| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include <linux/backing-dev.h> |
| #include <linux/dax.h> |
| |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_log_recover.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_errortag.h" |
| #include "xfs_error.h" |
| #include "xfs_ag.h" |
| #include "xfs_buf_mem.h" |
| |
| struct kmem_cache *xfs_buf_cache; |
| |
| /* |
| * Locking orders |
| * |
| * xfs_buf_ioacct_inc: |
| * xfs_buf_ioacct_dec: |
| * b_sema (caller holds) |
| * b_lock |
| * |
| * xfs_buf_stale: |
| * b_sema (caller holds) |
| * b_lock |
| * lru_lock |
| * |
| * xfs_buf_rele: |
| * b_lock |
| * pag_buf_lock |
| * lru_lock |
| * |
| * xfs_buftarg_drain_rele |
| * lru_lock |
| * b_lock (trylock due to inversion) |
| * |
| * xfs_buftarg_isolate |
| * lru_lock |
| * b_lock (trylock due to inversion) |
| */ |
| |
| static int __xfs_buf_submit(struct xfs_buf *bp, bool wait); |
| |
| static inline int |
| xfs_buf_submit( |
| struct xfs_buf *bp) |
| { |
| return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC)); |
| } |
| |
| static inline bool xfs_buf_is_uncached(struct xfs_buf *bp) |
| { |
| return bp->b_rhash_key == XFS_BUF_DADDR_NULL; |
| } |
| |
| static inline int |
| xfs_buf_is_vmapped( |
| struct xfs_buf *bp) |
| { |
| /* |
| * Return true if the buffer is vmapped. |
| * |
| * b_addr is null if the buffer is not mapped, but the code is clever |
| * enough to know it doesn't have to map a single page, so the check has |
| * to be both for b_addr and bp->b_page_count > 1. |
| */ |
| return bp->b_addr && bp->b_page_count > 1; |
| } |
| |
| static inline int |
| xfs_buf_vmap_len( |
| struct xfs_buf *bp) |
| { |
| return (bp->b_page_count * PAGE_SIZE); |
| } |
| |
| /* |
| * Bump the I/O in flight count on the buftarg if we haven't yet done so for |
| * this buffer. The count is incremented once per buffer (per hold cycle) |
| * because the corresponding decrement is deferred to buffer release. Buffers |
| * can undergo I/O multiple times in a hold-release cycle and per buffer I/O |
| * tracking adds unnecessary overhead. This is used for sychronization purposes |
| * with unmount (see xfs_buftarg_drain()), so all we really need is a count of |
| * in-flight buffers. |
| * |
| * Buffers that are never released (e.g., superblock, iclog buffers) must set |
| * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count |
| * never reaches zero and unmount hangs indefinitely. |
| */ |
| static inline void |
| xfs_buf_ioacct_inc( |
| struct xfs_buf *bp) |
| { |
| if (bp->b_flags & XBF_NO_IOACCT) |
| return; |
| |
| ASSERT(bp->b_flags & XBF_ASYNC); |
| spin_lock(&bp->b_lock); |
| if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { |
| bp->b_state |= XFS_BSTATE_IN_FLIGHT; |
| percpu_counter_inc(&bp->b_target->bt_io_count); |
| } |
| spin_unlock(&bp->b_lock); |
| } |
| |
| /* |
| * Clear the in-flight state on a buffer about to be released to the LRU or |
| * freed and unaccount from the buftarg. |
| */ |
| static inline void |
| __xfs_buf_ioacct_dec( |
| struct xfs_buf *bp) |
| { |
| lockdep_assert_held(&bp->b_lock); |
| |
| if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { |
| bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; |
| percpu_counter_dec(&bp->b_target->bt_io_count); |
| } |
| } |
| |
| static inline void |
| xfs_buf_ioacct_dec( |
| struct xfs_buf *bp) |
| { |
| spin_lock(&bp->b_lock); |
| __xfs_buf_ioacct_dec(bp); |
| spin_unlock(&bp->b_lock); |
| } |
| |
| /* |
| * When we mark a buffer stale, we remove the buffer from the LRU and clear the |
| * b_lru_ref count so that the buffer is freed immediately when the buffer |
| * reference count falls to zero. If the buffer is already on the LRU, we need |
| * to remove the reference that LRU holds on the buffer. |
| * |
| * This prevents build-up of stale buffers on the LRU. |
| */ |
| void |
| xfs_buf_stale( |
| struct xfs_buf *bp) |
| { |
| ASSERT(xfs_buf_islocked(bp)); |
| |
| bp->b_flags |= XBF_STALE; |
| |
| /* |
| * Clear the delwri status so that a delwri queue walker will not |
| * flush this buffer to disk now that it is stale. The delwri queue has |
| * a reference to the buffer, so this is safe to do. |
| */ |
| bp->b_flags &= ~_XBF_DELWRI_Q; |
| |
| /* |
| * Once the buffer is marked stale and unlocked, a subsequent lookup |
| * could reset b_flags. There is no guarantee that the buffer is |
| * unaccounted (released to LRU) before that occurs. Drop in-flight |
| * status now to preserve accounting consistency. |
| */ |
| spin_lock(&bp->b_lock); |
| __xfs_buf_ioacct_dec(bp); |
| |
| atomic_set(&bp->b_lru_ref, 0); |
| if (!(bp->b_state & XFS_BSTATE_DISPOSE) && |
| (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru))) |
| atomic_dec(&bp->b_hold); |
| |
| ASSERT(atomic_read(&bp->b_hold) >= 1); |
| spin_unlock(&bp->b_lock); |
| } |
| |
| static int |
| xfs_buf_get_maps( |
| struct xfs_buf *bp, |
| int map_count) |
| { |
| ASSERT(bp->b_maps == NULL); |
| bp->b_map_count = map_count; |
| |
| if (map_count == 1) { |
| bp->b_maps = &bp->__b_map; |
| return 0; |
| } |
| |
| bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map), |
| GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); |
| if (!bp->b_maps) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /* |
| * Frees b_pages if it was allocated. |
| */ |
| static void |
| xfs_buf_free_maps( |
| struct xfs_buf *bp) |
| { |
| if (bp->b_maps != &bp->__b_map) { |
| kfree(bp->b_maps); |
| bp->b_maps = NULL; |
| } |
| } |
| |
| static int |
| _xfs_buf_alloc( |
| struct xfs_buftarg *target, |
| struct xfs_buf_map *map, |
| int nmaps, |
| xfs_buf_flags_t flags, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_buf *bp; |
| int error; |
| int i; |
| |
| *bpp = NULL; |
| bp = kmem_cache_zalloc(xfs_buf_cache, |
| GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); |
| |
| /* |
| * We don't want certain flags to appear in b_flags unless they are |
| * specifically set by later operations on the buffer. |
| */ |
| flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); |
| |
| atomic_set(&bp->b_hold, 1); |
| atomic_set(&bp->b_lru_ref, 1); |
| init_completion(&bp->b_iowait); |
| INIT_LIST_HEAD(&bp->b_lru); |
| INIT_LIST_HEAD(&bp->b_list); |
| INIT_LIST_HEAD(&bp->b_li_list); |
| sema_init(&bp->b_sema, 0); /* held, no waiters */ |
| spin_lock_init(&bp->b_lock); |
| bp->b_target = target; |
| bp->b_mount = target->bt_mount; |
| bp->b_flags = flags; |
| |
| /* |
| * Set length and io_length to the same value initially. |
| * I/O routines should use io_length, which will be the same in |
| * most cases but may be reset (e.g. XFS recovery). |
| */ |
| error = xfs_buf_get_maps(bp, nmaps); |
| if (error) { |
| kmem_cache_free(xfs_buf_cache, bp); |
| return error; |
| } |
| |
| bp->b_rhash_key = map[0].bm_bn; |
| bp->b_length = 0; |
| for (i = 0; i < nmaps; i++) { |
| bp->b_maps[i].bm_bn = map[i].bm_bn; |
| bp->b_maps[i].bm_len = map[i].bm_len; |
| bp->b_length += map[i].bm_len; |
| } |
| |
| atomic_set(&bp->b_pin_count, 0); |
| init_waitqueue_head(&bp->b_waiters); |
| |
| XFS_STATS_INC(bp->b_mount, xb_create); |
| trace_xfs_buf_init(bp, _RET_IP_); |
| |
| *bpp = bp; |
| return 0; |
| } |
| |
| static void |
| xfs_buf_free_pages( |
| struct xfs_buf *bp) |
| { |
| uint i; |
| |
| ASSERT(bp->b_flags & _XBF_PAGES); |
| |
| if (xfs_buf_is_vmapped(bp)) |
| vm_unmap_ram(bp->b_addr, bp->b_page_count); |
| |
| for (i = 0; i < bp->b_page_count; i++) { |
| if (bp->b_pages[i]) |
| __free_page(bp->b_pages[i]); |
| } |
| mm_account_reclaimed_pages(bp->b_page_count); |
| |
| if (bp->b_pages != bp->b_page_array) |
| kfree(bp->b_pages); |
| bp->b_pages = NULL; |
| bp->b_flags &= ~_XBF_PAGES; |
| } |
| |
| static void |
| xfs_buf_free_callback( |
| struct callback_head *cb) |
| { |
| struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu); |
| |
| xfs_buf_free_maps(bp); |
| kmem_cache_free(xfs_buf_cache, bp); |
| } |
| |
| static void |
| xfs_buf_free( |
| struct xfs_buf *bp) |
| { |
| trace_xfs_buf_free(bp, _RET_IP_); |
| |
| ASSERT(list_empty(&bp->b_lru)); |
| |
| if (xfs_buftarg_is_mem(bp->b_target)) |
| xmbuf_unmap_page(bp); |
| else if (bp->b_flags & _XBF_PAGES) |
| xfs_buf_free_pages(bp); |
| else if (bp->b_flags & _XBF_KMEM) |
| kfree(bp->b_addr); |
| |
| call_rcu(&bp->b_rcu, xfs_buf_free_callback); |
| } |
| |
| static int |
| xfs_buf_alloc_kmem( |
| struct xfs_buf *bp, |
| xfs_buf_flags_t flags) |
| { |
| gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL; |
| size_t size = BBTOB(bp->b_length); |
| |
| /* Assure zeroed buffer for non-read cases. */ |
| if (!(flags & XBF_READ)) |
| gfp_mask |= __GFP_ZERO; |
| |
