| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2017 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_btree.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_icache.h" |
| #include "xfs_rmap.h" |
| #include "scrub/scrub.h" |
| #include "scrub/common.h" |
| #include "scrub/btree.h" |
| #include "scrub/trace.h" |
| |
| /* |
| * Set us up to scrub inode btrees. |
| * If we detect a discrepancy between the inobt and the inode, |
| * try again after forcing logged inode cores out to disk. |
| */ |
| int |
| xchk_setup_ag_iallocbt( |
| struct xfs_scrub *sc) |
| { |
| return xchk_setup_ag_btree(sc, sc->flags & XCHK_TRY_HARDER); |
| } |
| |
| /* Inode btree scrubber. */ |
| |
| struct xchk_iallocbt { |
| /* Number of inodes we see while scanning inobt. */ |
| unsigned long long inodes; |
| |
| /* Expected next startino, for big block filesystems. */ |
| xfs_agino_t next_startino; |
| |
| /* Expected end of the current inode cluster. */ |
| xfs_agino_t next_cluster_ino; |
| }; |
| |
| /* |
| * If we're checking the finobt, cross-reference with the inobt. |
| * Otherwise we're checking the inobt; if there is an finobt, make sure |
| * we have a record or not depending on freecount. |
| */ |
| static inline void |
| xchk_iallocbt_chunk_xref_other( |
| struct xfs_scrub *sc, |
| struct xfs_inobt_rec_incore *irec, |
| xfs_agino_t agino) |
| { |
| struct xfs_btree_cur **pcur; |
| bool has_irec; |
| int error; |
| |
| if (sc->sm->sm_type == XFS_SCRUB_TYPE_FINOBT) |
| pcur = &sc->sa.ino_cur; |
| else |
| pcur = &sc->sa.fino_cur; |
| if (!(*pcur)) |
| return; |
| error = xfs_ialloc_has_inode_record(*pcur, agino, agino, &has_irec); |
| if (!xchk_should_check_xref(sc, &error, pcur)) |
| return; |
| if (((irec->ir_freecount > 0 && !has_irec) || |
| (irec->ir_freecount == 0 && has_irec))) |
| xchk_btree_xref_set_corrupt(sc, *pcur, 0); |
| } |
| |
| /* Cross-reference with the other btrees. */ |
| STATIC void |
| xchk_iallocbt_chunk_xref( |
| struct xfs_scrub *sc, |
| struct xfs_inobt_rec_incore *irec, |
| xfs_agino_t agino, |
| xfs_agblock_t agbno, |
| xfs_extlen_t len) |
| { |
| if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) |
| return; |
| |
| xchk_xref_is_used_space(sc, agbno, len); |
| xchk_iallocbt_chunk_xref_other(sc, irec, agino); |
| xchk_xref_is_owned_by(sc, agbno, len, &XFS_RMAP_OINFO_INODES); |
| xchk_xref_is_not_shared(sc, agbno, len); |
| } |
| |
| /* Is this chunk worth checking? */ |
| STATIC bool |
| xchk_iallocbt_chunk( |
| struct xchk_btree *bs, |
| struct xfs_inobt_rec_incore *irec, |
| xfs_agino_t agino, |
| xfs_extlen_t len) |
| { |
| struct xfs_mount *mp = bs->cur->bc_mp; |
| xfs_agnumber_t agno = bs->cur->bc_ag.agno; |
| xfs_agblock_t bno; |
| |
| bno = XFS_AGINO_TO_AGBNO(mp, agino); |
| if (bno + len <= bno || |
| !xfs_verify_agbno(mp, agno, bno) || |
| !xfs_verify_agbno(mp, agno, bno + len - 1)) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| |
| xchk_iallocbt_chunk_xref(bs->sc, irec, agino, bno, len); |
| |
| return true; |
| } |
| |
| /* Count the number of free inodes. */ |
| static unsigned int |
| xchk_iallocbt_freecount( |
| xfs_inofree_t freemask) |
| { |
| BUILD_BUG_ON(sizeof(freemask) != sizeof(__u64)); |
| return hweight64(freemask); |
| } |
| |
| /* |
| * Check that an inode's allocation status matches ir_free in the inobt |
