor. To avoid overflow, we first |
| * divide by 125, and then handle remaining divisor based on the link |
| * speed pmd_adj_divisor value. |
| */ |
| adj = div_u64(tu_per_sec, 125); |
| adj *= mult; |
| adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor); |
| |
| /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx |
| * cycle count is necessary. |
| */ |
| if (link_spd == ICE_PTP_LNK_SPD_25G_RS) { |
| u64 cycle_adj; |
| u8 rx_cycle; |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT, |
| &val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n", |
| err); |
| return err; |
| } |
| |
| rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M; |
| if (rx_cycle) { |
| mult = (4 - rx_cycle) * 40; |
| |
| cycle_adj = div_u64(tu_per_sec, 125); |
| cycle_adj *= mult; |
| cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); |
| |
| adj += cycle_adj; |
| } |
| } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) { |
| u64 cycle_adj; |
| u8 rx_cycle; |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT, |
| &val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n", |
| err); |
| return err; |
| } |
| |
| rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M; |
| if (rx_cycle) { |
| mult = rx_cycle * 40; |
| |
| cycle_adj = div_u64(tu_per_sec, 125); |
| cycle_adj *= mult; |
| cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor); |
| |
| adj += cycle_adj; |
| } |
| } |
| |
| /* Return the calculated adjustment */ |
| *pmd_adj = adj; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port |
| * @hw: pointer to HW struct |
| * @link_spd: The Link speed to calculate for |
| * |
| * Determine the fixed Rx latency for a given link speed. |
| */ |
| static u64 |
| ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd) |
| { |
| u64 cur_freq, clk_incval, tu_per_sec, fixed_offset; |
| |
| cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw)); |
| clk_incval = ice_ptp_read_src_incval(hw); |
| |
| /* Calculate TUs per second */ |
| tu_per_sec = cur_freq * clk_incval; |
| |
| /* Calculate number of TUs to add for the fixed Rx latency. Since the |
| * latency measurement is in 1/100th of a nanosecond, we need to |
| * multiply by tu_per_sec and then divide by 1e11. This calculation |
| * overflows 64 bit integer arithmetic, so break it up into two |
| * divisions by 1e4 first then by 1e7. |
| */ |
| fixed_offset = div_u64(tu_per_sec, 10000); |
| fixed_offset *= e822_vernier[link_spd].rx_fixed_delay; |
| fixed_offset = div_u64(fixed_offset, 10000000); |
| |
| return fixed_offset; |
| } |
| |
| /** |
| * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to configure |
| * |
| * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to |
| * adjust Rx timestamps by. This combines calculations from the Vernier offset |
| * measurements taken in hardware with some data about known fixed delay as |
| * well as adjusting for multi-lane alignment delay. |
| * |
| * This function will not return successfully until the Rx offset calculations |
| * have been completed, which requires waiting until at least one packet has |
| * been received by the device. It is safe to call this function periodically |
| * until calibration succeeds, as it will only program the offset once. |
| * |
| * This function must be called only after the offset registers are valid, |
| * i.e. after the Vernier calibration wait has passed, to ensure that the PHY |
| * has measured the offset. |
| * |
| * To avoid overflow, when calculating the offset based on the known static |
| * latency values, we use measurements in 1/100th of a nanosecond, and divide |
| * the TUs per second up front. This avoids overflow while allowing |
| * calculation of the adjustment using integer arithmetic. |
| * |
| * Returns zero on success, -EBUSY if the hardware vernier offset |
| * calibration has not completed, or another error code on failure. |
| */ |
| int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port) |
| { |
| enum ice_ptp_link_spd link_spd; |
| enum ice_ptp_fec_mode fec_mode; |
| u64 total_offset, pmd, val; |
| int err; |
| u32 reg; |
| |
| /* Nothing to do if we've already programmed the offset */ |
| err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, ®); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n", |
| port, err); |
| return err; |
| } |
| |
| if (reg) |
| return 0; |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, ®); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n", |
| port, err); |
| return err; |
| } |
| |
| if (!(reg & P_REG_RX_OV_STATUS_OV_M)) |
| return -EBUSY; |
| |
| err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode); |
| if (err) |
| return err; |
| |
| total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd); |
| |
| /* Read the first Vernier offset from the PHY register and add it to |
