| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "btree_locking.h" |
| #include "btree_types.h" |
| |
| static struct lock_class_key bch2_btree_node_lock_key; |
| |
| void bch2_btree_lock_init(struct btree_bkey_cached_common *b, |
| enum six_lock_init_flags flags) |
| { |
| __six_lock_init(&b->lock, "b->c.lock", &bch2_btree_node_lock_key, flags); |
| lockdep_set_notrack_class(&b->lock); |
| } |
| |
| /* Btree node locking: */ |
| |
| struct six_lock_count bch2_btree_node_lock_counts(struct btree_trans *trans, |
| struct btree_path *skip, |
| struct btree_bkey_cached_common *b, |
| unsigned level) |
| { |
| struct btree_path *path; |
| struct six_lock_count ret; |
| unsigned i; |
| |
| memset(&ret, 0, sizeof(ret)); |
| |
| if (IS_ERR_OR_NULL(b)) |
| return ret; |
| |
| trans_for_each_path(trans, path, i) |
| if (path != skip && &path->l[level].b->c == b) { |
| int t = btree_node_locked_type(path, level); |
| |
| if (t != BTREE_NODE_UNLOCKED) |
| ret.n[t]++; |
| } |
| |
| return ret; |
| } |
| |
| /* unlock */ |
| |
| void bch2_btree_node_unlock_write(struct btree_trans *trans, |
| struct btree_path *path, struct btree *b) |
| { |
| bch2_btree_node_unlock_write_inlined(trans, path, b); |
| } |
| |
| /* lock */ |
| |
| /* |
| * @trans wants to lock @b with type @type |
| */ |
| struct trans_waiting_for_lock { |
| struct btree_trans *trans; |
| struct btree_bkey_cached_common *node_want; |
| enum six_lock_type lock_want; |
| |
| /* for iterating over held locks :*/ |
| u8 path_idx; |
| u8 level; |
| u64 lock_start_time; |
| }; |
| |
| struct lock_graph { |
| struct trans_waiting_for_lock g[8]; |
| unsigned nr; |
| }; |
| |
| static noinline void print_cycle(struct printbuf *out, struct lock_graph *g) |
| { |
| struct trans_waiting_for_lock *i; |
| |
| prt_printf(out, "Found lock cycle (%u entries):\n", g->nr); |
| |
| for (i = g->g; i < g->g + g->nr; i++) { |
| struct task_struct *task = READ_ONCE(i->trans->locking_wait.task); |
| if (!task) |
| continue; |
| |
| bch2_btree_trans_to_text(out, i->trans); |
| bch2_prt_task_backtrace(out, task, i == g->g ? 5 : 1, GFP_NOWAIT); |
| } |
| } |
| |
| static noinline void print_chain(struct printbuf *out, struct lock_graph *g) |
| { |
| struct trans_waiting_for_lock *i; |
| |
| for (i = g->g; i != g->g + g->nr; i++) { |
| struct task_struct *task = i->trans->locking_wait.task; |
| if (i != g->g) |
| prt_str(out, "<- "); |
| prt_printf(out, "%u ", task ?task->pid : 0); |
| } |
| prt_newline(out); |
| } |
| |
| static void lock_graph_up(struct lock_graph *g) |
| { |
| closure_put(&g->g[--g->nr].trans->ref); |
| } |
| |
| static noinline void lock_graph_pop_all(struct lock_graph *g) |
| { |
| while (g->nr) |
| lock_graph_up(g); |
| } |
| |
| static void __lock_graph_down(struct lock_graph *g, struct btree_trans *trans) |
| { |
| g->g[g->nr++] = (struct trans_waiting_for_lock) { |
| .trans = trans, |
| .node_want = trans->locking, |
| .lock_want = trans->locking_wait.lock_want, |
| }; |
| } |
| |
| static void lock_graph_down(struct lock_graph *g, struct btree_trans *trans) |
| { |
| closure_get(&trans->ref); |
| __lock_graph_down(g, trans); |
| } |
| |
| static bool lock_graph_remove_non_waiters(struct lock_graph *g) |
| { |
| struct trans_waiting_for_lock *i; |
| |
| for (i = g->g + 1; i < g->g + g->nr; i++) |