| * record. First we try querying the in-core inode state, and if the inode |
| * isn't loaded we examine the on-disk inode directly. |
| * |
| * Since there can be 1:M and M:1 mappings between inobt records and inode |
| * clusters, we pass in the inode location information as an inobt record; |
| * the index of an inode cluster within the inobt record (as well as the |
| * cluster buffer itself); and the index of the inode within the cluster. |
| * |
| * @irec is the inobt record. |
| * @irec_ino is the inode offset from the start of the record. |
| * @dip is the on-disk inode. |
| */ |
| STATIC int |
| xchk_iallocbt_check_cluster_ifree( |
| struct xchk_btree *bs, |
| struct xfs_inobt_rec_incore *irec, |
| unsigned int irec_ino, |
| struct xfs_dinode *dip) |
| { |
| struct xfs_mount *mp = bs->cur->bc_mp; |
| xfs_ino_t fsino; |
| xfs_agino_t agino; |
| bool irec_free; |
| bool ino_inuse; |
| bool freemask_ok; |
| int error = 0; |
| |
| if (xchk_should_terminate(bs->sc, &error)) |
| return error; |
| |
| /* |
| * Given an inobt record and the offset of an inode from the start of |
| * the record, compute which fs inode we're talking about. |
| */ |
| agino = irec->ir_startino + irec_ino; |
| fsino = XFS_AGINO_TO_INO(mp, bs->cur->bc_ag.agno, agino); |
| irec_free = (irec->ir_free & XFS_INOBT_MASK(irec_ino)); |
| |
| if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC || |
| (dip->di_version >= 3 && be64_to_cpu(dip->di_ino) != fsino)) { |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| goto out; |
| } |
| |
| error = xfs_icache_inode_is_allocated(mp, bs->cur->bc_tp, fsino, |
| &ino_inuse); |
| if (error == -ENODATA) { |
| /* Not cached, just read the disk buffer */ |
| freemask_ok = irec_free ^ !!(dip->di_mode); |
| if (!(bs->sc->flags & XCHK_TRY_HARDER) && !freemask_ok) |
| return -EDEADLOCK; |
| } else if (error < 0) { |
| /* |
| * Inode is only half assembled, or there was an IO error, |
| * or the verifier failed, so don't bother trying to check. |
| * The inode scrubber can deal with this. |
| */ |
| goto out; |
| } else { |
| /* Inode is all there. */ |
| freemask_ok = irec_free ^ ino_inuse; |
| } |
| if (!freemask_ok) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| out: |
| return 0; |
| } |
| |
| /* |
| * Check that the holemask and freemask of a hypothetical inode cluster match |
| * what's actually on disk. If sparse inodes are enabled, the cluster does |
| * not actually have to map to inodes if the corresponding holemask bit is set. |
| * |
| * @cluster_base is the first inode in the cluster within the @irec. |
| */ |
| STATIC int |
| xchk_iallocbt_check_cluster( |
| struct xchk_btree *bs, |
| struct xfs_inobt_rec_incore *irec, |
| unsigned int cluster_base) |
| { |
| struct xfs_imap imap; |
| struct xfs_mount *mp = bs->cur->bc_mp; |
| struct xfs_buf *cluster_bp; |
| unsigned int nr_inodes; |
| xfs_agnumber_t agno = bs->cur->bc_ag.agno; |
| xfs_agblock_t agbno; |
| unsigned int cluster_index; |
| uint16_t cluster_mask = 0; |
| uint16_t ir_holemask; |
| int error = 0; |
| |
| nr_inodes = min_t(unsigned int, XFS_INODES_PER_CHUNK, |
| M_IGEO(mp)->inodes_per_cluster); |
| |
| /* Map this inode cluster */ |
| agbno = XFS_AGINO_TO_AGBNO(mp, irec->ir_startino + cluster_base); |
| |
| /* Compute a bitmask for this cluster that can be used for holemask. */ |
| for (cluster_index = 0; |