| * the total offset. |
| */ |
| err = ice_read_64b_phy_reg_e822(hw, port, |
| P_REG_PAR_PCS_RX_OFFSET_L, |
| &val); |
| if (err) |
| return err; |
| |
| total_offset += val; |
| |
| /* For Rx, all multi-lane link speeds include a second Vernier |
| * calibration, because the lanes might not be aligned. |
| */ |
| if (link_spd == ICE_PTP_LNK_SPD_40G || |
| link_spd == ICE_PTP_LNK_SPD_50G || |
| link_spd == ICE_PTP_LNK_SPD_50G_RS || |
| link_spd == ICE_PTP_LNK_SPD_100G_RS) { |
| err = ice_read_64b_phy_reg_e822(hw, port, |
| P_REG_PAR_RX_TIME_L, |
| &val); |
| if (err) |
| return err; |
| |
| total_offset += val; |
| } |
| |
| /* In addition, Rx must account for the PMD alignment */ |
| err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd); |
| if (err) |
| return err; |
| |
| /* For RS-FEC, this adjustment adds delay, but for other modes, it |
| * subtracts delay. |
| */ |
| if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC) |
| total_offset += pmd; |
| else |
| total_offset -= pmd; |
| |
| /* Now that the total offset has been calculated, program it to the |
| * PHY and indicate that the Rx offset is ready. After this, |
| * timestamps will be enabled. |
| */ |
| err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L, |
| total_offset); |
| if (err) |
| return err; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1); |
| if (err) |
| return err; |
| |
| dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n", |
| port); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to read |
| * @phy_time: on return, the 64bit PHY timer value |
| * @phc_time: on return, the lower 64bits of PHC time |
| * |
| * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC |
| * timer values. |
| */ |
| static int |
| ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time, |
| u64 *phc_time) |
| { |
| u64 tx_time, rx_time; |
| u32 zo, lo; |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = ice_get_ptp_src_clock_index(hw); |
| |
| /* Prepare the PHC timer for a READ_TIME capture command */ |
| ice_ptp_src_cmd(hw, READ_TIME); |
| |
| /* Prepare the PHY timer for a READ_TIME capture command */ |
| err = ice_ptp_one_port_cmd(hw, port, READ_TIME); |
| if (err) |
| return err; |
| |
| /* Issue the sync to start the READ_TIME capture */ |
| ice_ptp_exec_tmr_cmd(hw); |
| |
| /* Read the captured PHC time from the shadow time registers */ |
| zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx)); |
| lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx)); |
| *phc_time = (u64)lo << 32 | zo; |
| |
| /* Read the captured PHY time from the PHY shadow registers */ |
| err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time); |
| if (err) |
| return err; |
| |
| /* If the PHY Tx and Rx timers don't match, log a warning message. |
| * Note that this should not happen in normal circumstances since the |
| * driver always programs them together. |
| */ |
| if (tx_time != rx_time) |
| dev_warn(ice_hw_to_dev(hw), |
| "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n", |
| port, (unsigned long long)tx_time, |
| (unsigned long long)rx_time); |
| |
| *phy_time = tx_time; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to synchronize |
| * |
| * Perform an adjustment to ensure that the PHY and PHC timers are in sync. |
| * This is done by issuing a READ_TIME command which triggers a simultaneous |
| * read of the PHY timer and PHC timer. Then we use the difference to |
| * calculate an appropriate 2s complement addition to add to the PHY timer in |
| * order to ensure it reads the same value as the primary PHC timer. |
| */ |
| static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port) |
| { |
| u64 phc_time, phy_time, difference; |
| int err; |
| |
| if (!ice_ptp_lock(hw)) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n"); |
| return -EBUSY; |
| } |
| |
| err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); |
| if (err) |
| goto err_unlock; |
| |
| /* Calculate the amount required to add to the port time in order for |
| * it to match the PHC time. |
| * |
| * Note that the port adjustment is done using 2s complement |
| * arithmetic. This is convenient since it means that we can simply |
| * calculate the difference between the PHC time and the port time, |
| * and it will be interpreted correctly. |
| */ |
| difference = phc_time - phy_time; |
| |
| err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference); |
| if (err) |
| goto err_unlock; |
| |
| err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME); |
| if (err) |
| goto err_unlock; |
| |
| /* Issue the sync to activate the time adjustment */ |
| ice_ptp_exec_tmr_cmd(hw); |
| |
| /* Re-capture the timer values to flush the command registers and |
| * verify that the time was properly adjusted. |
| */ |