| if (i->trans->locking != i->node_want || |
| i->trans->locking_wait.start_time != i[-1].lock_start_time) { |
| while (g->g + g->nr > i) |
| lock_graph_up(g); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void trace_would_deadlock(struct lock_graph *g, struct btree_trans *trans) |
| { |
| struct bch_fs *c = trans->c; |
| |
| count_event(c, trans_restart_would_deadlock); |
| |
| if (trace_trans_restart_would_deadlock_enabled()) { |
| struct printbuf buf = PRINTBUF; |
| |
| buf.atomic++; |
| print_cycle(&buf, g); |
| |
| trace_trans_restart_would_deadlock(trans, buf.buf); |
| printbuf_exit(&buf); |
| } |
| } |
| |
| static int abort_lock(struct lock_graph *g, struct trans_waiting_for_lock *i) |
| { |
| if (i == g->g) { |
| trace_would_deadlock(g, i->trans); |
| return btree_trans_restart(i->trans, BCH_ERR_transaction_restart_would_deadlock); |
| } else { |
| i->trans->lock_must_abort = true; |
| wake_up_process(i->trans->locking_wait.task); |
| return 0; |
| } |
| } |
| |
| static int btree_trans_abort_preference(struct btree_trans *trans) |
| { |
| if (trans->lock_may_not_fail) |
| return 0; |
| if (trans->locking_wait.lock_want == SIX_LOCK_write) |
| return 1; |
| if (!trans->in_traverse_all) |
| return 2; |
| return 3; |
| } |
| |
| static noinline int break_cycle(struct lock_graph *g, struct printbuf *cycle) |
| { |
| struct trans_waiting_for_lock *i, *abort = NULL; |
| unsigned best = 0, pref; |
| int ret; |
| |
| if (lock_graph_remove_non_waiters(g)) |
| return 0; |
| |
| /* Only checking, for debugfs: */ |
| if (cycle) { |
| print_cycle(cycle, g); |
| ret = -1; |
| goto out; |
| } |
| |
| for (i = g->g; i < g->g + g->nr; i++) { |
| pref = btree_trans_abort_preference(i->trans); |
| if (pref > best) { |
| abort = i; |
| best = pref; |
| } |
| } |
| |
| if (unlikely(!best)) { |
| struct printbuf buf = PRINTBUF; |
| buf.atomic++; |
| |
| prt_printf(&buf, bch2_fmt(g->g->trans->c, "cycle of nofail locks")); |
| |
| for (i = g->g; i < g->g + g->nr; i++) { |
| struct btree_trans *trans = i->trans; |
| |
| bch2_btree_trans_to_text(&buf, trans); |
| |
| prt_printf(&buf, "backtrace:\n"); |
| printbuf_indent_add(&buf, 2); |
| bch2_prt_task_backtrace(&buf, trans->locking_wait.task, 2, GFP_NOWAIT); |
| printbuf_indent_sub(&buf, 2); |
| prt_newline(&buf); |
| } |
| |
| bch2_print_string_as_lines_nonblocking(KERN_ERR, buf.buf); |
| printbuf_exit(&buf); |
| BUG(); |
| } |
| |
| ret = abort_lock(g, abort); |
| out: |
| if (ret) |
| while (g->nr) |
| lock_graph_up(g); |
| return ret; |
| } |
| |
| static int lock_graph_descend(struct lock_graph *g, struct btree_trans *trans, |
| struct printbuf *cycle) |
| { |
| struct btree_trans *orig_trans = g->g->trans; |
| struct trans_waiting_for_lock *i; |
| |
| for (i = g->g; i < g->g + g->nr; i++) |
| if (i->trans == trans) { |
| closure_put(&trans->ref); |
| return break_cycle(g, cycle); |
| } |
| |
| if (g->nr == ARRAY_SIZE(g->g)) { |
| closure_put(&trans->ref); |
| |
| if (orig_trans->lock_may_not_fail) |
| return 0; |
| |
| while (g->nr) |
| lock_graph_up(g); |
| |
| if (cycle) |
| return 0; |
| |
| trace_and_count(trans->c, trans_restart_would_deadlock_recursion_limit, trans, _RET_IP_); |
| return btree_trans_restart(orig_trans, BCH_ERR_transaction_restart_deadlock_recursion_limit); |
| } |
| |
| __lock_graph_down(g, trans); |