| bp->b_addr = kmalloc(size, gfp_mask); |
| if (!bp->b_addr) |
| return -ENOMEM; |
| |
| if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != |
| ((unsigned long)bp->b_addr & PAGE_MASK)) { |
| /* b_addr spans two pages - use alloc_page instead */ |
| kfree(bp->b_addr); |
| bp->b_addr = NULL; |
| return -ENOMEM; |
| } |
| bp->b_offset = offset_in_page(bp->b_addr); |
| bp->b_pages = bp->b_page_array; |
| bp->b_pages[0] = kmem_to_page(bp->b_addr); |
| bp->b_page_count = 1; |
| bp->b_flags |= _XBF_KMEM; |
| return 0; |
| } |
| |
| static int |
| xfs_buf_alloc_pages( |
| struct xfs_buf *bp, |
| xfs_buf_flags_t flags) |
| { |
| gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN; |
| long filled = 0; |
| |
| if (flags & XBF_READ_AHEAD) |
| gfp_mask |= __GFP_NORETRY; |
| |
| /* Make sure that we have a page list */ |
| bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE); |
| if (bp->b_page_count <= XB_PAGES) { |
| bp->b_pages = bp->b_page_array; |
| } else { |
| bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count, |
| gfp_mask); |
| if (!bp->b_pages) |
| return -ENOMEM; |
| } |
| bp->b_flags |= _XBF_PAGES; |
| |
| /* Assure zeroed buffer for non-read cases. */ |
| if (!(flags & XBF_READ)) |
| gfp_mask |= __GFP_ZERO; |
| |
| /* |
| * Bulk filling of pages can take multiple calls. Not filling the entire |
| * array is not an allocation failure, so don't back off if we get at |
| * least one extra page. |
| */ |
| for (;;) { |
| long last = filled; |
| |
| filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count, |
| bp->b_pages); |
| if (filled == bp->b_page_count) { |
| XFS_STATS_INC(bp->b_mount, xb_page_found); |
| break; |
| } |
| |
| if (filled != last) |
| continue; |
| |
| if (flags & XBF_READ_AHEAD) { |
| xfs_buf_free_pages(bp); |
| return -ENOMEM; |
| } |
| |
| XFS_STATS_INC(bp->b_mount, xb_page_retries); |
| memalloc_retry_wait(gfp_mask); |
| } |
| return 0; |
| } |
| |
| /* |
| * Map buffer into kernel address-space if necessary. |
| */ |
| STATIC int |
| _xfs_buf_map_pages( |
| struct xfs_buf *bp, |
| xfs_buf_flags_t flags) |
| { |
| ASSERT(bp->b_flags & _XBF_PAGES); |
| if (bp->b_page_count == 1) { |
| /* A single page buffer is always mappable */ |
| bp->b_addr = page_address(bp->b_pages[0]); |
| } else if (flags & XBF_UNMAPPED) { |
| bp->b_addr = NULL; |
| } else { |
| int retried = 0; |
| unsigned nofs_flag; |
| |
| /* |
| * vm_map_ram() will allocate auxiliary structures (e.g. |
| * pagetables) with GFP_KERNEL, yet we often under a scoped nofs |
| * context here. Mixing GFP_KERNEL with GFP_NOFS allocations |
| * from the same call site that can be run from both above and |
| * below memory reclaim causes lockdep false positives. Hence we |
| * always need to force this allocation to nofs context because |
| * we can't pass __GFP_NOLOCKDEP down to auxillary structures to |
| * prevent false positive lockdep reports. |
| * |
| * XXX(dgc): I think dquot reclaim is the only place we can get |
| * to this function from memory reclaim context now. If we fix |
| * that like we've fixed inode reclaim to avoid writeback from |
| * reclaim, this nofs wrapping can go away. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| do { |
| bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, |
| -1); |
| if (bp->b_addr) |
| break; |
| vm_unmap_aliases(); |
| } while (retried++ <= 1); |
| memalloc_nofs_restore(nofs_flag); |
| |
| if (!bp->b_addr) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Finding and Reading Buffers |
| */ |
| static int |
| _xfs_buf_obj_cmp( |
| struct rhashtable_compare_arg *arg, |
| const void *obj) |
| { |
| const struct xfs_buf_map *map = arg->key; |
| const struct xfs_buf *bp = obj; |
| |
| /* |
| * The key hashing in the lookup path depends on the key being the |
| * first element of the compare_arg, make sure to assert this. |
| */ |
| BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); |
| |
| if (bp->b_rhash_key != map->bm_bn) |
| return 1; |
| |
| if (unlikely(bp->b_length != map->bm_len)) { |
| /* |
| * found a block number match. If the range doesn't |
| * match, the only way this is allowed is if the buffer |
| * in the cache is stale and the transaction that made |
| * it stale has not yet committed. i.e. we are |
| * reallocating a busy extent. Skip this buffer and |
| * continue searching for an exact match. |
| * |
| * Note: If we're scanning for incore buffers to stale, don't |
| * complain if we find non-stale buffers. |
| */ |
| if (!(map->bm_flags & XBM_LIVESCAN)) |
| ASSERT(bp->b_flags & XBF_STALE); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static const struct rhashtable_params xfs_buf_hash_params = { |
| .min_size = 32, /* empty AGs have minimal footprint */ |
| .nelem_hint = 16, |
| .key_len = sizeof(xfs_daddr_t), |
| .key_offset = offsetof(struct xfs_buf, b_rhash_key), |
| .head_offset = offsetof(struct xfs_buf, b_rhash_head), |
| .automatic_shrinking = true, |
| .obj_cmpfn = _xfs_buf_obj_cmp, |
| }; |
| |
| int |
| xfs_buf_cache_init( |
| struct xfs_buf_cache *bch) |
| { |
| spin_lock_init(&bch->bc_lock); |
| return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params); |
| } |
| |
| void |
| xfs_buf_cache_destroy( |
| struct xfs_buf_cache *bch) |
| { |
| rhashtable_destroy(&bch->bc_hash); |
| } |
| |
| static int |
| xfs_buf_map_verify( |
| struct xfs_buftarg *btp, |
| struct xfs_buf_map *map) |
| { |
| xfs_daddr_t eofs; |
| |
| /* Check for IOs smaller than the sector size / not sector aligned */ |
| ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize)); |
| ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); |
| |
| /* |
| * Corrupted block numbers can get through to here, unfortunately, so we |
| * have to check that the buffer falls within the filesystem bounds. |
| */ |
| eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); |
| if (map->bm_bn < 0 || map->bm_bn >= eofs) { |
| xfs_alert(btp->bt_mount, |
| "%s: daddr 0x%llx out of range, EOFS 0x%llx", |
| __func__, map->bm_bn, eofs); |
| WARN_ON(1); |
| return -EFSCORRUPTED; |
| } |
| return 0; |
| } |
| |
| static int |
| xfs_buf_find_lock( |
| struct xfs_buf *bp, |
| xfs_buf_flags_t flags) |
| { |
| if (flags & XBF_TRYLOCK) { |
| if (!xfs_buf_trylock(bp)) { |
| XFS_STATS_INC(bp->b_mount, xb_busy_locked); |
| return -EAGAIN; |
| } |
| } else { |
| xfs_buf_lock(bp); |
| XFS_STATS_INC(bp->b_mount, xb_get_locked_waited); |
| } |
| |
| /* |
| * if the buffer is stale, clear all the external state associated with |
| * it. We need to keep flags such as how we allocated the buffer memory |
| * intact here. |
| */ |
| if (bp->b_flags & XBF_STALE) { |
| if (flags & XBF_LIVESCAN) { |
| xfs_buf_unlock(bp); |
| return -ENOENT; |
| } |
| ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); |
| bp->b_flags &= _XBF_KMEM | _XBF_PAGES; |
| bp->b_ops = NULL; |
| } |
| return 0; |
| } |
| |
| static inline int |
| xfs_buf_lookup( |
| struct xfs_buf_cache *bch, |
| struct xfs_buf_map *map, |
| xfs_buf_flags_t flags, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_buf *bp; |
| int error; |
| |
| rcu_read_lock(); |
| bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params); |
| if (!bp || !atomic_inc_not_zero(&bp->b_hold)) { |
| rcu_read_unlock(); |
| return -ENOENT; |
| } |
| rcu_read_unlock(); |
| |
| error = xfs_buf_find_lock(bp, flags); |
| if (error) { |
| xfs_buf_rele(bp); |
| return error; |
| } |
| |
| trace_xfs_buf_find(bp, flags, _RET_IP_); |
| *bpp = bp; |
| return 0; |
| } |
| |
| /* |
| * Insert the new_bp into the hash table. This consumes the perag reference |
| * taken for the lookup regardless of the result of the insert. |
| */ |
| static int |
| xfs_buf_find_insert( |
| struct xfs_buftarg *btp, |
| struct xfs_buf_cache *bch, |
| struct xfs_perag *pag, |
| struct xfs_buf_map *cmap, |
| struct xfs_buf_map *map, |
| int nmaps, |
| xfs_buf_flags_t flags, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_buf *new_bp; |
| struct xfs_buf *bp; |
| int error; |
| |
| error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp); |
| if (error) |
| goto out_drop_pag; |
| |
| if (xfs_buftarg_is_mem(new_bp->b_target)) { |
| error = xmbuf_map_page(new_bp); |
| } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE || |
| xfs_buf_alloc_kmem(new_bp, flags) < 0) { |
| /* |
| * For buffers that fit entirely within a single page, first |
| * attempt to allocate the memory from the heap to minimise |
| * memory usage. If we can't get heap memory for these small |
| * buffers, we fall back to using the page allocator. |
| */ |
| error = xfs_buf_alloc_pages(new_bp, flags); |
| } |
| if (error) |
| goto out_free_buf; |
| |