| err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time); |
| if (err) |
| goto err_unlock; |
| |
| dev_info(ice_hw_to_dev(hw), |
| "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n", |
| port, (unsigned long long)phy_time, |
| (unsigned long long)phc_time); |
| |
| ice_ptp_unlock(hw); |
| |
| return 0; |
| |
| err_unlock: |
| ice_ptp_unlock(hw); |
| return err; |
| } |
| |
| /** |
| * ice_stop_phy_timer_e822 - Stop the PHY clock timer |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to stop |
| * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS |
| * |
| * Stop the clock of a PHY port. This must be done as part of the flow to |
| * re-calibrate Tx and Rx timestamping offsets whenever the clock time is |
| * initialized or when link speed changes. |
| */ |
| int |
| ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset) |
| { |
| int err; |
| u32 val; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0); |
| if (err) |
| return err; |
| |
| err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0); |
| if (err) |
| return err; |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); |
| if (err) |
| return err; |
| |
| val &= ~P_REG_PS_START_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| |
| val &= ~P_REG_PS_ENA_CLK_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| |
| if (soft_reset) { |
| val |= P_REG_PS_SFT_RESET_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| } |
| |
| ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_start_phy_timer_e822 - Start the PHY clock timer |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to start |
| * |
| * Start the clock of a PHY port. This must be done as part of the flow to |
| * re-calibrate Tx and Rx timestamping offsets whenever the clock time is |
| * initialized or when link speed changes. |
| * |
| * Hardware will take Vernier measurements on Tx or Rx of packets. |
| */ |
| int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port) |
| { |
| u32 lo, hi, val; |
| u64 incval; |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = ice_get_ptp_src_clock_index(hw); |
| |
| err = ice_stop_phy_timer_e822(hw, port, false); |
| if (err) |
| return err; |
| |
| ice_phy_cfg_lane_e822(hw, port); |
| |
| err = ice_phy_cfg_uix_e822(hw, port); |
| if (err) |
| return err; |
| |
| err = ice_phy_cfg_parpcs_e822(hw, port); |
| if (err) |
| return err; |
| |
| lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx)); |
| hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx)); |
| incval = (u64)hi << 32 | lo; |
| |
| err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval); |
| if (err) |
| return err; |
| |
| err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); |
| if (err) |
| return err; |
| |
| ice_ptp_exec_tmr_cmd(hw); |
| |
| err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val); |
| if (err) |
| return err; |
| |
| val |= P_REG_PS_SFT_RESET_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| |
| val |= P_REG_PS_START_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| |
| val &= ~P_REG_PS_SFT_RESET_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| |
| err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL); |
| if (err) |
| return err; |
| |
| ice_ptp_exec_tmr_cmd(hw); |
| |
| val |= P_REG_PS_ENA_CLK_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| |
| val |= P_REG_PS_LOAD_OFFSET_M; |
| err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val); |
| if (err) |
| return err; |
| |
| ice_ptp_exec_tmr_cmd(hw); |
| |
| err = ice_sync_phy_timer_e822(hw, port); |
| if (err) |
| return err; |
| |
| ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register |
| * @hw: pointer to the HW struct |
| * @quad: the timestamp quad to read from |
| * @tstamp_ready: contents of the Tx memory status register |
| * |
| * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in |
| * the PHY are ready. A set bit means the corresponding timestamp is valid and |
| * ready to be captured from the PHY timestamp block. |
| */ |
| static int |
| ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready) |
| { |
| u32 hi, lo; |
| int err; |
| |
| err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n", |
| quad, err); |
| return err; |
| } |
| |
| err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n", |
| quad, err); |
| return err; |
| } |
| |
| *tstamp_ready = (u64)hi << 32 | (u64)lo; |
| |
| return 0; |
| } |
| |
| /* E810 functions |
| * |
| * The following functions operate on the E810 series devices which use |
| * a separate external PHY. |
| */ |
| |
| /** |
| * ice_read_phy_reg_e810 - Read register from external PHY on E810 |
| * @hw: pointer to the HW struct |
| * @addr: the address to read from |
| * @val: On return, the value read from the PHY |
| * |
| * Read a register from the external PHY on the E810 device. |