| return 0; |
| } |
| |
| static bool lock_type_conflicts(enum six_lock_type t1, enum six_lock_type t2) |
| { |
| return t1 + t2 > 1; |
| } |
| |
| int bch2_check_for_deadlock(struct btree_trans *trans, struct printbuf *cycle) |
| { |
| struct lock_graph g; |
| struct trans_waiting_for_lock *top; |
| struct btree_bkey_cached_common *b; |
| btree_path_idx_t path_idx; |
| int ret = 0; |
| |
| g.nr = 0; |
| |
| if (trans->lock_must_abort) { |
| if (cycle) |
| return -1; |
| |
| trace_would_deadlock(&g, trans); |
| return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock); |
| } |
| |
| lock_graph_down(&g, trans); |
| |
| /* trans->paths is rcu protected vs. freeing */ |
| rcu_read_lock(); |
| if (cycle) |
| cycle->atomic++; |
| next: |
| if (!g.nr) |
| goto out; |
| |
| top = &g.g[g.nr - 1]; |
| |
| struct btree_path *paths = rcu_dereference(top->trans->paths); |
| if (!paths) |
| goto up; |
| |
| unsigned long *paths_allocated = trans_paths_allocated(paths); |
| |
| trans_for_each_path_idx_from(paths_allocated, *trans_paths_nr(paths), |
| path_idx, top->path_idx) { |
| struct btree_path *path = paths + path_idx; |
| if (!path->nodes_locked) |
| continue; |
| |
| if (path_idx != top->path_idx) { |
| top->path_idx = path_idx; |
| top->level = 0; |
| top->lock_start_time = 0; |
| } |
| |
| for (; |
| top->level < BTREE_MAX_DEPTH; |
| top->level++, top->lock_start_time = 0) { |
| int lock_held = btree_node_locked_type(path, top->level); |
| |
| if (lock_held == BTREE_NODE_UNLOCKED) |
| continue; |
| |
| b = &READ_ONCE(path->l[top->level].b)->c; |
| |
| if (IS_ERR_OR_NULL(b)) { |
| /* |
| * If we get here, it means we raced with the |
| * other thread updating its btree_path |
| * structures - which means it can't be blocked |
| * waiting on a lock: |
| */ |
| if (!lock_graph_remove_non_waiters(&g)) { |
| /* |
| * If lock_graph_remove_non_waiters() |
| * didn't do anything, it must be |
| * because we're being called by debugfs |
| * checking for lock cycles, which |
| * invokes us on btree_transactions that |
| * aren't actually waiting on anything. |
| * Just bail out: |
| */ |
| lock_graph_pop_all(&g); |
| } |
| |
| goto next; |
| } |
| |
| if (list_empty_careful(&b->lock.wait_list)) |
| continue; |
| |
| raw_spin_lock(&b->lock.wait_lock); |
| list_for_each_entry(trans, &b->lock.wait_list, locking_wait.list) { |
| BUG_ON(b != trans->locking); |
| |
| if (top->lock_start_time && |
| time_after_eq64(top->lock_start_time, trans->locking_wait.start_time)) |
| continue; |
| |
| top->lock_start_time = trans->locking_wait.start_time; |
| |
| /* Don't check for self deadlock: */ |
| if (trans == top->trans || |
| !lock_type_conflicts(lock_held, trans->locking_wait.lock_want)) |
| continue; |
| |
| closure_get(&trans->ref); |
| raw_spin_unlock(&b->lock.wait_lock); |
| |
| ret = lock_graph_descend(&g, trans, cycle); |
| if (ret) |
| goto out; |
| goto next; |
| |
| } |
| raw_spin_unlock(&b->lock.wait_lock); |
| } |
| } |
| up: |
| if (g.nr > 1 && cycle) |
| print_chain(cycle, &g); |
| lock_graph_up(&g); |
| goto next; |
| out: |
| if (cycle) |
| --cycle->atomic; |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| int bch2_six_check_for_deadlock(struct six_lock *lock, void *p) |
| { |
| struct btree_trans *trans = p; |
| |