| spin_lock(&bch->bc_lock); |
| bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash, |
| &new_bp->b_rhash_head, xfs_buf_hash_params); |
| if (IS_ERR(bp)) { |
| error = PTR_ERR(bp); |
| spin_unlock(&bch->bc_lock); |
| goto out_free_buf; |
| } |
| if (bp) { |
| /* found an existing buffer */ |
| atomic_inc(&bp->b_hold); |
| spin_unlock(&bch->bc_lock); |
| error = xfs_buf_find_lock(bp, flags); |
| if (error) |
| xfs_buf_rele(bp); |
| else |
| *bpp = bp; |
| goto out_free_buf; |
| } |
| |
| /* The new buffer keeps the perag reference until it is freed. */ |
| new_bp->b_pag = pag; |
| spin_unlock(&bch->bc_lock); |
| *bpp = new_bp; |
| return 0; |
| |
| out_free_buf: |
| xfs_buf_free(new_bp); |
| out_drop_pag: |
| if (pag) |
| xfs_perag_put(pag); |
| return error; |
| } |
| |
| static inline struct xfs_perag * |
| xfs_buftarg_get_pag( |
| struct xfs_buftarg *btp, |
| const struct xfs_buf_map *map) |
| { |
| struct xfs_mount *mp = btp->bt_mount; |
| |
| if (xfs_buftarg_is_mem(btp)) |
| return NULL; |
| return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn)); |
| } |
| |
| static inline struct xfs_buf_cache * |
| xfs_buftarg_buf_cache( |
| struct xfs_buftarg *btp, |
| struct xfs_perag *pag) |
| { |
| if (pag) |
| return &pag->pag_bcache; |
| return btp->bt_cache; |
| } |
| |
| /* |
| * Assembles a buffer covering the specified range. The code is optimised for |
| * cache hits, as metadata intensive workloads will see 3 orders of magnitude |
| * more hits than misses. |
| */ |
| int |
| xfs_buf_get_map( |
| struct xfs_buftarg *btp, |
| struct xfs_buf_map *map, |
| int nmaps, |
| xfs_buf_flags_t flags, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_buf_cache *bch; |
| struct xfs_perag *pag; |
| struct xfs_buf *bp = NULL; |
| struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; |
| int error; |
| int i; |
| |
| if (flags & XBF_LIVESCAN) |
| cmap.bm_flags |= XBM_LIVESCAN; |
| for (i = 0; i < nmaps; i++) |
| cmap.bm_len += map[i].bm_len; |
| |
| error = xfs_buf_map_verify(btp, &cmap); |
| if (error) |
| return error; |
| |
| pag = xfs_buftarg_get_pag(btp, &cmap); |
| bch = xfs_buftarg_buf_cache(btp, pag); |
| |
| error = xfs_buf_lookup(bch, &cmap, flags, &bp); |
| if (error && error != -ENOENT) |
| goto out_put_perag; |
| |
| /* cache hits always outnumber misses by at least 10:1 */ |
| if (unlikely(!bp)) { |
| XFS_STATS_INC(btp->bt_mount, xb_miss_locked); |
| |
| if (flags & XBF_INCORE) |
| goto out_put_perag; |
| |
| /* xfs_buf_find_insert() consumes the perag reference. */ |
| error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps, |
| flags, &bp); |
| if (error) |
| return error; |
| } else { |
| XFS_STATS_INC(btp->bt_mount, xb_get_locked); |
| if (pag) |
| xfs_perag_put(pag); |
| } |
| |
| /* We do not hold a perag reference anymore. */ |
| if (!bp->b_addr) { |
| error = _xfs_buf_map_pages(bp, flags); |
| if (unlikely(error)) { |
| xfs_warn_ratelimited(btp->bt_mount, |
| "%s: failed to map %u pages", __func__, |
| bp->b_page_count); |
| xfs_buf_relse(bp); |
| return error; |
| } |
| } |
| |
| /* |
| * Clear b_error if this is a lookup from a caller that doesn't expect |
| * valid data to be found in the buffer. |
| */ |
| if (!(flags & XBF_READ)) |
| xfs_buf_ioerror(bp, 0); |
| |
| XFS_STATS_INC(btp->bt_mount, xb_get); |
| trace_xfs_buf_get(bp, flags, _RET_IP_); |
| *bpp = bp; |
| return 0; |
| |
| out_put_perag: |
| if (pag) |
| xfs_perag_put(pag); |
| return error; |
| } |
| |
| int |
| _xfs_buf_read( |
| struct xfs_buf *bp, |
| xfs_buf_flags_t flags) |
| { |
| ASSERT(!(flags & XBF_WRITE)); |
| ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); |
| |
| bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); |
| bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); |
| |
| return xfs_buf_submit(bp); |
| } |
| |
| /* |
| * Reverify a buffer found in cache without an attached ->b_ops. |
| * |
| * If the caller passed an ops structure and the buffer doesn't have ops |
| * assigned, set the ops and use it to verify the contents. If verification |
| * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is |
| * already in XBF_DONE state on entry. |
| * |
| * Under normal operations, every in-core buffer is verified on read I/O |
| * completion. There are two scenarios that can lead to in-core buffers without |
| * an assigned ->b_ops. The first is during log recovery of buffers on a V4 |
| * filesystem, though these buffers are purged at the end of recovery. The |
| * other is online repair, which intentionally reads with a NULL buffer ops to |
| * run several verifiers across an in-core buffer in order to establish buffer |
| * type. If repair can't establish that, the buffer will be left in memory |
| * with NULL buffer ops. |
| */ |
| int |
| xfs_buf_reverify( |
| struct xfs_buf *bp, |
| const struct xfs_buf_ops *ops) |
| { |
| ASSERT(bp->b_flags & XBF_DONE); |
| ASSERT(bp->b_error == 0); |
| |
| if (!ops || bp->b_ops) |
| return 0; |
| |
| bp->b_ops = ops; |
| bp->b_ops->verify_read(bp); |
| if (bp->b_error) |
| bp->b_flags &= ~XBF_DONE; |
| return bp->b_error; |
| } |
| |
| int |
| xfs_buf_read_map( |
| struct xfs_buftarg *target, |
| struct xfs_buf_map *map, |
| int nmaps, |
| xfs_buf_flags_t flags, |
| struct xfs_buf **bpp, |
| const struct xfs_buf_ops *ops, |
| xfs_failaddr_t fa) |
| { |
| struct xfs_buf *bp; |
| int error; |
| |
| flags |= XBF_READ; |
| *bpp = NULL; |
| |
| error = xfs_buf_get_map(target, map, nmaps, flags, &bp); |
| if (error) |
| return error; |
| |
| trace_xfs_buf_read(bp, flags, _RET_IP_); |
| |
| if (!(bp->b_flags & XBF_DONE)) { |
| /* Initiate the buffer read and wait. */ |
| XFS_STATS_INC(target->bt_mount, xb_get_read); |
| bp->b_ops = ops; |
| error = _xfs_buf_read(bp, flags); |
| |
| /* Readahead iodone already dropped the buffer, so exit. */ |
| if (flags & XBF_ASYNC) |
| return 0; |
| } else { |
| /* Buffer already read; all we need to do is check it. */ |
| error = xfs_buf_reverify(bp, ops); |
| |
| /* Readahead already finished; drop the buffer and exit. */ |
| if (flags & XBF_ASYNC) { |
| xfs_buf_relse(bp); |
| return 0; |
| } |
| |
| /* We do not want read in the flags */ |
| bp->b_flags &= ~XBF_READ; |
| ASSERT(bp->b_ops != NULL || ops == NULL); |
| } |
| |
| /* |
| * If we've had a read error, then the contents of the buffer are |
| * invalid and should not be used. To ensure that a followup read tries |
| * to pull the buffer from disk again, we clear the XBF_DONE flag and |
| * mark the buffer stale. This ensures that anyone who has a current |
| * reference to the buffer will interpret it's contents correctly and |
| * future cache lookups will also treat it as an empty, uninitialised |
| * buffer. |
| */ |
| if (error) { |
| /* |
| * Check against log shutdown for error reporting because |
| * metadata writeback may require a read first and we need to |
| * report errors in metadata writeback until the log is shut |
| * down. High level transaction read functions already check |
| * against mount shutdown, anyway, so we only need to be |
| * concerned about low level IO interactions here. |
| */ |
| if (!xlog_is_shutdown(target->bt_mount->m_log)) |
| xfs_buf_ioerror_alert(bp, fa); |
| |
| bp->b_flags &= ~XBF_DONE; |
| xfs_buf_stale(bp); |
| xfs_buf_relse(bp); |
| |
| /* bad CRC means corrupted metadata */ |
| if (error == -EFSBADCRC) |
| error = -EFSCORRUPTED; |
| return error; |
| } |
| |
| *bpp = bp; |
| return 0; |
| } |
| |
| /* |
| * If we are not low on memory then do the readahead in a deadlock |
| * safe manner. |
| */ |
| void |
| xfs_buf_readahead_map( |
| struct xfs_buftarg *target, |
| struct xfs_buf_map *map, |
| int nmaps, |
| const struct xfs_buf_ops *ops) |
| { |
| struct xfs_buf *bp; |
| |
| /* |
| * Currently we don't have a good means or justification for performing |
| * xmbuf_map_page asynchronously, so we don't do readahead. |
| */ |
| if (xfs_buftarg_is_mem(target)) |
| return; |
| |
| xfs_buf_read_map(target, map, nmaps, |
| XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, |
| __this_address); |
| } |
| |
| /* |
| * Read an uncached buffer from disk. Allocates and returns a locked |
| * buffer containing the disk contents or nothing. Uncached buffers always have |
| * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer |
| * is cached or uncached during fault diagnosis. |
| */ |
| int |
| xfs_buf_read_uncached( |
| struct xfs_buftarg *target, |
| xfs_daddr_t daddr, |
| size_t numblks, |
| xfs_buf_flags_t flags, |
| struct xfs_buf **bpp, |
| const struct xfs_buf_ops *ops) |
| { |
| struct xfs_buf *bp; |
| int error; |
| |
| *bpp = NULL; |
| |
| error = xfs_buf_get_uncached(target, numblks, flags, &bp); |