| */ |
| static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val) |
| { |
| struct ice_sbq_msg_input msg = {0}; |
| int err; |
| |
| msg.msg_addr_low = lower_16_bits(addr); |
| msg.msg_addr_high = upper_16_bits(addr); |
| msg.opcode = ice_sbq_msg_rd; |
| msg.dest_dev = rmn_0; |
| |
| err = ice_sbq_rw_reg(hw, &msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", |
| err); |
| return err; |
| } |
| |
| *val = msg.data; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_write_phy_reg_e810 - Write register on external PHY on E810 |
| * @hw: pointer to the HW struct |
| * @addr: the address to writem to |
| * @val: the value to write to the PHY |
| * |
| * Write a value to a register of the external PHY on the E810 device. |
| */ |
| static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val) |
| { |
| struct ice_sbq_msg_input msg = {0}; |
| int err; |
| |
| msg.msg_addr_low = lower_16_bits(addr); |
| msg.msg_addr_high = upper_16_bits(addr); |
| msg.opcode = ice_sbq_msg_wr; |
| msg.dest_dev = rmn_0; |
| msg.data = val; |
| |
| err = ice_sbq_rw_reg(hw, &msg); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW |
| * @hw: pointer to the HW struct |
| * @idx: the timestamp index to read |
| * @hi: 8 bit timestamp high value |
| * @lo: 32 bit timestamp low value |
| * |
| * Read a 8bit timestamp high value and 32 bit timestamp low value out of the |
| * timestamp block of the external PHY on the E810 device using the low latency |
| * timestamp read. |
| */ |
| static int |
| ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo) |
| { |
| u32 val; |
| u8 i; |
| |
| /* Write TS index to read to the PF register so the FW can read it */ |
| val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS; |
| wr32(hw, PF_SB_ATQBAL, val); |
| |
| /* Read the register repeatedly until the FW provides us the TS */ |
| for (i = TS_LL_READ_RETRIES; i > 0; i--) { |
| val = rd32(hw, PF_SB_ATQBAL); |
| |
| /* When the bit is cleared, the TS is ready in the register */ |
| if (!(FIELD_GET(TS_LL_READ_TS, val))) { |
| /* High 8 bit value of the TS is on the bits 16:23 */ |
| *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val); |
| |
| /* Read the low 32 bit value and set the TS valid bit */ |
| *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID; |
| return 0; |
| } |
| |
| udelay(10); |
| } |
| |
| /* FW failed to provide the TS in time */ |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n"); |
| return -EINVAL; |
| } |
| |
| /** |
| * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq |
| * @hw: pointer to the HW struct |
| * @lport: the lport to read from |
| * @idx: the timestamp index to read |
| * @hi: 8 bit timestamp high value |
| * @lo: 32 bit timestamp low value |
| * |
| * Read a 8bit timestamp high value and 32 bit timestamp low value out of the |
| * timestamp block of the external PHY on the E810 device using sideband queue. |
| */ |
| static int |
| ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi, |
| u32 *lo) |
| { |
| u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); |
| u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); |
| u32 lo_val, hi_val; |
| int err; |
| |
| err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| *lo = lo_val; |
| *hi = (u8)hi_val; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY |
| * @hw: pointer to the HW struct |
| * @lport: the lport to read from |
| * @idx: the timestamp index to read |
| * @tstamp: on return, the 40bit timestamp value |
| * |
| * Read a 40bit timestamp value out of the timestamp block of the external PHY |
| * on the E810 device. |
| */ |
| static int |
| ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp) |
| { |
| u32 lo = 0; |
| u8 hi = 0; |
| int err; |
| |
| if (hw->dev_caps.ts_dev_info.ts_ll_read) |
| err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo); |
| else |
| err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo); |
| |
| if (err) |
| return err; |
| |
| /* For E810 devices, the timestamp is reported with the lower 32 bits |
| * in the low register, and the upper 8 bits in the high register. |
| */ |
| *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY |
| * @hw: pointer to the HW struct |
| * @lport: the lport to read from |
| * @idx: the timestamp index to reset |
| * |
| * Clear a timestamp, resetting its valid bit, from the timestamp block of the |
| * external PHY on the E810 device. |
| */ |
| static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx) |
| { |
| u32 lo_addr, hi_addr; |
| int err; |
| |
| lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx); |
| hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx); |
| |
| err = ice_write_phy_reg_e810(hw, lo_addr, 0); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| err = ice_write_phy_reg_e810(hw, hi_addr, 0); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY |
| * @hw: pointer to HW struct |
| * |
| * Enable the timesync PTP functionality for the external PHY connected to |
| * this function. |
| */ |
| int ice_ptp_init_phy_e810(struct ice_hw *hw) |
| { |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx), |
| GLTSYN_ENA_TSYN_ENA_M); |
| if (err) |
| ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n", |
| err); |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization |
| * @hw: pointer to HW struct |
| * |
| * Perform E810-specific PTP hardware clock initialization steps. |
| */ |
| static int ice_ptp_init_phc_e810(struct ice_hw *hw) |
| { |
| /* Ensure synchronization delay is zero */ |
| wr32(hw, GLTSYN_SYNC_DLAY, 0); |
| |
| /* Initialize the PHY */ |
| return ice_ptp_init_phy_e810(hw); |
| } |
| |
| /** |
| * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time |
| * @hw: Board private structure |
| * @time: Time to initialize the PHY port clock to |
| * |
| * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the |
| * initial clock time. The time will not actually be programmed until the |
| * driver issues an INIT_TIME command. |
| * |
| * The time value is the upper 32 bits of the PHY timer, usually in units of |
| * nominal nanoseconds. |
| */ |
| static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time) |
| { |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n", |
| err); |
| return err; |
| } |
| |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment |
| * @hw: pointer to HW struct |
| * @adj: adjustment value to program |
| * |
| * Prepare the PHY port for an atomic adjustment by programming the PHY |
| * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment |
| * is completed by issuing an ADJ_TIME sync command. |
| * |
| * The adjustment value only contains the portion used for the upper 32bits of |
| * the PHY timer, usually in units of nominal nanoseconds. Negative |
| * adjustments are supported using 2s complement arithmetic. |
| */ |
| static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj) |
| { |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* Adjustments are represented as signed 2's complement values in |
| * nanoseconds. Sub-nanosecond adjustment is not supported. |
| */ |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n", |
| err); |
| return err; |
| } |
| |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change |
| * @hw: pointer to HW struct |
| * @incval: The new 40bit increment value to prepare |
| * |
| * Prepare the PHY port for a new increment value by programming the PHY |
| * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is |
| * completed by issuing an INIT_INCVAL command. |
| */ |
| static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval) |
| { |
| u32 high, low; |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| low = lower_32_bits(incval); |
| high = upper_32_bits(incval); |
| |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n", |
| err); |
| return err; |
| } |
| |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n", |
| err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command |
| * @hw: pointer to HW struct |
| * @cmd: Command to be sent to the port |
| * |
| * Prepare the external PHYs connected to this device for a timer sync |
| * command. |
| */ |
| static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) |
| { |
| u32 cmd_val, val; |
| int err; |
| |
| switch (cmd) { |
| case INIT_TIME: |
| cmd_val = GLTSYN_CMD_INIT_TIME; |
| break; |
| case INIT_INCVAL: |
| cmd_val = GLTSYN_CMD_INIT_INCVAL; |
| break; |
| case ADJ_TIME: |
| cmd_val = GLTSYN_CMD_ADJ_TIME; |
| break; |
| case READ_TIME: |
| cmd_val = GLTSYN_CMD_READ_TIME; |
| break; |
| case ADJ_TIME_AT_TIME: |
| cmd_val = GLTSYN_CMD_ADJ_INIT_TIME; |
| break; |
| } |
| |
| /* Read, modify, write */ |
| err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err); |
| return err; |
| } |
| |
| /* Modify necessary bits only and perform write */ |
| val &= ~TS_CMD_MASK_E810; |
| val |= cmd_val; |
| |
| err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* Device agnostic functions |
| * |
| * The following functions implement shared behavior common to both E822 and |
| * E810 devices, possibly calling a device specific implementation where |
| * necessary. |
| */ |
| |
| /** |
| * ice_ptp_lock - Acquire PTP global semaphore register lock |
| * @hw: pointer to the HW struct |
| * |
| * Acquire the global PTP hardware semaphore lock. Returns true if the lock |
| * was acquired, false otherwise. |
| * |
| * The PFTSYN_SEM register sets the busy bit on read, returning the previous |
| * value. If software sees the busy bit cleared, this means that this function |
| * acquired the lock (and the busy bit is now set). If software sees the busy |