| return bch2_check_for_deadlock(trans, NULL); |
| } |
| |
| int __bch2_btree_node_lock_write(struct btree_trans *trans, struct btree_path *path, |
| struct btree_bkey_cached_common *b, |
| bool lock_may_not_fail) |
| { |
| int readers = bch2_btree_node_lock_counts(trans, NULL, b, b->level).n[SIX_LOCK_read]; |
| int ret; |
| |
| /* |
| * Must drop our read locks before calling six_lock_write() - |
| * six_unlock() won't do wakeups until the reader count |
| * goes to 0, and it's safe because we have the node intent |
| * locked: |
| */ |
| six_lock_readers_add(&b->lock, -readers); |
| ret = __btree_node_lock_nopath(trans, b, SIX_LOCK_write, |
| lock_may_not_fail, _RET_IP_); |
| six_lock_readers_add(&b->lock, readers); |
| |
| if (ret) |
| mark_btree_node_locked_noreset(path, b->level, BTREE_NODE_INTENT_LOCKED); |
| |
| return ret; |
| } |
| |
| void bch2_btree_node_lock_write_nofail(struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree_bkey_cached_common *b) |
| { |
| int ret = __btree_node_lock_write(trans, path, b, true); |
| BUG_ON(ret); |
| } |
| |
| /* relock */ |
| |
| static inline bool btree_path_get_locks(struct btree_trans *trans, |
| struct btree_path *path, |
| bool upgrade, |
| struct get_locks_fail *f) |
| { |
| unsigned l = path->level; |
| int fail_idx = -1; |
| |
| do { |
| if (!btree_path_node(path, l)) |
| break; |
| |
| if (!(upgrade |
| ? bch2_btree_node_upgrade(trans, path, l) |
| : bch2_btree_node_relock(trans, path, l))) { |
| fail_idx = l; |
| |
| if (f) { |
| f->l = l; |
| f->b = path->l[l].b; |
| } |
| } |
| |
| l++; |
| } while (l < path->locks_want); |
| |
| /* |
| * When we fail to get a lock, we have to ensure that any child nodes |
| * can't be relocked so bch2_btree_path_traverse has to walk back up to |
| * the node that we failed to relock: |
| */ |
| if (fail_idx >= 0) { |
| __bch2_btree_path_unlock(trans, path); |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| |
| do { |
| path->l[fail_idx].b = upgrade |
| ? ERR_PTR(-BCH_ERR_no_btree_node_upgrade) |
| : ERR_PTR(-BCH_ERR_no_btree_node_relock); |
| --fail_idx; |
| } while (fail_idx >= 0); |
| } |
| |
| if (path->uptodate == BTREE_ITER_NEED_RELOCK) |
| path->uptodate = BTREE_ITER_UPTODATE; |
| |
| return path->uptodate < BTREE_ITER_NEED_RELOCK; |
| } |
| |
| bool __bch2_btree_node_relock(struct btree_trans *trans, |
| struct btree_path *path, unsigned level, |
| bool trace) |
| { |
| struct btree *b = btree_path_node(path, level); |
| int want = __btree_lock_want(path, level); |
| |
| if (race_fault()) |
| goto fail; |
| |
| if (six_relock_type(&b->c.lock, want, path->l[level].lock_seq) || |
| (btree_node_lock_seq_matches(path, b, level) && |
| btree_node_lock_increment(trans, &b->c, level, want))) { |
| mark_btree_node_locked(trans, path, level, want); |
| return true; |
| } |
| fail: |
| if (trace && !trans->notrace_relock_fail) |
| trace_and_count(trans->c, btree_path_relock_fail, trans, _RET_IP_, path, level); |
| return false; |
| } |
| |
| /* upgrade */ |
| |
| bool bch2_btree_node_upgrade(struct btree_trans *trans, |
| struct btree_path *path, unsigned level) |
| { |
| struct btree *b = path->l[level].b; |
| struct six_lock_count count = bch2_btree_node_lock_counts(trans, path, &b->c, level); |
| |
| if (!is_btree_node(path, level)) |
| return false; |
| |