| cluster_index < nr_inodes; |
| cluster_index += XFS_INODES_PER_HOLEMASK_BIT) |
| cluster_mask |= XFS_INOBT_MASK((cluster_base + cluster_index) / |
| XFS_INODES_PER_HOLEMASK_BIT); |
| |
| /* |
| * Map the first inode of this cluster to a buffer and offset. |
| * Be careful about inobt records that don't align with the start of |
| * the inode buffer when block sizes are large enough to hold multiple |
| * inode chunks. When this happens, cluster_base will be zero but |
| * ir_startino can be large enough to make im_boffset nonzero. |
| */ |
| ir_holemask = (irec->ir_holemask & cluster_mask); |
| imap.im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); |
| imap.im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); |
| imap.im_boffset = XFS_INO_TO_OFFSET(mp, irec->ir_startino) << |
| mp->m_sb.sb_inodelog; |
| |
| if (imap.im_boffset != 0 && cluster_base != 0) { |
| ASSERT(imap.im_boffset == 0 || cluster_base == 0); |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| return 0; |
| } |
| |
| trace_xchk_iallocbt_check_cluster(mp, agno, irec->ir_startino, |
| imap.im_blkno, imap.im_len, cluster_base, nr_inodes, |
| cluster_mask, ir_holemask, |
| XFS_INO_TO_OFFSET(mp, irec->ir_startino + |
| cluster_base)); |
| |
| /* The whole cluster must be a hole or not a hole. */ |
| if (ir_holemask != cluster_mask && ir_holemask != 0) { |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| return 0; |
| } |
| |
| /* If any part of this is a hole, skip it. */ |
| if (ir_holemask) { |
| xchk_xref_is_not_owned_by(bs->sc, agbno, |
| M_IGEO(mp)->blocks_per_cluster, |
| &XFS_RMAP_OINFO_INODES); |
| return 0; |
| } |
| |
| xchk_xref_is_owned_by(bs->sc, agbno, M_IGEO(mp)->blocks_per_cluster, |
| &XFS_RMAP_OINFO_INODES); |
| |
| /* Grab the inode cluster buffer. */ |
| error = xfs_imap_to_bp(mp, bs->cur->bc_tp, &imap, &cluster_bp); |
| if (!xchk_btree_xref_process_error(bs->sc, bs->cur, 0, &error)) |
| return error; |
| |
| /* Check free status of each inode within this cluster. */ |
| for (cluster_index = 0; cluster_index < nr_inodes; cluster_index++) { |
| struct xfs_dinode *dip; |
| |
| if (imap.im_boffset >= BBTOB(cluster_bp->b_length)) { |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| break; |
| } |
| |
| dip = xfs_buf_offset(cluster_bp, imap.im_boffset); |
| error = xchk_iallocbt_check_cluster_ifree(bs, irec, |
| cluster_base + cluster_index, dip); |
| if (error) |
| break; |
| imap.im_boffset += mp->m_sb.sb_inodesize; |
| } |
| |
| xfs_trans_brelse(bs->cur->bc_tp, cluster_bp); |
| return error; |
| } |
| |
| /* |
| * For all the inode clusters that could map to this inobt record, make sure |
| * that the holemask makes sense and that the allocation status of each inode |
| * matches the freemask. |
| */ |
| STATIC int |
| xchk_iallocbt_check_clusters( |
| struct xchk_btree *bs, |
| struct xfs_inobt_rec_incore *irec) |
| { |
| unsigned int cluster_base; |
| int error = 0; |
| |
| /* |
| * For the common case where this inobt record maps to multiple inode |
| * clusters this will call _check_cluster for each cluster. |
| * |
| * For the case that multiple inobt records map to a single cluster, |
| * this will call _check_cluster once. |
| */ |
| for (cluster_base = 0; |
| cluster_base < XFS_INODES_PER_CHUNK; |
| cluster_base += M_IGEO(bs->sc->mp)->inodes_per_cluster) { |