| * bit set, it means that another function acquired the lock. |
| * |
| * Software must clear the busy bit with a write to release the lock for other |
| * functions when done. |
| */ |
| bool ice_ptp_lock(struct ice_hw *hw) |
| { |
| u32 hw_lock; |
| int i; |
| |
| #define MAX_TRIES 15 |
| |
| for (i = 0; i < MAX_TRIES; i++) { |
| hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); |
| hw_lock = hw_lock & PFTSYN_SEM_BUSY_M; |
| if (hw_lock) { |
| /* Somebody is holding the lock */ |
| usleep_range(5000, 6000); |
| continue; |
| } |
| |
| break; |
| } |
| |
| return !hw_lock; |
| } |
| |
| /** |
| * ice_ptp_unlock - Release PTP global semaphore register lock |
| * @hw: pointer to the HW struct |
| * |
| * Release the global PTP hardware semaphore lock. This is done by writing to |
| * the PFTSYN_SEM register. |
| */ |
| void ice_ptp_unlock(struct ice_hw *hw) |
| { |
| wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0); |
| } |
| |
| /** |
| * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command |
| * @hw: pointer to HW struct |
| * @cmd: the command to issue |
| * |
| * Prepare the source timer and PHY timers and then trigger the requested |
| * command. This causes the shadow registers previously written in preparation |
| * for the command to be synchronously applied to both the source and PHY |
| * timers. |
| */ |
| static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd) |
| { |
| int err; |
| |
| /* First, prepare the source timer */ |
| ice_ptp_src_cmd(hw, cmd); |
| |
| /* Next, prepare the ports */ |
| if (ice_is_e810(hw)) |
| err = ice_ptp_port_cmd_e810(hw, cmd); |
| else |
| err = ice_ptp_port_cmd_e822(hw, cmd); |
| if (err) { |
| ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n", |
| cmd, err); |
| return err; |
| } |
| |
| /* Write the sync command register to drive both source and PHY timer |
| * commands synchronously |
| */ |
| ice_ptp_exec_tmr_cmd(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ptp_init_time - Initialize device time to provided value |
| * @hw: pointer to HW struct |
| * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H) |
| * |
| * Initialize the device to the specified time provided. This requires a three |
| * step process: |
| * |
| * 1) write the new init time to the source timer shadow registers |
| * 2) write the new init time to the PHY timer shadow registers |
| * 3) issue an init_time timer command to synchronously switch both the source |
| * and port timers to the new init time value at the next clock cycle. |
| */ |
| int ice_ptp_init_time(struct ice_hw *hw, u64 time) |
| { |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* Source timers */ |
| wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time)); |
| wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time)); |
| wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0); |
| |
| /* PHY timers */ |
| /* Fill Rx and Tx ports and send msg to PHY */ |
| if (ice_is_e810(hw)) |
| err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF); |
| else |
| err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF); |
| if (err) |
| return err; |
| |
| return ice_ptp_tmr_cmd(hw, INIT_TIME); |
| } |
| |
| /** |
| * ice_ptp_write_incval - Program PHC with new increment value |
| * @hw: pointer to HW struct |
| * @incval: Source timer increment value per clock cycle |
| * |
| * Program the PHC with a new increment value. This requires a three-step |
| * process: |
| * |
| * 1) Write the increment value to the source timer shadow registers |
| * 2) Write the increment value to the PHY timer shadow registers |
| * 3) Issue an INIT_INCVAL timer command to synchronously switch both the |
| * source and port timers to the new increment value at the next clock |
| * cycle. |
| */ |
| int ice_ptp_write_incval(struct ice_hw *hw, u64 incval) |
| { |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* Shadow Adjust */ |
| wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval)); |
| wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval)); |
| |
| if (ice_is_e810(hw)) |
| err = ice_ptp_prep_phy_incval_e810(hw, incval); |
| else |
| err = ice_ptp_prep_phy_incval_e822(hw, incval); |
| if (err) |
| return err; |
| |
| return ice_ptp_tmr_cmd(hw, INIT_INCVAL); |
| } |
| |
| /** |
| * ice_ptp_write_incval_locked - Program new incval while holding semaphore |
| * @hw: pointer to HW struct |
| * @incval: Source timer increment value per clock cycle |
| * |
| * Program a new PHC incval while holding the PTP semaphore. |
| */ |
| int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval) |
| { |
| int err; |
| |
| if (!ice_ptp_lock(hw)) |
| return -EBUSY; |
| |
| err = ice_ptp_write_incval(hw, incval); |
| |
| ice_ptp_unlock(hw); |
| |
| return err; |
| } |
| |
| /** |