| switch (btree_lock_want(path, level)) { |
| case BTREE_NODE_UNLOCKED: |
| BUG_ON(btree_node_locked(path, level)); |
| return true; |
| case BTREE_NODE_READ_LOCKED: |
| BUG_ON(btree_node_intent_locked(path, level)); |
| return bch2_btree_node_relock(trans, path, level); |
| case BTREE_NODE_INTENT_LOCKED: |
| break; |
| case BTREE_NODE_WRITE_LOCKED: |
| BUG(); |
| } |
| |
| if (btree_node_intent_locked(path, level)) |
| return true; |
| |
| if (race_fault()) |
| return false; |
| |
| if (btree_node_locked(path, level)) { |
| bool ret; |
| |
| six_lock_readers_add(&b->c.lock, -count.n[SIX_LOCK_read]); |
| ret = six_lock_tryupgrade(&b->c.lock); |
| six_lock_readers_add(&b->c.lock, count.n[SIX_LOCK_read]); |
| |
| if (ret) |
| goto success; |
| } else { |
| if (six_relock_type(&b->c.lock, SIX_LOCK_intent, path->l[level].lock_seq)) |
| goto success; |
| } |
| |
| /* |
| * Do we already have an intent lock via another path? If so, just bump |
| * lock count: |
| */ |
| if (btree_node_lock_seq_matches(path, b, level) && |
| btree_node_lock_increment(trans, &b->c, level, BTREE_NODE_INTENT_LOCKED)) { |
| btree_node_unlock(trans, path, level); |
| goto success; |
| } |
| |
| trace_and_count(trans->c, btree_path_upgrade_fail, trans, _RET_IP_, path, level); |
| return false; |
| success: |
| mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); |
| return true; |
| } |
| |
| /* Btree path locking: */ |
| |
| /* |
| * Only for btree_cache.c - only relocks intent locks |
| */ |
| int bch2_btree_path_relock_intent(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| unsigned l; |
| |
| for (l = path->level; |
| l < path->locks_want && btree_path_node(path, l); |
| l++) { |
| if (!bch2_btree_node_relock(trans, path, l)) { |
| __bch2_btree_path_unlock(trans, path); |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| trace_and_count(trans->c, trans_restart_relock_path_intent, trans, _RET_IP_, path); |
| return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path_intent); |
| } |
| } |
| |
| return 0; |
| } |
| |
| __flatten |
| bool bch2_btree_path_relock_norestart(struct btree_trans *trans, struct btree_path *path) |
| { |
| struct get_locks_fail f; |
| |
| bool ret = btree_path_get_locks(trans, path, false, &f); |
| bch2_trans_verify_locks(trans); |
| return ret; |
| } |
| |
| int __bch2_btree_path_relock(struct btree_trans *trans, |
| struct btree_path *path, unsigned long trace_ip) |
| { |
| if (!bch2_btree_path_relock_norestart(trans, path)) { |
| trace_and_count(trans->c, trans_restart_relock_path, trans, trace_ip, path); |
| return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path); |
| } |
| |
| return 0; |
| } |
| |
| bool bch2_btree_path_upgrade_noupgrade_sibs(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned new_locks_want, |
| struct get_locks_fail *f) |
| { |
| EBUG_ON(path->locks_want >= new_locks_want); |
| |
| path->locks_want = new_locks_want; |
| |
| bool ret = btree_path_get_locks(trans, path, true, f); |
| bch2_trans_verify_locks(trans); |
| return ret; |
| } |
| |
| bool __bch2_btree_path_upgrade(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned new_locks_want, |
| struct get_locks_fail *f) |
| { |
| bool ret = bch2_btree_path_upgrade_noupgrade_sibs(trans, path, new_locks_want, f); |
| if (ret) |
| goto out; |
| |
| /* |