| error = xchk_iallocbt_check_cluster(bs, irec, cluster_base); |
| if (error) |
| break; |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Make sure this inode btree record is aligned properly. Because a fs block |
| * contains multiple inodes, we check that the inobt record is aligned to the |
| * correct inode, not just the correct block on disk. This results in a finer |
| * grained corruption check. |
| */ |
| STATIC void |
| xchk_iallocbt_rec_alignment( |
| struct xchk_btree *bs, |
| struct xfs_inobt_rec_incore *irec) |
| { |
| struct xfs_mount *mp = bs->sc->mp; |
| struct xchk_iallocbt *iabt = bs->private; |
| struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| |
| /* |
| * finobt records have different positioning requirements than inobt |
| * records: each finobt record must have a corresponding inobt record. |
| * That is checked in the xref function, so for now we only catch the |
| * obvious case where the record isn't at all aligned properly. |
| * |
| * Note that if a fs block contains more than a single chunk of inodes, |
| * we will have finobt records only for those chunks containing free |
| * inodes, and therefore expect chunk alignment of finobt records. |
| * Otherwise, we expect that the finobt record is aligned to the |
| * cluster alignment as told by the superblock. |
| */ |
| if (bs->cur->bc_btnum == XFS_BTNUM_FINO) { |
| unsigned int imask; |
| |
| imask = min_t(unsigned int, XFS_INODES_PER_CHUNK, |
| igeo->cluster_align_inodes) - 1; |
| if (irec->ir_startino & imask) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| return; |
| } |
| |
| if (iabt->next_startino != NULLAGINO) { |
| /* |
| * We're midway through a cluster of inodes that is mapped by |
| * multiple inobt records. Did we get the record for the next |
| * irec in the sequence? |
| */ |
| if (irec->ir_startino != iabt->next_startino) { |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| return; |
| } |
| |
| iabt->next_startino += XFS_INODES_PER_CHUNK; |
| |
| /* Are we done with the cluster? */ |
| if (iabt->next_startino >= iabt->next_cluster_ino) { |
| iabt->next_startino = NULLAGINO; |
| iabt->next_cluster_ino = NULLAGINO; |
| } |
| return; |
| } |
| |
| /* inobt records must be aligned to cluster and inoalignmnt size. */ |
| if (irec->ir_startino & (igeo->cluster_align_inodes - 1)) { |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| return; |
| } |
| |
| if (irec->ir_startino & (igeo->inodes_per_cluster - 1)) { |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| return; |
| } |
| |
| if (igeo->inodes_per_cluster <= XFS_INODES_PER_CHUNK) |
| return; |
| |
| /* |
| * If this is the start of an inode cluster that can be mapped by |
| * multiple inobt records, the next inobt record must follow exactly |
| * after this one. |
| */ |
| iabt->next_startino = irec->ir_startino + XFS_INODES_PER_CHUNK; |
| iabt->next_cluster_ino = irec->ir_startino + igeo->inodes_per_cluster; |
| } |
| |
| /* Scrub an inobt/finobt record. */ |
| STATIC int |
| xchk_iallocbt_rec( |
| struct xchk_btree *bs, |
| union xfs_btree_rec *rec) |
| { |
| struct xfs_mount *mp = bs->cur->bc_mp; |
| struct xchk_iallocbt *iabt = bs->private; |
| struct xfs_inobt_rec_incore irec; |
| uint64_t holes; |
| xfs_agnumber_t agno = bs->cur->bc_ag.agno; |
| xfs_agino_t agino; |
| xfs_extlen_t len; |
| int holecount; |
| int i; |