| * ice_ptp_adj_clock - Adjust PHC clock time atomically |
| * @hw: pointer to HW struct |
| * @adj: Adjustment in nanoseconds |
| * |
| * Perform an atomic adjustment of the PHC time by the specified number of |
| * nanoseconds. This requires a three-step process: |
| * |
| * 1) Write the adjustment to the source timer shadow registers |
| * 2) Write the adjustment to the PHY timer shadow registers |
| * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to |
| * both the source and port timers at the next clock cycle. |
| */ |
| int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj) |
| { |
| u8 tmr_idx; |
| int err; |
| |
| tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* Write the desired clock adjustment into the GLTSYN_SHADJ register. |
| * For an ADJ_TIME command, this set of registers represents the value |
| * to add to the clock time. It supports subtraction by interpreting |
| * the value as a 2's complement integer. |
| */ |
| wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0); |
| wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj); |
| |
| if (ice_is_e810(hw)) |
| err = ice_ptp_prep_phy_adj_e810(hw, adj); |
| else |
| err = ice_ptp_prep_phy_adj_e822(hw, adj); |
| if (err) |
| return err; |
| |
| return ice_ptp_tmr_cmd(hw, ADJ_TIME); |
| } |
| |
| /** |
| * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block |
| * @hw: pointer to the HW struct |
| * @block: the block to read from |
| * @idx: the timestamp index to read |
| * @tstamp: on return, the 40bit timestamp value |
| * |
| * Read a 40bit timestamp value out of the timestamp block. For E822 devices, |
| * the block is the quad to read from. For E810 devices, the block is the |
| * logical port to read from. |
| */ |
| int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp) |
| { |
| if (ice_is_e810(hw)) |
| return ice_read_phy_tstamp_e810(hw, block, idx, tstamp); |
| else |
| return ice_read_phy_tstamp_e822(hw, block, idx, tstamp); |
| } |
| |
| /** |
| * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block |
| * @hw: pointer to the HW struct |
| * @block: the block to read from |
| * @idx: the timestamp index to reset |
| * |
| * Clear a timestamp, resetting its valid bit, from the timestamp block. For |
| * E822 devices, the block is the quad to clear from. For E810 devices, the |
| * block is the logical port to clear from. |
| */ |
| int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx) |
| { |
| if (ice_is_e810(hw)) |
| return ice_clear_phy_tstamp_e810(hw, block, idx); |
| else |
| return ice_clear_phy_tstamp_e822(hw, block, idx); |
| } |
| |
| /** |
| * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register |
| * @hw: pointer to the HW struct |
| * @port: the PHY port to read |
| * @tstamp_ready: contents of the Tx memory status register |
| * |
| * E810 devices do not use a Tx memory status register. Instead simply |
| * indicate that all timestamps are currently ready. |
| */ |
| static int |
| ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready) |
| { |
| *tstamp_ready = 0xFFFFFFFFFFFFFFFF; |
| return 0; |
| } |
| |
| /* E810T SMA functions |
| * |
| * The following functions operate specifically on E810T hardware and are used |
| * to access the extended GPIOs available. |
| */ |
| |
| /** |
| * ice_get_pca9575_handle |
| * @hw: pointer to the hw struct |
| * @pca9575_handle: GPIO controller's handle |
| * |
| * Find and return the GPIO controller's handle in the netlist. |
| * When found - the value will be cached in the hw structure and following calls |
| * will return cached value |
| */ |
| static int |
| ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle) |
| { |
| struct ice_aqc_get_link_topo *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| u8 idx; |
| |
| /* If handle was read previously return cached value */ |
| if (hw->io_expander_handle) { |
| *pca9575_handle = hw->io_expander_handle; |
| return 0; |
| } |
| |
| /* If handle was not detected read it from the netlist */ |
| cmd = &desc.params.get_link_topo; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); |
| |
| /* Set node type to GPIO controller */ |
| cmd->addr.topo_params.node_type_ctx = |
| (ICE_AQC_LINK_TOPO_NODE_TYPE_M & |
| ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL); |
| |
| #define SW_PCA9575_SFP_TOPO_IDX 2 |
| #define SW_PCA9575_QSFP_TOPO_IDX 1 |
| |
| /* Check if the SW IO expander controlling SMA exists in the netlist. */ |
| if (hw->device_id == ICE_DEV_ID_E810C_SFP) |
| idx = SW_PCA9575_SFP_TOPO_IDX; |
| else if (hw->device_id == ICE_DEV_ID_E810C_QSFP) |
| idx = SW_PCA9575_QSFP_TOPO_IDX; |
| else |
| return -EOPNOTSUPP; |
| |
| cmd->addr.topo_params.index = idx; |
| |
| status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); |
| if (status) |
| return -EOPNOTSUPP; |
| |
| /* Verify if we found the right IO expander type */ |