| * XXX: this is ugly - we'd prefer to not be mucking with other |
| * iterators in the btree_trans here. |
| * |
| * On failure to upgrade the iterator, setting iter->locks_want and |
| * calling get_locks() is sufficient to make bch2_btree_path_traverse() |
| * get the locks we want on transaction restart. |
| * |
| * But if this iterator was a clone, on transaction restart what we did |
| * to this iterator isn't going to be preserved. |
| * |
| * Possibly we could add an iterator field for the parent iterator when |
| * an iterator is a copy - for now, we'll just upgrade any other |
| * iterators with the same btree id. |
| * |
| * The code below used to be needed to ensure ancestor nodes get locked |
| * before interior nodes - now that's handled by |
| * bch2_btree_path_traverse_all(). |
| */ |
| if (!path->cached && !trans->in_traverse_all) { |
| struct btree_path *linked; |
| unsigned i; |
| |
| trans_for_each_path(trans, linked, i) |
| if (linked != path && |
| linked->cached == path->cached && |
| linked->btree_id == path->btree_id && |
| linked->locks_want < new_locks_want) { |
| linked->locks_want = new_locks_want; |
| btree_path_get_locks(trans, linked, true, NULL); |
| } |
| } |
| out: |
| bch2_trans_verify_locks(trans); |
| return ret; |
| } |
| |
| void __bch2_btree_path_downgrade(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned new_locks_want) |
| { |
| unsigned l, old_locks_want = path->locks_want; |
| |
| if (trans->restarted) |
| return; |
| |
| EBUG_ON(path->locks_want < new_locks_want); |
| |
| path->locks_want = new_locks_want; |
| |
| while (path->nodes_locked && |
| (l = btree_path_highest_level_locked(path)) >= path->locks_want) { |
| if (l > path->level) { |
| btree_node_unlock(trans, path, l); |
| } else { |
| if (btree_node_intent_locked(path, l)) { |
| six_lock_downgrade(&path->l[l].b->c.lock); |
| mark_btree_node_locked_noreset(path, l, BTREE_NODE_READ_LOCKED); |
| } |
| break; |
| } |
| } |
| |
| bch2_btree_path_verify_locks(path); |
| |
| trace_path_downgrade(trans, _RET_IP_, path, old_locks_want); |
| } |
| |
| /* Btree transaction locking: */ |
| |
| void bch2_trans_downgrade(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| unsigned i; |
| |
| if (trans->restarted) |
| return; |
| |
| trans_for_each_path(trans, path, i) |
| if (path->ref) |
| bch2_btree_path_downgrade(trans, path); |
| } |
| |
| static inline void __bch2_trans_unlock(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| unsigned i; |
| |
| trans_for_each_path(trans, path, i) |
| __bch2_btree_path_unlock(trans, path); |
| } |
| |
| static noinline __cold int bch2_trans_relock_fail(struct btree_trans *trans, struct btree_path *path, |
| struct get_locks_fail *f, bool trace) |
| { |
| if (!trace) |
| goto out; |
| |
| if (trace_trans_restart_relock_enabled()) { |
| struct printbuf buf = PRINTBUF; |
| |
| bch2_bpos_to_text(&buf, path->pos); |
| prt_printf(&buf, " l=%u seq=%u node seq=", f->l, path->l[f->l].lock_seq); |
| if (IS_ERR_OR_NULL(f->b)) { |
| prt_str(&buf, bch2_err_str(PTR_ERR(f->b))); |
| } else { |
| prt_printf(&buf, "%u", f->b->c.lock.seq); |
| |
| struct six_lock_count c = |
| bch2_btree_node_lock_counts(trans, NULL, &f->b->c, f->l); |
| prt_printf(&buf, " self locked %u.%u.%u", c.n[0], c.n[1], c.n[2]); |
| |
| c = six_lock_counts(&f->b->c.lock); |