| int error = 0; |
| unsigned int real_freecount; |
| uint16_t holemask; |
| |
| xfs_inobt_btrec_to_irec(mp, rec, &irec); |
| |
| if (irec.ir_count > XFS_INODES_PER_CHUNK || |
| irec.ir_freecount > XFS_INODES_PER_CHUNK) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| |
| real_freecount = irec.ir_freecount + |
| (XFS_INODES_PER_CHUNK - irec.ir_count); |
| if (real_freecount != xchk_iallocbt_freecount(irec.ir_free)) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| |
| agino = irec.ir_startino; |
| /* Record has to be properly aligned within the AG. */ |
| if (!xfs_verify_agino(mp, agno, agino) || |
| !xfs_verify_agino(mp, agno, agino + XFS_INODES_PER_CHUNK - 1)) { |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| goto out; |
| } |
| |
| xchk_iallocbt_rec_alignment(bs, &irec); |
| if (bs->sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) |
| goto out; |
| |
| iabt->inodes += irec.ir_count; |
| |
| /* Handle non-sparse inodes */ |
| if (!xfs_inobt_issparse(irec.ir_holemask)) { |
| len = XFS_B_TO_FSB(mp, |
| XFS_INODES_PER_CHUNK * mp->m_sb.sb_inodesize); |
| if (irec.ir_count != XFS_INODES_PER_CHUNK) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| |
| if (!xchk_iallocbt_chunk(bs, &irec, agino, len)) |
| goto out; |
| goto check_clusters; |
| } |
| |
| /* Check each chunk of a sparse inode cluster. */ |
| holemask = irec.ir_holemask; |
| holecount = 0; |
| len = XFS_B_TO_FSB(mp, |
| XFS_INODES_PER_HOLEMASK_BIT * mp->m_sb.sb_inodesize); |
| holes = ~xfs_inobt_irec_to_allocmask(&irec); |
| if ((holes & irec.ir_free) != holes || |
| irec.ir_freecount > irec.ir_count) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| |
| for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; i++) { |
| if (holemask & 1) |
| holecount += XFS_INODES_PER_HOLEMASK_BIT; |
| else if (!xchk_iallocbt_chunk(bs, &irec, agino, len)) |
| break; |
| holemask >>= 1; |
| agino += XFS_INODES_PER_HOLEMASK_BIT; |
| } |
| |
| if (holecount > XFS_INODES_PER_CHUNK || |
| holecount + irec.ir_count != XFS_INODES_PER_CHUNK) |
| xchk_btree_set_corrupt(bs->sc, bs->cur, 0); |
| |
| check_clusters: |
| error = xchk_iallocbt_check_clusters(bs, &irec); |
| if (error) |
| goto out; |
| |
| out: |
| return error; |
| } |
| |
| /* |
| * Make sure the inode btrees are as large as the rmap thinks they are. |
| * Don't bother if we're missing btree cursors, as we're already corrupt. |
| */ |
| STATIC void |
| xchk_iallocbt_xref_rmap_btreeblks( |
| struct xfs_scrub *sc, |
| int which) |
| { |
| xfs_filblks_t blocks; |
| xfs_extlen_t inobt_blocks = 0; |
| xfs_extlen_t finobt_blocks = 0; |
| int error; |
| |
| if (!sc->sa.ino_cur || !sc->sa.rmap_cur || |
| (xfs_sb_version_hasfinobt(&sc->mp->m_sb) && !sc->sa.fino_cur) || |
| xchk_skip_xref(sc->sm)) |
| return; |
| |
| /* Check that we saw as many inobt blocks as the rmap says. */ |
| error = xfs_btree_count_blocks(sc->sa.ino_cur, &inobt_blocks); |
| if (!xchk_process_error(sc, 0, 0, &error)) |
| return; |
| |
| if (sc->sa.fino_cur) { |
| error = xfs_btree_count_blocks(sc->sa.fino_cur, &finobt_blocks); |
| if (!xchk_process_error(sc, 0, 0, &error)) |
| return; |
| } |
| |
| error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur, |
| &XFS_RMAP_OINFO_INOBT, &blocks); |
| if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur)) |
| return; |
| if (blocks != inobt_blocks + finobt_blocks) |