| if (error) |
| return error; |
| |
| /* set up the buffer for a read IO */ |
| ASSERT(bp->b_map_count == 1); |
| bp->b_rhash_key = XFS_BUF_DADDR_NULL; |
| bp->b_maps[0].bm_bn = daddr; |
| bp->b_flags |= XBF_READ; |
| bp->b_ops = ops; |
| |
| xfs_buf_submit(bp); |
| if (bp->b_error) { |
| error = bp->b_error; |
| xfs_buf_relse(bp); |
| return error; |
| } |
| |
| *bpp = bp; |
| return 0; |
| } |
| |
| int |
| xfs_buf_get_uncached( |
| struct xfs_buftarg *target, |
| size_t numblks, |
| xfs_buf_flags_t flags, |
| struct xfs_buf **bpp) |
| { |
| int error; |
| struct xfs_buf *bp; |
| DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); |
| |
| *bpp = NULL; |
| |
| /* flags might contain irrelevant bits, pass only what we care about */ |
| error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); |
| if (error) |
| return error; |
| |
| if (xfs_buftarg_is_mem(bp->b_target)) |
| error = xmbuf_map_page(bp); |
| else |
| error = xfs_buf_alloc_pages(bp, flags); |
| if (error) |
| goto fail_free_buf; |
| |
| error = _xfs_buf_map_pages(bp, 0); |
| if (unlikely(error)) { |
| xfs_warn(target->bt_mount, |
| "%s: failed to map pages", __func__); |
| goto fail_free_buf; |
| } |
| |
| trace_xfs_buf_get_uncached(bp, _RET_IP_); |
| *bpp = bp; |
| return 0; |
| |
| fail_free_buf: |
| xfs_buf_free(bp); |
| return error; |
| } |
| |
| /* |
| * Increment reference count on buffer, to hold the buffer concurrently |
| * with another thread which may release (free) the buffer asynchronously. |
| * Must hold the buffer already to call this function. |
| */ |
| void |
| xfs_buf_hold( |
| struct xfs_buf *bp) |
| { |
| trace_xfs_buf_hold(bp, _RET_IP_); |
| atomic_inc(&bp->b_hold); |
| } |
| |
| static void |
| xfs_buf_rele_uncached( |
| struct xfs_buf *bp) |
| { |
| ASSERT(list_empty(&bp->b_lru)); |
| if (atomic_dec_and_test(&bp->b_hold)) { |
| xfs_buf_ioacct_dec(bp); |
| xfs_buf_free(bp); |
| } |
| } |
| |
| static void |
| xfs_buf_rele_cached( |
| struct xfs_buf *bp) |
| { |
| struct xfs_buftarg *btp = bp->b_target; |
| struct xfs_perag *pag = bp->b_pag; |
| struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag); |
| bool release; |
| bool freebuf = false; |
| |
| trace_xfs_buf_rele(bp, _RET_IP_); |
| |
| ASSERT(atomic_read(&bp->b_hold) > 0); |
| |
| /* |
| * We grab the b_lock here first to serialise racing xfs_buf_rele() |
| * calls. The pag_buf_lock being taken on the last reference only |
| * serialises against racing lookups in xfs_buf_find(). IOWs, the second |
| * to last reference we drop here is not serialised against the last |
| * reference until we take bp->b_lock. Hence if we don't grab b_lock |
| * first, the last "release" reference can win the race to the lock and |
| * free the buffer before the second-to-last reference is processed, |
| * leading to a use-after-free scenario. |
| */ |
| spin_lock(&bp->b_lock); |
| release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock); |
| if (!release) { |
| /* |
| * Drop the in-flight state if the buffer is already on the LRU |
| * and it holds the only reference. This is racy because we |
| * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT |
| * ensures the decrement occurs only once per-buf. |
| */ |
| if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) |
| __xfs_buf_ioacct_dec(bp); |
| goto out_unlock; |
| } |
| |
| /* the last reference has been dropped ... */ |
| __xfs_buf_ioacct_dec(bp); |
| if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { |
| /* |
| * If the buffer is added to the LRU take a new reference to the |
| * buffer for the LRU and clear the (now stale) dispose list |
| * state flag |
| */ |
| if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) { |
| bp->b_state &= ~XFS_BSTATE_DISPOSE; |
| atomic_inc(&bp->b_hold); |
| } |
| spin_unlock(&bch->bc_lock); |
| } else { |
| /* |
| * most of the time buffers will already be removed from the |
| * LRU, so optimise that case by checking for the |
| * XFS_BSTATE_DISPOSE flag indicating the last list the buffer |
| * was on was the disposal list |
| */ |
| if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { |
| list_lru_del_obj(&btp->bt_lru, &bp->b_lru); |
| } else { |
| ASSERT(list_empty(&bp->b_lru)); |
| } |
| |
| ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); |
| rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head, |
| xfs_buf_hash_params); |
| spin_unlock(&bch->bc_lock); |
| if (pag) |
| xfs_perag_put(pag); |
| freebuf = true; |
| } |
| |
| out_unlock: |
| spin_unlock(&bp->b_lock); |
| |
| if (freebuf) |
| xfs_buf_free(bp); |
| } |
| |
| /* |
| * Release a hold on the specified buffer. |
| */ |
| void |
| xfs_buf_rele( |
| struct xfs_buf *bp) |
| { |
| trace_xfs_buf_rele(bp, _RET_IP_); |
| if (xfs_buf_is_uncached(bp)) |
| xfs_buf_rele_uncached(bp); |
| else |
| xfs_buf_rele_cached(bp); |
| } |
| |
| /* |
| * Lock a buffer object, if it is not already locked. |
| * |
| * If we come across a stale, pinned, locked buffer, we know that we are |
| * being asked to lock a buffer that has been reallocated. Because it is |
| * pinned, we know that the log has not been pushed to disk and hence it |
| * will still be locked. Rather than continuing to have trylock attempts |
| * fail until someone else pushes the log, push it ourselves before |
| * returning. This means that the xfsaild will not get stuck trying |
| * to push on stale inode buffers. |
| */ |
| int |
| xfs_buf_trylock( |
| struct xfs_buf *bp) |
| { |
| int locked; |
| |
| locked = down_trylock(&bp->b_sema) == 0; |
| if (locked) |
| trace_xfs_buf_trylock(bp, _RET_IP_); |
| else |
| trace_xfs_buf_trylock_fail(bp, _RET_IP_); |
| return locked; |
| } |
| |
| /* |
| * Lock a buffer object. |
| * |
| * If we come across a stale, pinned, locked buffer, we know that we |
| * are being asked to lock a buffer that has been reallocated. Because |
| * it is pinned, we know that the log has not been pushed to disk and |
| * hence it will still be locked. Rather than sleeping until someone |
| * else pushes the log, push it ourselves before trying to get the lock. |
| */ |
| void |
| xfs_buf_lock( |
| struct xfs_buf *bp) |
| { |
| trace_xfs_buf_lock(bp, _RET_IP_); |
| |
| if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) |
| xfs_log_force(bp->b_mount, 0); |
| down(&bp->b_sema); |
| |
| trace_xfs_buf_lock_done(bp, _RET_IP_); |
| } |
| |
| void |
| xfs_buf_unlock( |
| struct xfs_buf *bp) |
| { |
| ASSERT(xfs_buf_islocked(bp)); |
| |
| up(&bp->b_sema); |
| trace_xfs_buf_unlock(bp, _RET_IP_); |
| } |
| |
| STATIC void |
| xfs_buf_wait_unpin( |
| struct xfs_buf *bp) |
| { |
| DECLARE_WAITQUEUE (wait, current); |
| |
| if (atomic_read(&bp->b_pin_count) == 0) |
| return; |
| |
| add_wait_queue(&bp->b_waiters, &wait); |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (atomic_read(&bp->b_pin_count) == 0) |
| break; |
| io_schedule(); |
| } |
| remove_wait_queue(&bp->b_waiters, &wait); |
| set_current_state(TASK_RUNNING); |
| } |
| |
| static void |
| xfs_buf_ioerror_alert_ratelimited( |
| struct xfs_buf *bp) |
| { |
| static unsigned long lasttime; |
| static struct xfs_buftarg *lasttarg; |
| |
| if (bp->b_target != lasttarg || |
| time_after(jiffies, (lasttime + 5*HZ))) { |
| lasttime = jiffies; |
| xfs_buf_ioerror_alert(bp, __this_address); |
| } |
| lasttarg = bp->b_target; |
| } |
| |
| /* |
| * Account for this latest trip around the retry handler, and decide if |
| * we've failed enough times to constitute a permanent failure. |
| */ |
| static bool |
| xfs_buf_ioerror_permanent( |
| struct xfs_buf *bp, |
| struct xfs_error_cfg *cfg) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| |
| if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && |
| ++bp->b_retries > cfg->max_retries) |
| return true; |
| if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && |
| time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) |
| return true; |
| |
| /* At unmount we may treat errors differently */ |
| if (xfs_is_unmounting(mp) && mp->m_fail_unmount) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * On a sync write or shutdown we just want to stale the buffer and let the |
| * caller handle the error in bp->b_error appropriately. |
| * |
| * If the write was asynchronous then no one will be looking for the error. If |
| * this is the first failure of this type, clear the error state and write the |
| * buffer out again. This means we always retry an async write failure at least |
| * once, but we also need to set the buffer up to behave correctly now for |
| * repeated failures. |
| * |
| * If we get repeated async write failures, then we take action according to the |