| prt_printf(&buf, " total locked %u.%u.%u", c.n[0], c.n[1], c.n[2]); |
| } |
| |
| trace_trans_restart_relock(trans, _RET_IP_, buf.buf); |
| printbuf_exit(&buf); |
| } |
| |
| count_event(trans->c, trans_restart_relock); |
| out: |
| __bch2_trans_unlock(trans); |
| bch2_trans_verify_locks(trans); |
| return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock); |
| } |
| |
| static inline int __bch2_trans_relock(struct btree_trans *trans, bool trace) |
| { |
| bch2_trans_verify_locks(trans); |
| |
| if (unlikely(trans->restarted)) |
| return -((int) trans->restarted); |
| if (unlikely(trans->locked)) |
| goto out; |
| |
| struct btree_path *path; |
| unsigned i; |
| |
| trans_for_each_path(trans, path, i) { |
| struct get_locks_fail f; |
| |
| if (path->should_be_locked && |
| !btree_path_get_locks(trans, path, false, &f)) |
| return bch2_trans_relock_fail(trans, path, &f, trace); |
| } |
| |
| trans_set_locked(trans); |
| out: |
| bch2_trans_verify_locks(trans); |
| return 0; |
| } |
| |
| int bch2_trans_relock(struct btree_trans *trans) |
| { |
| return __bch2_trans_relock(trans, true); |
| } |
| |
| int bch2_trans_relock_notrace(struct btree_trans *trans) |
| { |
| return __bch2_trans_relock(trans, false); |
| } |
| |
| void bch2_trans_unlock_noassert(struct btree_trans *trans) |
| { |
| __bch2_trans_unlock(trans); |
| |
| trans_set_unlocked(trans); |
| } |
| |
| void bch2_trans_unlock(struct btree_trans *trans) |
| { |
| __bch2_trans_unlock(trans); |
| |
| trans_set_unlocked(trans); |
| } |
| |
| void bch2_trans_unlock_long(struct btree_trans *trans) |
| { |
| bch2_trans_unlock(trans); |
| bch2_trans_srcu_unlock(trans); |
| } |
| |
| int __bch2_trans_mutex_lock(struct btree_trans *trans, |
| struct mutex *lock) |
| { |
| int ret = drop_locks_do(trans, (mutex_lock(lock), 0)); |
| |
| if (ret) |
| mutex_unlock(lock); |
| return ret; |
| } |
| |
| /* Debug */ |
| |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| |
| void bch2_btree_path_verify_locks(struct btree_path *path) |
| { |
| /* |
| * A path may be uptodate and yet have nothing locked if and only if |
| * there is no node at path->level, which generally means we were |
| * iterating over all nodes and got to the end of the btree |
| */ |
| BUG_ON(path->uptodate == BTREE_ITER_UPTODATE && |
| btree_path_node(path, path->level) && |
| !path->nodes_locked); |
| |
| if (!path->nodes_locked) |
| return; |
| |
| for (unsigned l = 0; l < BTREE_MAX_DEPTH; l++) { |
| int want = btree_lock_want(path, l); |
| int have = btree_node_locked_type(path, l); |
| |
| BUG_ON(!is_btree_node(path, l) && have != BTREE_NODE_UNLOCKED); |
| |
| BUG_ON(is_btree_node(path, l) && |
| (want == BTREE_NODE_UNLOCKED || |
| have != BTREE_NODE_WRITE_LOCKED) && |
| want != have); |
| } |
| } |
| |
| static bool bch2_trans_locked(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| unsigned i; |
| |
| trans_for_each_path(trans, path, i) |
| if (path->nodes_locked) |
| return true; |
| return false; |
| } |
| |
| void bch2_trans_verify_locks(struct btree_trans *trans) |
| { |
| if (!trans->locked) { |
| BUG_ON(bch2_trans_locked(trans)); |
| return; |
| } |
| |
| struct btree_path *path; |
| unsigned i; |
| |
| trans_for_each_path(trans, path, i) |
| bch2_btree_path_verify_locks(path); |
| } |
| |
| #endif |