| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2017 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_btree.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_trace.h" |
| #include "xfs_rmap.h" |
| #include "xfs_alloc.h" |
| #include "xfs_bit.h" |
| #include <linux/fsmap.h> |
| #include "xfs_fsmap.h" |
| #include "xfs_refcount.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_rtbitmap.h" |
| #include "xfs_ag.h" |
| |
| /* Convert an xfs_fsmap to an fsmap. */ |
| static void |
| xfs_fsmap_from_internal( |
| struct fsmap *dest, |
| struct xfs_fsmap *src) |
| { |
| dest->fmr_device = src->fmr_device; |
| dest->fmr_flags = src->fmr_flags; |
| dest->fmr_physical = BBTOB(src->fmr_physical); |
| dest->fmr_owner = src->fmr_owner; |
| dest->fmr_offset = BBTOB(src->fmr_offset); |
| dest->fmr_length = BBTOB(src->fmr_length); |
| dest->fmr_reserved[0] = 0; |
| dest->fmr_reserved[1] = 0; |
| dest->fmr_reserved[2] = 0; |
| } |
| |
| /* Convert an fsmap to an xfs_fsmap. */ |
| static void |
| xfs_fsmap_to_internal( |
| struct xfs_fsmap *dest, |
| struct fsmap *src) |
| { |
| dest->fmr_device = src->fmr_device; |
| dest->fmr_flags = src->fmr_flags; |
| dest->fmr_physical = BTOBBT(src->fmr_physical); |
| dest->fmr_owner = src->fmr_owner; |
| dest->fmr_offset = BTOBBT(src->fmr_offset); |
| dest->fmr_length = BTOBBT(src->fmr_length); |
| } |
| |
| /* Convert an fsmap owner into an rmapbt owner. */ |
| static int |
| xfs_fsmap_owner_to_rmap( |
| struct xfs_rmap_irec *dest, |
| const struct xfs_fsmap *src) |
| { |
| if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { |
| dest->rm_owner = src->fmr_owner; |
| return 0; |
| } |
| |
| switch (src->fmr_owner) { |
| case 0: /* "lowest owner id possible" */ |
| case -1ULL: /* "highest owner id possible" */ |
| dest->rm_owner = src->fmr_owner; |
| break; |
| case XFS_FMR_OWN_FREE: |
| dest->rm_owner = XFS_RMAP_OWN_NULL; |
| break; |
| case XFS_FMR_OWN_UNKNOWN: |
| dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; |
| break; |
| case XFS_FMR_OWN_FS: |
| dest->rm_owner = XFS_RMAP_OWN_FS; |
| break; |
| case XFS_FMR_OWN_LOG: |
| dest->rm_owner = XFS_RMAP_OWN_LOG; |
| break; |
| case XFS_FMR_OWN_AG: |
| dest->rm_owner = XFS_RMAP_OWN_AG; |
| break; |
| case XFS_FMR_OWN_INOBT: |
| dest->rm_owner = XFS_RMAP_OWN_INOBT; |
| break; |
| case XFS_FMR_OWN_INODES: |
| dest->rm_owner = XFS_RMAP_OWN_INODES; |
| break; |
| case XFS_FMR_OWN_REFC: |
| dest->rm_owner = XFS_RMAP_OWN_REFC; |
| break; |
| case XFS_FMR_OWN_COW: |
| dest->rm_owner = XFS_RMAP_OWN_COW; |
| break; |
| case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ |
| /* fall through */ |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* Convert an rmapbt owner into an fsmap owner. */ |
| static int |
| xfs_fsmap_owner_from_rmap( |
| struct xfs_fsmap *dest, |
| const struct xfs_rmap_irec *src) |
| { |
| dest->fmr_flags = 0; |
| if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { |
| dest->fmr_owner = src->rm_owner; |
| return 0; |
| } |
| dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; |
| |
| switch (src->rm_owner) { |
| case XFS_RMAP_OWN_FS: |
| dest->fmr_owner = XFS_FMR_OWN_FS; |
| break; |
| case XFS_RMAP_OWN_LOG: |
| dest->fmr_owner = XFS_FMR_OWN_LOG; |
| break; |
| case XFS_RMAP_OWN_AG: |
| dest->fmr_owner = XFS_FMR_OWN_AG; |
| break; |
| case XFS_RMAP_OWN_INOBT: |
| dest->fmr_owner = XFS_FMR_OWN_INOBT; |
| break; |
| case XFS_RMAP_OWN_INODES: |
| dest->fmr_owner = XFS_FMR_OWN_INODES; |
| break; |
| case XFS_RMAP_OWN_REFC: |
| dest->fmr_owner = XFS_FMR_OWN_REFC; |
| break; |
| case XFS_RMAP_OWN_COW: |
| dest->fmr_owner = XFS_FMR_OWN_COW; |
| break; |
| case XFS_RMAP_OWN_NULL: /* "free" */ |
| dest->fmr_owner = XFS_FMR_OWN_FREE; |
| break; |
| default: |
| ASSERT(0); |
| return -EFSCORRUPTED; |
| } |
| return 0; |
| } |
| |
| /* getfsmap query state */ |
| struct xfs_getfsmap_info { |
| struct xfs_fsmap_head *head; |
| struct fsmap *fsmap_recs; /* mapping records */ |
| struct xfs_buf *agf_bp; /* AGF, for refcount queries */ |
| struct xfs_perag *pag; /* AG info, if applicable */ |