| * error configuration we have been set up to use. |
| * |
| * Returns true if this function took care of error handling and the caller must |
| * not touch the buffer again. Return false if the caller should proceed with |
| * normal I/O completion handling. |
| */ |
| static bool |
| xfs_buf_ioend_handle_error( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_error_cfg *cfg; |
| |
| /* |
| * If we've already shutdown the journal because of I/O errors, there's |
| * no point in giving this a retry. |
| */ |
| if (xlog_is_shutdown(mp->m_log)) |
| goto out_stale; |
| |
| xfs_buf_ioerror_alert_ratelimited(bp); |
| |
| /* |
| * We're not going to bother about retrying this during recovery. |
| * One strike! |
| */ |
| if (bp->b_flags & _XBF_LOGRECOVERY) { |
| xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
| return false; |
| } |
| |
| /* |
| * Synchronous writes will have callers process the error. |
| */ |
| if (!(bp->b_flags & XBF_ASYNC)) |
| goto out_stale; |
| |
| trace_xfs_buf_iodone_async(bp, _RET_IP_); |
| |
| cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); |
| if (bp->b_last_error != bp->b_error || |
| !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { |
| bp->b_last_error = bp->b_error; |
| if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && |
| !bp->b_first_retry_time) |
| bp->b_first_retry_time = jiffies; |
| goto resubmit; |
| } |
| |
| /* |
| * Permanent error - we need to trigger a shutdown if we haven't already |
| * to indicate that inconsistency will result from this action. |
| */ |
| if (xfs_buf_ioerror_permanent(bp, cfg)) { |
| xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
| goto out_stale; |
| } |
| |
| /* Still considered a transient error. Caller will schedule retries. */ |
| if (bp->b_flags & _XBF_INODES) |
| xfs_buf_inode_io_fail(bp); |
| else if (bp->b_flags & _XBF_DQUOTS) |
| xfs_buf_dquot_io_fail(bp); |
| else |
| ASSERT(list_empty(&bp->b_li_list)); |
| xfs_buf_ioerror(bp, 0); |
| xfs_buf_relse(bp); |
| return true; |
| |
| resubmit: |
| xfs_buf_ioerror(bp, 0); |
| bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); |
| xfs_buf_submit(bp); |
| return true; |
| out_stale: |
| xfs_buf_stale(bp); |
| bp->b_flags |= XBF_DONE; |
| bp->b_flags &= ~XBF_WRITE; |
| trace_xfs_buf_error_relse(bp, _RET_IP_); |
| return false; |
| } |
| |
| static void |
| xfs_buf_ioend( |
| struct xfs_buf *bp) |
| { |
| trace_xfs_buf_iodone(bp, _RET_IP_); |
| |
| /* |
| * Pull in IO completion errors now. We are guaranteed to be running |
| * single threaded, so we don't need the lock to read b_io_error. |
| */ |
| if (!bp->b_error && bp->b_io_error) |
| xfs_buf_ioerror(bp, bp->b_io_error); |
| |
| if (bp->b_flags & XBF_READ) { |
| if (!bp->b_error && bp->b_ops) |
| bp->b_ops->verify_read(bp); |
| if (!bp->b_error) |
| bp->b_flags |= XBF_DONE; |
| } else { |
| if (!bp->b_error) { |
| bp->b_flags &= ~XBF_WRITE_FAIL; |
| bp->b_flags |= XBF_DONE; |
| } |
| |
| if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) |
| return; |
| |
| /* clear the retry state */ |
| bp->b_last_error = 0; |
| bp->b_retries = 0; |
| bp->b_first_retry_time = 0; |
| |
| /* |
| * Note that for things like remote attribute buffers, there may |
| * not be a buffer log item here, so processing the buffer log |
| * item must remain optional. |
| */ |
| if (bp->b_log_item) |
| xfs_buf_item_done(bp); |
| |
| if (bp->b_flags & _XBF_INODES) |
| xfs_buf_inode_iodone(bp); |
| else if (bp->b_flags & _XBF_DQUOTS) |
| xfs_buf_dquot_iodone(bp); |
| |
| } |
| |
| bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | |
| _XBF_LOGRECOVERY); |
| |
| if (bp->b_flags & XBF_ASYNC) |
| xfs_buf_relse(bp); |
| else |
| complete(&bp->b_iowait); |
| } |
| |
| static void |
| xfs_buf_ioend_work( |
| struct work_struct *work) |
| { |
| struct xfs_buf *bp = |
| container_of(work, struct xfs_buf, b_ioend_work); |
| |
| xfs_buf_ioend(bp); |
| } |
| |
| static void |
| xfs_buf_ioend_async( |
| struct xfs_buf *bp) |
| { |
| INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); |
| queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); |
| } |
| |
| void |
| __xfs_buf_ioerror( |
| struct xfs_buf *bp, |
| int error, |
| xfs_failaddr_t failaddr) |
| { |
| ASSERT(error <= 0 && error >= -1000); |
| bp->b_error = error; |
| trace_xfs_buf_ioerror(bp, error, failaddr); |
| } |
| |
| void |
| xfs_buf_ioerror_alert( |
| struct xfs_buf *bp, |
| xfs_failaddr_t func) |
| { |
| xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", |
| "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", |
| func, (uint64_t)xfs_buf_daddr(bp), |
| bp->b_length, -bp->b_error); |
| } |
| |
| /* |
| * To simulate an I/O failure, the buffer must be locked and held with at least |
| * three references. The LRU reference is dropped by the stale call. The buf |
| * item reference is dropped via ioend processing. The third reference is owned |
| * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. |
| */ |
| void |
| xfs_buf_ioend_fail( |
| struct xfs_buf *bp) |
| { |
| bp->b_flags &= ~XBF_DONE; |
| xfs_buf_stale(bp); |
| xfs_buf_ioerror(bp, -EIO); |
| xfs_buf_ioend(bp); |
| } |
| |
| int |
| xfs_bwrite( |
| struct xfs_buf *bp) |
| { |
| int error; |
| |
| ASSERT(xfs_buf_islocked(bp)); |
| |
| bp->b_flags |= XBF_WRITE; |
| bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | |
| XBF_DONE); |
| |
| error = xfs_buf_submit(bp); |
| if (error) |
| xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); |
| return error; |
| } |
| |
| static void |
| xfs_buf_bio_end_io( |
| struct bio *bio) |
| { |
| struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; |
| |
| if (!bio->bi_status && |
| (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && |
| XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) |
| bio->bi_status = BLK_STS_IOERR; |
| |
| /* |
| * don't overwrite existing errors - otherwise we can lose errors on |
| * buffers that require multiple bios to complete. |
| */ |
| if (bio->bi_status) { |
| int error = blk_status_to_errno(bio->bi_status); |
| |
| cmpxchg(&bp->b_io_error, 0, error); |
| } |
| |
| if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) |
| invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); |
| |
| if (atomic_dec_and_test(&bp->b_io_remaining) == 1) |
| xfs_buf_ioend_async(bp); |
| bio_put(bio); |
| } |
| |
| static void |
| xfs_buf_ioapply_map( |
| struct xfs_buf *bp, |
| int map, |
| int *buf_offset, |
| int *count, |
| blk_opf_t op) |
| { |
| int page_index; |
| unsigned int total_nr_pages = bp->b_page_count; |
| int nr_pages; |
| struct bio *bio; |
| sector_t sector = bp->b_maps[map].bm_bn; |
| int size; |
| int offset; |
| |
| /* skip the pages in the buffer before the start offset */ |
| page_index = 0; |
| offset = *buf_offset; |
| while (offset >= PAGE_SIZE) { |
| page_index++; |
| offset -= PAGE_SIZE; |
| } |
| |
| /* |
| * Limit the IO size to the length of the current vector, and update the |
| * remaining IO count for the next time around. |
| */ |
| size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); |
| *count -= size; |
| *buf_offset += size; |
| |
| next_chunk: |
| atomic_inc(&bp->b_io_remaining); |
| nr_pages = bio_max_segs(total_nr_pages); |
| |
| bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO); |
| bio->bi_iter.bi_sector = sector; |
| bio->bi_end_io = xfs_buf_bio_end_io; |
| bio->bi_private = bp; |
| |
| for (; size && nr_pages; nr_pages--, page_index++) { |
| int rbytes, nbytes = PAGE_SIZE - offset; |
| |
| if (nbytes > size) |
| nbytes = size; |
| |
| rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, |
| offset); |
| if (rbytes < nbytes) |
| break; |
| |
| offset = 0; |
| sector += BTOBB(nbytes); |
| size -= nbytes; |
| total_nr_pages--; |
| } |
| |
| if (likely(bio->bi_iter.bi_size)) { |
| if (xfs_buf_is_vmapped(bp)) { |
| flush_kernel_vmap_range(bp->b_addr, |
| xfs_buf_vmap_len(bp)); |
| } |
| submit_bio(bio); |
| if (size) |
| goto next_chunk; |
| } else { |
| /* |
| * This is guaranteed not to be the last io reference count |
| * because the caller (xfs_buf_submit) holds a count itself. |
| */ |
| atomic_dec(&bp->b_io_remaining); |
| xfs_buf_ioerror(bp, -EIO); |
| bio_put(bio); |
| } |
| |
| } |
| |
| STATIC void |
| _xfs_buf_ioapply( |
| struct xfs_buf *bp) |
| { |
| struct blk_plug plug; |
| blk_opf_t op; |
| int offset; |
| int size; |
| int i; |
| |
| /* |
| * Make sure we capture only current IO errors rather than stale errors |
| * left over from previous use of the buffer (e.g. failed readahead). |
| */ |
| bp->b_error = 0; |
| |
| if (bp->b_flags & XBF_WRITE) { |
| op = REQ_OP_WRITE; |