| xchk_btree_set_corrupt(sc, sc->sa.ino_cur, 0); |
| } |
| |
| /* |
| * Make sure that the inobt records point to the same number of blocks as |
| * the rmap says are owned by inodes. |
| */ |
| STATIC void |
| xchk_iallocbt_xref_rmap_inodes( |
| struct xfs_scrub *sc, |
| int which, |
| unsigned long long inodes) |
| { |
| xfs_filblks_t blocks; |
| xfs_filblks_t inode_blocks; |
| int error; |
| |
| if (!sc->sa.rmap_cur || xchk_skip_xref(sc->sm)) |
| return; |
| |
| /* Check that we saw as many inode blocks as the rmap knows about. */ |
| error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur, |
| &XFS_RMAP_OINFO_INODES, &blocks); |
| if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur)) |
| return; |
| inode_blocks = XFS_B_TO_FSB(sc->mp, inodes * sc->mp->m_sb.sb_inodesize); |
| if (blocks != inode_blocks) |
| xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0); |
| } |
| |
| /* Scrub the inode btrees for some AG. */ |
| STATIC int |
| xchk_iallocbt( |
| struct xfs_scrub *sc, |
| xfs_btnum_t which) |
| { |
| struct xfs_btree_cur *cur; |
| struct xchk_iallocbt iabt = { |
| .inodes = 0, |
| .next_startino = NULLAGINO, |
| .next_cluster_ino = NULLAGINO, |
| }; |
| int error; |
| |
| cur = which == XFS_BTNUM_INO ? sc->sa.ino_cur : sc->sa.fino_cur; |
| error = xchk_btree(sc, cur, xchk_iallocbt_rec, &XFS_RMAP_OINFO_INOBT, |
| &iabt); |
| if (error) |
| return error; |
| |
| xchk_iallocbt_xref_rmap_btreeblks(sc, which); |
| |
| /* |
| * If we're scrubbing the inode btree, inode_blocks is the number of |
| * blocks pointed to by all the inode chunk records. Therefore, we |
| * should compare to the number of inode chunk blocks that the rmap |
| * knows about. We can't do this for the finobt since it only points |
| * to inode chunks with free inodes. |
| */ |
| if (which == XFS_BTNUM_INO) |
| xchk_iallocbt_xref_rmap_inodes(sc, which, iabt.inodes); |
| |
| return error; |
| } |
| |
| int |
| xchk_inobt( |
| struct xfs_scrub *sc) |
| { |
| return xchk_iallocbt(sc, XFS_BTNUM_INO); |
| } |
| |
| int |
| xchk_finobt( |
| struct xfs_scrub *sc) |
| { |
| return xchk_iallocbt(sc, XFS_BTNUM_FINO); |
| } |
| |
| /* See if an inode btree has (or doesn't have) an inode chunk record. */ |
| static inline void |
| xchk_xref_inode_check( |
| struct xfs_scrub *sc, |
| xfs_agblock_t agbno, |
| xfs_extlen_t len, |
| struct xfs_btree_cur **icur, |
| bool should_have_inodes) |
| { |
| bool has_inodes; |
| int error; |
| |
| if (!(*icur) || xchk_skip_xref(sc->sm)) |
| return; |
| |
| error = xfs_ialloc_has_inodes_at_extent(*icur, agbno, len, &has_inodes); |
| if (!xchk_should_check_xref(sc, &error, icur)) |
| return; |
| if (has_inodes != should_have_inodes) |
| xchk_btree_xref_set_corrupt(sc, *icur, 0); |
| } |
| |
| /* xref check that the extent is not covered by inodes */ |
| void |
| xchk_xref_is_not_inode_chunk( |
| struct xfs_scrub *sc, |
| xfs_agblock_t agbno, |
| xfs_extlen_t len) |
| { |
| xchk_xref_inode_check(sc, agbno, len, &sc->sa.ino_cur, false); |
| xchk_xref_inode_check(sc, agbno, len, &sc->sa.fino_cur, false); |
| } |
| |
| /* xref check that the extent is covered by inodes */ |
| void |
| xchk_xref_is_inode_chunk( |
| struct xfs_scrub *sc, |
| xfs_agblock_t agbno, |
| xfs_extlen_t len) |
| { |
| xchk_xref_inode_check(sc, agbno, len, &sc->sa.ino_cur, true); |
| } |