| xfs_daddr_t next_daddr; /* next daddr we expect */ |
| /* daddr of low fsmap key when we're using the rtbitmap */ |
| xfs_daddr_t low_daddr; |
| xfs_daddr_t end_daddr; /* daddr of high fsmap key */ |
| u64 missing_owner; /* owner of holes */ |
| u32 dev; /* device id */ |
| /* |
| * Low rmap key for the query. If low.rm_blockcount is nonzero, this |
| * is the second (or later) call to retrieve the recordset in pieces. |
| * xfs_getfsmap_rec_before_start will compare all records retrieved |
| * by the rmapbt query to filter out any records that start before |
| * the last record. |
| */ |
| struct xfs_rmap_irec low; |
| struct xfs_rmap_irec high; /* high rmap key */ |
| bool last; /* last extent? */ |
| }; |
| |
| /* Associate a device with a getfsmap handler. */ |
| struct xfs_getfsmap_dev { |
| u32 dev; |
| int (*fn)(struct xfs_trans *tp, |
| const struct xfs_fsmap *keys, |
| struct xfs_getfsmap_info *info); |
| sector_t nr_sectors; |
| }; |
| |
| /* Compare two getfsmap device handlers. */ |
| static int |
| xfs_getfsmap_dev_compare( |
| const void *p1, |
| const void *p2) |
| { |
| const struct xfs_getfsmap_dev *d1 = p1; |
| const struct xfs_getfsmap_dev *d2 = p2; |
| |
| return d1->dev - d2->dev; |
| } |
| |
| /* Decide if this mapping is shared. */ |
| STATIC int |
| xfs_getfsmap_is_shared( |
| struct xfs_trans *tp, |
| struct xfs_getfsmap_info *info, |
| const struct xfs_rmap_irec *rec, |
| bool *stat) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_btree_cur *cur; |
| xfs_agblock_t fbno; |
| xfs_extlen_t flen; |
| int error; |
| |
| *stat = false; |
| if (!xfs_has_reflink(mp)) |
| return 0; |
| /* rt files will have no perag structure */ |
| if (!info->pag) |
| return 0; |
| |
| /* Are there any shared blocks here? */ |
| flen = 0; |
| cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag); |
| |
| error = xfs_refcount_find_shared(cur, rec->rm_startblock, |
| rec->rm_blockcount, &fbno, &flen, false); |
| |
| xfs_btree_del_cursor(cur, error); |
| if (error) |
| return error; |
| |
| *stat = flen > 0; |
| return 0; |
| } |
| |
| static inline void |
| xfs_getfsmap_format( |
| struct xfs_mount *mp, |
| struct xfs_fsmap *xfm, |
| struct xfs_getfsmap_info *info) |
| { |
| struct fsmap *rec; |
| |
| trace_xfs_getfsmap_mapping(mp, xfm); |
| |
| rec = &info->fsmap_recs[info->head->fmh_entries++]; |
| xfs_fsmap_from_internal(rec, xfm); |
| } |
| |
| static inline bool |
| xfs_getfsmap_rec_before_start( |
| struct xfs_getfsmap_info *info, |
| const struct xfs_rmap_irec *rec, |
| xfs_daddr_t rec_daddr) |
| { |
| if (info->low_daddr != XFS_BUF_DADDR_NULL) |
| return rec_daddr < info->low_daddr; |
| if (info->low.rm_blockcount) |
| return xfs_rmap_compare(rec, &info->low) < 0; |
| return false; |
| } |
| |
| /* |
| * Format a reverse mapping for getfsmap, having translated rm_startblock |
| * into the appropriate daddr units. Pass in a nonzero @len_daddr if the |
| * length could be larger than rm_blockcount in struct xfs_rmap_irec. |
| */ |
| STATIC int |
| xfs_getfsmap_helper( |
| struct xfs_trans *tp, |
| struct xfs_getfsmap_info *info, |
| const struct xfs_rmap_irec *rec, |
| xfs_daddr_t rec_daddr, |
| xfs_daddr_t len_daddr) |
| { |
| struct xfs_fsmap fmr; |
| struct xfs_mount *mp = tp->t_mountp; |
| bool shared; |
| int error; |
| |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| |
| if (len_daddr == 0) |
| len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount); |
| |
| /* |
| * Filter out records that start before our startpoint, if the |
| * caller requested that. |
| */ |
| if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) { |
| rec_daddr += len_daddr; |
| if (info->next_daddr < rec_daddr) |
| info->next_daddr = rec_daddr; |
| return 0; |
| } |
| |
| /* |
| * For an info->last query, we're looking for a gap between the last |
| * mapping emitted and the high key specified by userspace. If the |
| * user's query spans less than 1 fsblock, then info->high and |
| * info->low will have the same rm_startblock, which causes rec_daddr |
| * and next_daddr to be the same. Therefore, use the end_daddr that |