| |
| /* |
| * Run the write verifier callback function if it exists. If |
| * this function fails it will mark the buffer with an error and |
| * the IO should not be dispatched. |
| */ |
| if (bp->b_ops) { |
| bp->b_ops->verify_write(bp); |
| if (bp->b_error) { |
| xfs_force_shutdown(bp->b_mount, |
| SHUTDOWN_CORRUPT_INCORE); |
| return; |
| } |
| } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) { |
| struct xfs_mount *mp = bp->b_mount; |
| |
| /* |
| * non-crc filesystems don't attach verifiers during |
| * log recovery, so don't warn for such filesystems. |
| */ |
| if (xfs_has_crc(mp)) { |
| xfs_warn(mp, |
| "%s: no buf ops on daddr 0x%llx len %d", |
| __func__, xfs_buf_daddr(bp), |
| bp->b_length); |
| xfs_hex_dump(bp->b_addr, |
| XFS_CORRUPTION_DUMP_LEN); |
| dump_stack(); |
| } |
| } |
| } else { |
| op = REQ_OP_READ; |
| if (bp->b_flags & XBF_READ_AHEAD) |
| op |= REQ_RAHEAD; |
| } |
| |
| /* we only use the buffer cache for meta-data */ |
| op |= REQ_META; |
| |
| /* in-memory targets are directly mapped, no IO required. */ |
| if (xfs_buftarg_is_mem(bp->b_target)) { |
| xfs_buf_ioend(bp); |
| return; |
| } |
| |
| /* |
| * Walk all the vectors issuing IO on them. Set up the initial offset |
| * into the buffer and the desired IO size before we start - |
| * _xfs_buf_ioapply_vec() will modify them appropriately for each |
| * subsequent call. |
| */ |
| offset = bp->b_offset; |
| size = BBTOB(bp->b_length); |
| blk_start_plug(&plug); |
| for (i = 0; i < bp->b_map_count; i++) { |
| xfs_buf_ioapply_map(bp, i, &offset, &size, op); |
| if (bp->b_error) |
| break; |
| if (size <= 0) |
| break; /* all done */ |
| } |
| blk_finish_plug(&plug); |
| } |
| |
| /* |
| * Wait for I/O completion of a sync buffer and return the I/O error code. |
| */ |
| static int |
| xfs_buf_iowait( |
| struct xfs_buf *bp) |
| { |
| ASSERT(!(bp->b_flags & XBF_ASYNC)); |
| |
| trace_xfs_buf_iowait(bp, _RET_IP_); |
| wait_for_completion(&bp->b_iowait); |
| trace_xfs_buf_iowait_done(bp, _RET_IP_); |
| |
| return bp->b_error; |
| } |
| |
| /* |
| * Buffer I/O submission path, read or write. Asynchronous submission transfers |
| * the buffer lock ownership and the current reference to the IO. It is not |
| * safe to reference the buffer after a call to this function unless the caller |
| * holds an additional reference itself. |
| */ |
| static int |
| __xfs_buf_submit( |
| struct xfs_buf *bp, |
| bool wait) |
| { |
| int error = 0; |
| |
| trace_xfs_buf_submit(bp, _RET_IP_); |
| |
| ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); |
| |
| /* |
| * On log shutdown we stale and complete the buffer immediately. We can |
| * be called to read the superblock before the log has been set up, so |
| * be careful checking the log state. |
| * |
| * Checking the mount shutdown state here can result in the log tail |
| * moving inappropriately on disk as the log may not yet be shut down. |
| * i.e. failing this buffer on mount shutdown can remove it from the AIL |
| * and move the tail of the log forwards without having written this |
| * buffer to disk. This corrupts the log tail state in memory, and |
| * because the log may not be shut down yet, it can then be propagated |
| * to disk before the log is shutdown. Hence we check log shutdown |
| * state here rather than mount state to avoid corrupting the log tail |
| * on shutdown. |
| */ |
| if (bp->b_mount->m_log && |
| xlog_is_shutdown(bp->b_mount->m_log)) { |
| xfs_buf_ioend_fail(bp); |
| return -EIO; |
| } |
| |
| /* |
| * Grab a reference so the buffer does not go away underneath us. For |
| * async buffers, I/O completion drops the callers reference, which |
| * could occur before submission returns. |
| */ |
| xfs_buf_hold(bp); |
| |
| if (bp->b_flags & XBF_WRITE) |
| xfs_buf_wait_unpin(bp); |
| |
| /* clear the internal error state to avoid spurious errors */ |
| bp->b_io_error = 0; |
| |
| /* |
| * Set the count to 1 initially, this will stop an I/O completion |
| * callout which happens before we have started all the I/O from calling |
| * xfs_buf_ioend too early. |
| */ |
| atomic_set(&bp->b_io_remaining, 1); |
| if (bp->b_flags & XBF_ASYNC) |
| xfs_buf_ioacct_inc(bp); |
| _xfs_buf_ioapply(bp); |
| |
| /* |
| * If _xfs_buf_ioapply failed, we can get back here with only the IO |
| * reference we took above. If we drop it to zero, run completion so |
| * that we don't return to the caller with completion still pending. |
| */ |
| if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { |
| if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) |
| xfs_buf_ioend(bp); |
| else |
| xfs_buf_ioend_async(bp); |
| } |
| |
| if (wait) |
| error = xfs_buf_iowait(bp); |
| |
| /* |
| * Release the hold that keeps the buffer referenced for the entire |
| * I/O. Note that if the buffer is async, it is not safe to reference |
| * after this release. |
| */ |
| xfs_buf_rele(bp); |
| return error; |
| } |
| |
| void * |
| xfs_buf_offset( |
| struct xfs_buf *bp, |
| size_t offset) |
| { |
| struct page *page; |
| |
| if (bp->b_addr) |
| return bp->b_addr + offset; |
| |
| page = bp->b_pages[offset >> PAGE_SHIFT]; |
| return page_address(page) + (offset & (PAGE_SIZE-1)); |
| } |
| |
| void |
| xfs_buf_zero( |
| struct xfs_buf *bp, |
| size_t boff, |
| size_t bsize) |
| { |
| size_t bend; |
| |
| bend = boff + bsize; |
| while (boff < bend) { |
| struct page *page; |
| int page_index, page_offset, csize; |
| |
| page_index = (boff + bp->b_offset) >> PAGE_SHIFT; |
| page_offset = (boff + bp->b_offset) & ~PAGE_MASK; |
| page = bp->b_pages[page_index]; |
| csize = min_t(size_t, PAGE_SIZE - page_offset, |
| BBTOB(bp->b_length) - boff); |
| |
| ASSERT((csize + page_offset) <= PAGE_SIZE); |
| |
| memset(page_address(page) + page_offset, 0, csize); |
| |
| boff += csize; |
| } |
| } |
| |
| /* |
| * Log a message about and stale a buffer that a caller has decided is corrupt. |
| * |
| * This function should be called for the kinds of metadata corruption that |
| * cannot be detect from a verifier, such as incorrect inter-block relationship |
| * data. Do /not/ call this function from a verifier function. |
| * |
| * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will |
| * be marked stale, but b_error will not be set. The caller is responsible for |
| * releasing the buffer or fixing it. |
| */ |
| void |
| __xfs_buf_mark_corrupt( |
| struct xfs_buf *bp, |
| xfs_failaddr_t fa) |
| { |
| ASSERT(bp->b_flags & XBF_DONE); |
| |
| xfs_buf_corruption_error(bp, fa); |
| xfs_buf_stale(bp); |
| } |
| |
| /* |
| * Handling of buffer targets (buftargs). |
| */ |
| |
| /* |
| * Wait for any bufs with callbacks that have been submitted but have not yet |
| * returned. These buffers will have an elevated hold count, so wait on those |
| * while freeing all the buffers only held by the LRU. |
| */ |
| static enum lru_status |
| xfs_buftarg_drain_rele( |
| struct list_head *item, |
| struct list_lru_one *lru, |
| spinlock_t *lru_lock, |
| void *arg) |
| |
| { |
| struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); |
| struct list_head *dispose = arg; |
| |
| if (atomic_read(&bp->b_hold) > 1) { |
| /* need to wait, so skip it this pass */ |
| trace_xfs_buf_drain_buftarg(bp, _RET_IP_); |
| return LRU_SKIP; |
| } |
| if (!spin_trylock(&bp->b_lock)) |
| return LRU_SKIP; |
| |
| /* |
| * clear the LRU reference count so the buffer doesn't get |
| * ignored in xfs_buf_rele(). |
| */ |
| atomic_set(&bp->b_lru_ref, 0); |
| bp->b_state |= XFS_BSTATE_DISPOSE; |
| list_lru_isolate_move(lru, item, dispose); |
| spin_unlock(&bp->b_lock); |
| return LRU_REMOVED; |
| } |
| |
| /* |
| * Wait for outstanding I/O on the buftarg to complete. |
| */ |
| void |
| xfs_buftarg_wait( |
| struct xfs_buftarg *btp) |
| { |
| /* |
| * First wait on the buftarg I/O count for all in-flight buffers to be |
| * released. This is critical as new buffers do not make the LRU until |
| * they are released. |
| * |
| * Next, flush the buffer workqueue to ensure all completion processing |
| * has finished. Just waiting on buffer locks is not sufficient for |
| * async IO as the reference count held over IO is not released until |
| * after the buffer lock is dropped. Hence we need to ensure here that |
| * all reference counts have been dropped before we start walking the |
| * LRU list. |
| */ |
| while (percpu_counter_sum(&btp->bt_io_count)) |
| delay(100); |
| flush_workqueue(btp->bt_mount->m_buf_workqueue); |
| } |
| |
| void |
| xfs_buftarg_drain( |
| struct xfs_buftarg *btp) |
| { |
| LIST_HEAD(dispose); |
| int loop = 0; |
| bool write_fail = false; |
| |
| xfs_buftarg_wait(btp); |
| |