| if (desc.params.get_link_topo.node_part_num != |
| ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575) |
| return -EOPNOTSUPP; |
| |
| /* If present save the handle and return it */ |
| hw->io_expander_handle = |
| le16_to_cpu(desc.params.get_link_topo.addr.handle); |
| *pca9575_handle = hw->io_expander_handle; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_read_sma_ctrl_e810t |
| * @hw: pointer to the hw struct |
| * @data: pointer to data to be read from the GPIO controller |
| * |
| * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the |
| * PCA9575 expander, so only bits 3-7 in data are valid. |
| */ |
| int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data) |
| { |
| int status; |
| u16 handle; |
| u8 i; |
| |
| status = ice_get_pca9575_handle(hw, &handle); |
| if (status) |
| return status; |
| |
| *data = 0; |
| |
| for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { |
| bool pin; |
| |
| status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, |
| &pin, NULL); |
| if (status) |
| break; |
| *data |= (u8)(!pin) << i; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_write_sma_ctrl_e810t |
| * @hw: pointer to the hw struct |
| * @data: data to be written to the GPIO controller |
| * |
| * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1 |
| * of the PCA9575 expander, so only bits 3-7 in data are valid. |
| */ |
| int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data) |
| { |
| int status; |
| u16 handle; |
| u8 i; |
| |
| status = ice_get_pca9575_handle(hw, &handle); |
| if (status) |
| return status; |
| |
| for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) { |
| bool pin; |
| |
| pin = !(data & (1 << i)); |
| status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET, |
| pin, NULL); |
| if (status) |
| break; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_read_pca9575_reg_e810t |
| * @hw: pointer to the hw struct |
| * @offset: GPIO controller register offset |
| * @data: pointer to data to be read from the GPIO controller |
| * |
| * Read the register from the GPIO controller |
| */ |
| int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data) |
| { |
| struct ice_aqc_link_topo_addr link_topo; |
| __le16 addr; |
| u16 handle; |
| int err; |
| |
| memset(&link_topo, 0, sizeof(link_topo)); |
| |
| err = ice_get_pca9575_handle(hw, &handle); |
| if (err) |
| return err; |
| |
| link_topo.handle = cpu_to_le16(handle); |
| link_topo.topo_params.node_type_ctx = |
| FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, |
| ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED); |
| |
| addr = cpu_to_le16((u16)offset); |
| |
| return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL); |
| } |
| |
| /** |
| * ice_is_pca9575_present |
| * @hw: pointer to the hw struct |
| * |
| * Check if the SW IO expander is present in the netlist |
| */ |
| bool ice_is_pca9575_present(struct ice_hw *hw) |
| { |
| u16 handle = 0; |
| int status; |
| |
| if (!ice_is_e810t(hw)) |
| return false; |
| |
| status = ice_get_pca9575_handle(hw, &handle); |
| |
| return !status && handle; |
| } |
| |
| /** |
| * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks |
| * @hw: pointer to the HW struct |
| */ |
| void ice_ptp_reset_ts_memory(struct ice_hw *hw) |
| { |
| if (ice_is_e810(hw)) |
| return; |
| |
| ice_ptp_reset_ts_memory_e822(hw); |
| } |
| |
| /** |
| * ice_ptp_init_phc - Initialize PTP hardware clock |
| * @hw: pointer to the HW struct |
| * |
| * Perform the steps required to initialize the PTP hardware clock. |
| */ |
| int ice_ptp_init_phc(struct ice_hw *hw) |
| { |
| u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned; |
| |
| /* Enable source clocks */ |
| wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); |
| |
| /* Clear event err indications for auxiliary pins */ |
| (void)rd32(hw, GLTSYN_STAT(src_idx)); |
| |
| if (ice_is_e810(hw)) |
| return ice_ptp_init_phc_e810(hw); |
| else |
| return ice_ptp_init_phc_e822(hw); |
| } |
| |
| /** |
| * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication |
| * @hw: pointer to the HW struct |
| * @block: the timestamp block to check |
| * @tstamp_ready: storage for the PHY Tx memory status information |
| * |
| * Check the PHY for Tx timestamp memory status. This reports a 64 bit value |
| * which indicates which timestamps in the block may be captured. A set bit |
| * means the timestamp can be read. An unset bit means the timestamp is not |
| * ready and software should avoid reading the register. |
| */ |
| int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready) |
| { |
| if (ice_is_e810(hw)) |
| return ice_get_phy_tx_tstamp_ready_e810(hw, block, |
| tstamp_ready); |
| else |
| return ice_get_phy_tx_tstamp_ready_e822(hw, block, |
| tstamp_ready); |
| } |