| /* loop until there is nothing left on the lru list. */ |
| while (list_lru_count(&btp->bt_lru)) { |
| list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, |
| &dispose, LONG_MAX); |
| |
| while (!list_empty(&dispose)) { |
| struct xfs_buf *bp; |
| bp = list_first_entry(&dispose, struct xfs_buf, b_lru); |
| list_del_init(&bp->b_lru); |
| if (bp->b_flags & XBF_WRITE_FAIL) { |
| write_fail = true; |
| xfs_buf_alert_ratelimited(bp, |
| "XFS: Corruption Alert", |
| "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", |
| (long long)xfs_buf_daddr(bp)); |
| } |
| xfs_buf_rele(bp); |
| } |
| if (loop++ != 0) |
| delay(100); |
| } |
| |
| /* |
| * If one or more failed buffers were freed, that means dirty metadata |
| * was thrown away. This should only ever happen after I/O completion |
| * handling has elevated I/O error(s) to permanent failures and shuts |
| * down the journal. |
| */ |
| if (write_fail) { |
| ASSERT(xlog_is_shutdown(btp->bt_mount->m_log)); |
| xfs_alert(btp->bt_mount, |
| "Please run xfs_repair to determine the extent of the problem."); |
| } |
| } |
| |
| static enum lru_status |
| xfs_buftarg_isolate( |
| struct list_head *item, |
| struct list_lru_one *lru, |
| spinlock_t *lru_lock, |
| void *arg) |
| { |
| struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); |
| struct list_head *dispose = arg; |
| |
| /* |
| * we are inverting the lru lock/bp->b_lock here, so use a trylock. |
| * If we fail to get the lock, just skip it. |
| */ |
| if (!spin_trylock(&bp->b_lock)) |
| return LRU_SKIP; |
| /* |
| * Decrement the b_lru_ref count unless the value is already |
| * zero. If the value is already zero, we need to reclaim the |
| * buffer, otherwise it gets another trip through the LRU. |
| */ |
| if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { |
| spin_unlock(&bp->b_lock); |
| return LRU_ROTATE; |
| } |
| |
| bp->b_state |= XFS_BSTATE_DISPOSE; |
| list_lru_isolate_move(lru, item, dispose); |
| spin_unlock(&bp->b_lock); |
| return LRU_REMOVED; |
| } |
| |
| static unsigned long |
| xfs_buftarg_shrink_scan( |
| struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct xfs_buftarg *btp = shrink->private_data; |
| LIST_HEAD(dispose); |
| unsigned long freed; |
| |
| freed = list_lru_shrink_walk(&btp->bt_lru, sc, |
| xfs_buftarg_isolate, &dispose); |
| |
| while (!list_empty(&dispose)) { |
| struct xfs_buf *bp; |
| bp = list_first_entry(&dispose, struct xfs_buf, b_lru); |
| list_del_init(&bp->b_lru); |
| xfs_buf_rele(bp); |
| } |
| |
| return freed; |
| } |
| |
| static unsigned long |
| xfs_buftarg_shrink_count( |
| struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct xfs_buftarg *btp = shrink->private_data; |
| return list_lru_shrink_count(&btp->bt_lru, sc); |
| } |
| |
| void |
| xfs_destroy_buftarg( |
| struct xfs_buftarg *btp) |
| { |
| shrinker_free(btp->bt_shrinker); |
| ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); |
| percpu_counter_destroy(&btp->bt_io_count); |
| list_lru_destroy(&btp->bt_lru); |
| } |
| |
| void |
| xfs_free_buftarg( |
| struct xfs_buftarg *btp) |
| { |
| xfs_destroy_buftarg(btp); |
| fs_put_dax(btp->bt_daxdev, btp->bt_mount); |
| /* the main block device is closed by kill_block_super */ |
| if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev) |
| bdev_fput(btp->bt_bdev_file); |
| kfree(btp); |
| } |
| |
| int |
| xfs_setsize_buftarg( |
| struct xfs_buftarg *btp, |
| unsigned int sectorsize) |
| { |
| /* Set up metadata sector size info */ |
| btp->bt_meta_sectorsize = sectorsize; |
| btp->bt_meta_sectormask = sectorsize - 1; |
| |
| if (set_blocksize(btp->bt_bdev_file, sectorsize)) { |
| xfs_warn(btp->bt_mount, |
| "Cannot set_blocksize to %u on device %pg", |
| sectorsize, btp->bt_bdev); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int |
| xfs_init_buftarg( |
| struct xfs_buftarg *btp, |
| size_t logical_sectorsize, |
| const char *descr) |
| { |
| /* Set up device logical sector size mask */ |
| btp->bt_logical_sectorsize = logical_sectorsize; |
| btp->bt_logical_sectormask = logical_sectorsize - 1; |
| |
| /* |
| * Buffer IO error rate limiting. Limit it to no more than 10 messages |
| * per 30 seconds so as to not spam logs too much on repeated errors. |
| */ |
| ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, |
| DEFAULT_RATELIMIT_BURST); |
| |
| if (list_lru_init(&btp->bt_lru)) |
| return -ENOMEM; |
| if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) |
| goto out_destroy_lru; |
| |
| btp->bt_shrinker = |
| shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr); |
| if (!btp->bt_shrinker) |
| goto out_destroy_io_count; |
| btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count; |
| btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan; |
| btp->bt_shrinker->private_data = btp; |
| shrinker_register(btp->bt_shrinker); |
| return 0; |
| |
| out_destroy_io_count: |
| percpu_counter_destroy(&btp->bt_io_count); |
| out_destroy_lru: |
| list_lru_destroy(&btp->bt_lru); |
| return -ENOMEM; |
| } |
| |
| struct xfs_buftarg * |
| xfs_alloc_buftarg( |
| struct xfs_mount *mp, |
| struct file *bdev_file) |
| { |
| struct xfs_buftarg *btp; |
| const struct dax_holder_operations *ops = NULL; |
| |
| #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE) |
| ops = &xfs_dax_holder_operations; |
| #endif |
| btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL); |
| |
| btp->bt_mount = mp; |
| btp->bt_bdev_file = bdev_file; |
| btp->bt_bdev = file_bdev(bdev_file); |
| btp->bt_dev = btp->bt_bdev->bd_dev; |
| btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off, |
| mp, ops); |
| |
| if (bdev_can_atomic_write(btp->bt_bdev)) { |
| btp->bt_bdev_awu_min = bdev_atomic_write_unit_min_bytes( |
| btp->bt_bdev); |
| btp->bt_bdev_awu_max = bdev_atomic_write_unit_max_bytes( |
| btp->bt_bdev); |
| } |
| |
| /* |
| * When allocating the buftargs we have not yet read the super block and |
| * thus don't know the file system sector size yet. |
| */ |
| if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev))) |
| goto error_free; |
| if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev), |
| mp->m_super->s_id)) |
| goto error_free; |
| |
| return btp; |
| |
| error_free: |
| kfree(btp); |
| return NULL; |
| } |
| |
| static inline void |
| xfs_buf_list_del( |
| struct xfs_buf *bp) |
| { |
| list_del_init(&bp->b_list); |
| wake_up_var(&bp->b_list); |
| } |
| |
| /* |
| * Cancel a delayed write list. |
| * |
| * Remove each buffer from the list, clear the delwri queue flag and drop the |
| * associated buffer reference. |
| */ |
| void |
| xfs_buf_delwri_cancel( |
| struct list_head *list) |
| { |
| struct xfs_buf *bp; |
| |
| while (!list_empty(list)) { |
| bp = list_first_entry(list, struct xfs_buf, b_list); |
| |
| xfs_buf_lock(bp); |
| bp->b_flags &= ~_XBF_DELWRI_Q; |
| xfs_buf_list_del(bp); |
| xfs_buf_relse(bp); |
| } |
| } |
| |
| /* |
| * Add a buffer to the delayed write list. |
| * |
| * This queues a buffer for writeout if it hasn't already been. Note that |
| * neither this routine nor the buffer list submission functions perform |
| * any internal synchronization. It is expected that the lists are thread-local |
| * to the callers. |
| * |
| * Returns true if we queued up the buffer, or false if it already had |
| * been on the buffer list. |
| */ |
| bool |
| xfs_buf_delwri_queue( |
| struct xfs_buf *bp, |
| struct list_head *list) |
| { |
| ASSERT(xfs_buf_islocked(bp)); |
| ASSERT(!(bp->b_flags & XBF_READ)); |
| |
| /* |
| * If the buffer is already marked delwri it already is queued up |
| * by someone else for imediate writeout. Just ignore it in that |
| * case. |
| */ |
| if (bp->b_flags & _XBF_DELWRI_Q) { |
| trace_xfs_buf_delwri_queued(bp, _RET_IP_); |
| return false; |
| } |
| |
| trace_xfs_buf_delwri_queue(bp, _RET_IP_); |
| |
| /* |
| * If a buffer gets written out synchronously or marked stale while it |
| * is on a delwri list we lazily remove it. To do this, the other party |
| * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. |
| * It remains referenced and on the list. In a rare corner case it |
| * might get readded to a delwri list after the synchronous writeout, in |
| * which case we need just need to re-add the flag here. |
| */ |
| bp->b_flags |= _XBF_DELWRI_Q; |
| if (list_empty(&bp->b_list)) { |
| atomic_inc(&bp->b_hold); |
| list_add_tail(&bp->b_list, list); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Queue a buffer to this delwri list as part of a data integrity operation. |
| * If the buffer is on any other delwri list, we'll wait for that to clear |
| * so that the caller can submit the buffer for IO and wait for the result. |
| * Callers must ensure the buffer is not already on the list. |
| */ |
| void |
| xfs_buf_delwri_queue_here( |
| struct xfs_buf *bp, |
| struct list_head *buffer_list) |
| { |
| /* |
| * We need this buffer to end up on the /caller's/ delwri list, not any |
| * old list. This can happen if the buffer is marked stale (which |
| * clears DELWRI_Q) after the AIL queues the buffer to its list but |
| * before the AIL has a chance to submit the list. |
| */ |
| while (!list_empty(&bp->b_list)) { |
| xfs_buf_unlock(bp); |
| wait_var_event(&bp->b_list, list_empty(&bp->b_list)); |
| xfs_buf_lock(bp); |
| } |
| |
| ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); |
| |
| xfs_buf_delwri_queue(bp, buffer_list); |
| } |
| |
| /* |
| * Compare function is more complex than it needs to be because |
| * the return value is only 32 bits and we are doing comparisons |
| * on 64 bit values |
| */ |
| static int |
| xfs_buf_cmp( |
| void *priv, |
| const struct list_head *a, |
| const struct list_head *b) |
| { |
| struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); |
| struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); |
| xfs_daddr_t diff; |
| |
| diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; |
| if (diff < 0) |
| return -1; |
| if (diff > 0) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Submit buffers for write. If wait_list is specified, the buffers are |
| * submitted using sync I/O and placed on the wait list such that the caller can |
| * iowait each buffer. Otherwise async I/O is used and the buffers are released |
| * at I/O completion time. In either case, buffers remain locked until I/O |
| * completes and the buffer is released from the queue. |
| */ |
| static int |
| xfs_buf_delwri_submit_buffers( |
| struct list_head *buffer_list, |
| struct list_head *wait_list) |
| { |
| struct xfs_buf *bp, *n; |
| int pinned = 0; |
| struct blk_plug plug; |
| |
| list_sort(NULL, buffer_list, xfs_buf_cmp); |
| |
| blk_start_plug(&plug); |
| list_for_each_entry_safe(bp, n, buffer_list, b_list) { |
| if (!wait_list) { |
| if (!xfs_buf_trylock(bp)) |
| continue; |
| if (xfs_buf_ispinned(bp)) { |
| xfs_buf_unlock(bp); |
| pinned++; |
| continue; |
| } |
| } else { |
| xfs_buf_lock(bp); |
| } |
| |
| /* |
| * Someone else might have written the buffer synchronously or |
| * marked it stale in the meantime. In that case only the |
| * _XBF_DELWRI_Q flag got cleared, and we have to drop the |
| * reference and remove it from the list here. |
| */ |
| if (!(bp->b_flags & _XBF_DELWRI_Q)) { |
| xfs_buf_list_del(bp); |
| xfs_buf_relse(bp); |
| continue; |
| } |
| |
| trace_xfs_buf_delwri_split(bp, _RET_IP_); |
| |
| /* |
| * If we have a wait list, each buffer (and associated delwri |
| * queue reference) transfers to it and is submitted |
| * synchronously. Otherwise, drop the buffer from the delwri |
| * queue and submit async. |
| */ |
| bp->b_flags &= ~_XBF_DELWRI_Q; |
| bp->b_flags |= XBF_WRITE; |
| if (wait_list) { |
| bp->b_flags &= ~XBF_ASYNC; |
| list_move_tail(&bp->b_list, wait_list); |
| } else { |
| bp->b_flags |= XBF_ASYNC; |
| xfs_buf_list_del(bp); |
| } |
| __xfs_buf_submit(bp, false); |
| } |
| blk_finish_plug(&plug); |
| |
| return pinned; |
| } |
| |
| /* |
| * Write out a buffer list asynchronously. |
| * |
| * This will take the @buffer_list, write all non-locked and non-pinned buffers |
| * out and not wait for I/O completion on any of the buffers. This interface |
| * is only safely useable for callers that can track I/O completion by higher |
| * level means, e.g. AIL pushing as the @buffer_list is consumed in this |
| * function. |
| * |
| * Note: this function will skip buffers it would block on, and in doing so |
| * leaves them on @buffer_list so they can be retried on a later pass. As such, |
| * it is up to the caller to ensure that the buffer list is fully submitted or |
| * cancelled appropriately when they are finished with the list. Failure to |
| * cancel or resubmit the list until it is empty will result in leaked buffers |
| * at unmount time. |
| */ |
| int |
| xfs_buf_delwri_submit_nowait( |
| struct list_head *buffer_list) |
| { |
| return xfs_buf_delwri_submit_buffers(buffer_list, NULL); |
| } |
| |
| /* |
| * Write out a buffer list synchronously. |
| * |
| * This will take the @buffer_list, write all buffers out and wait for I/O |
| * completion on all of the buffers. @buffer_list is consumed by the function, |
| * so callers must have some other way of tracking buffers if they require such |
| * functionality. |
| */ |
| int |
| xfs_buf_delwri_submit( |
| struct list_head *buffer_list) |
| { |
| LIST_HEAD (wait_list); |
| int error = 0, error2; |
| struct xfs_buf *bp; |
| |
| xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); |
| |
| /* Wait for IO to complete. */ |
| while (!list_empty(&wait_list)) { |
| bp = list_first_entry(&wait_list, struct xfs_buf, b_list); |
| |
| xfs_buf_list_del(bp); |
| |
| /* |
| * Wait on the locked buffer, check for errors and unlock and |
| * release the delwri queue reference. |
| */ |
| error2 = xfs_buf_iowait(bp); |
| xfs_buf_relse(bp); |
| if (!error) |
| error = error2; |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Push a single buffer on a delwri queue. |
| * |
| * The purpose of this function is to submit a single buffer of a delwri queue |
| * and return with the buffer still on the original queue. The waiting delwri |
| * buffer submission infrastructure guarantees transfer of the delwri queue |
| * buffer reference to a temporary wait list. We reuse this infrastructure to |
| * transfer the buffer back to the original queue. |
| * |
| * Note the buffer transitions from the queued state, to the submitted and wait |
| * listed state and back to the queued state during this call. The buffer |
| * locking and queue management logic between _delwri_pushbuf() and |
| * _delwri_queue() guarantee that the buffer cannot be queued to another list |
| * before returning. |
| */ |
| int |
| xfs_buf_delwri_pushbuf( |
| struct xfs_buf *bp, |
| struct list_head *buffer_list) |
| { |
| LIST_HEAD (submit_list); |
| int error; |
| |
| ASSERT(bp->b_flags & _XBF_DELWRI_Q); |
| |
| trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); |
| |
| /* |
| * Isolate the buffer to a new local list so we can submit it for I/O |
| * independently from the rest of the original list. |
| */ |
| xfs_buf_lock(bp); |
| list_move(&bp->b_list, &submit_list); |
| xfs_buf_unlock(bp); |
| |
| /* |
| * Delwri submission clears the DELWRI_Q buffer flag and returns with |
| * the buffer on the wait list with the original reference. Rather than |
| * bounce the buffer from a local wait list back to the original list |
| * after I/O completion, reuse the original list as the wait list. |
| */ |
| xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); |
| |
| /* |
| * The buffer is now locked, under I/O and wait listed on the original |
| * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and |
| * return with the buffer unlocked and on the original queue. |
| */ |
| error = xfs_buf_iowait(bp); |
| bp->b_flags |= _XBF_DELWRI_Q; |
| xfs_buf_unlock(bp); |
| |
| return error; |
| } |
| |
| void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) |
| { |
| /* |
| * Set the lru reference count to 0 based on the error injection tag. |
| * This allows userspace to disrupt buffer caching for debug/testing |
| * purposes. |
| */ |
| if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) |
| lru_ref = 0; |
| |
| atomic_set(&bp->b_lru_ref, lru_ref); |
| } |
| |
| /* |
| * Verify an on-disk magic value against the magic value specified in the |
| * verifier structure. The verifier magic is in disk byte order so the caller is |
| * expected to pass the value directly from disk. |
| */ |
| bool |
| xfs_verify_magic( |
| struct xfs_buf *bp, |
| __be32 dmagic) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| int idx; |
| |
| idx = xfs_has_crc(mp); |
| if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) |
| return false; |
| return dmagic == bp->b_ops->magic[idx]; |
| } |
| /* |
| * Verify an on-disk magic value against the magic value specified in the |
| * verifier structure. The verifier magic is in disk byte order so the caller is |
| * expected to pass the value directly from disk. |
| */ |
| bool |
| xfs_verify_magic16( |
| struct xfs_buf *bp, |
| __be16 dmagic) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| int idx; |
| |
| idx = xfs_has_crc(mp); |
| if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) |
| return false; |
| return dmagic == bp->b_ops->magic16[idx]; |
| } |