| * we calculated from userspace's high key to synthesize the record. |
| * Note that if the btree query found a mapping, there won't be a gap. |
| */ |
| if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL) |
| rec_daddr = info->end_daddr; |
| |
| /* Are we just counting mappings? */ |
| if (info->head->fmh_count == 0) { |
| if (info->head->fmh_entries == UINT_MAX) |
| return -ECANCELED; |
| |
| if (rec_daddr > info->next_daddr) |
| info->head->fmh_entries++; |
| |
| if (info->last) |
| return 0; |
| |
| info->head->fmh_entries++; |
| |
| rec_daddr += len_daddr; |
| if (info->next_daddr < rec_daddr) |
| info->next_daddr = rec_daddr; |
| return 0; |
| } |
| |
| /* |
| * If the record starts past the last physical block we saw, |
| * then we've found a gap. Report the gap as being owned by |
| * whatever the caller specified is the missing owner. |
| */ |
| if (rec_daddr > info->next_daddr) { |
| if (info->head->fmh_entries >= info->head->fmh_count) |
| return -ECANCELED; |
| |
| fmr.fmr_device = info->dev; |
| fmr.fmr_physical = info->next_daddr; |
| fmr.fmr_owner = info->missing_owner; |
| fmr.fmr_offset = 0; |
| fmr.fmr_length = rec_daddr - info->next_daddr; |
| fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; |
| xfs_getfsmap_format(mp, &fmr, info); |
| } |
| |
| if (info->last) |
| goto out; |
| |
| /* Fill out the extent we found */ |
| if (info->head->fmh_entries >= info->head->fmh_count) |
| return -ECANCELED; |
| |
| trace_xfs_fsmap_mapping(mp, info->dev, |
| info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec); |
| |
| fmr.fmr_device = info->dev; |
| fmr.fmr_physical = rec_daddr; |
| error = xfs_fsmap_owner_from_rmap(&fmr, rec); |
| if (error) |
| return error; |
| fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); |
| fmr.fmr_length = len_daddr; |
| if (rec->rm_flags & XFS_RMAP_UNWRITTEN) |
| fmr.fmr_flags |= FMR_OF_PREALLOC; |
| if (rec->rm_flags & XFS_RMAP_ATTR_FORK) |
| fmr.fmr_flags |= FMR_OF_ATTR_FORK; |
| if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) |
| fmr.fmr_flags |= FMR_OF_EXTENT_MAP; |
| if (fmr.fmr_flags == 0) { |
| error = xfs_getfsmap_is_shared(tp, info, rec, &shared); |
| if (error) |
| return error; |
| if (shared) |
| fmr.fmr_flags |= FMR_OF_SHARED; |
| } |
| |
| xfs_getfsmap_format(mp, &fmr, info); |
| out: |
| rec_daddr += len_daddr; |
| if (info->next_daddr < rec_daddr) |
| info->next_daddr = rec_daddr; |
| return 0; |
| } |
| |
| /* Transform a rmapbt irec into a fsmap */ |
| STATIC int |
| xfs_getfsmap_datadev_helper( |
| struct xfs_btree_cur *cur, |
| const struct xfs_rmap_irec *rec, |
| void *priv) |
| { |
| struct xfs_mount *mp = cur->bc_mp; |
| struct xfs_getfsmap_info *info = priv; |
| xfs_fsblock_t fsb; |
| xfs_daddr_t rec_daddr; |
| |
| fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock); |
| rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); |
| |
| return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0); |
| } |
| |
| /* Transform a bnobt irec into a fsmap */ |
| STATIC int |
| xfs_getfsmap_datadev_bnobt_helper( |
| struct xfs_btree_cur *cur, |
| const struct xfs_alloc_rec_incore *rec, |
| void *priv) |
| { |
| struct xfs_mount *mp = cur->bc_mp; |
| struct xfs_getfsmap_info *info = priv; |
| struct xfs_rmap_irec irec; |
| xfs_daddr_t rec_daddr; |
| |
| rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno, |
| rec->ar_startblock); |
| |
| irec.rm_startblock = rec->ar_startblock; |
| irec.rm_blockcount = rec->ar_blockcount; |
| irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ |
| irec.rm_offset = 0; |
| irec.rm_flags = 0; |
| |
| return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0); |
| } |
| |
| /* Set rmap flags based on the getfsmap flags */ |
| static void |
| xfs_getfsmap_set_irec_flags( |
| struct xfs_rmap_irec *irec, |
| const struct xfs_fsmap *fmr) |
| { |
| irec->rm_flags = 0; |
| if (fmr->fmr_flags & FMR_OF_ATTR_FORK) |
| irec->rm_flags |= XFS_RMAP_ATTR_FORK; |
| if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) |
| irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; |
| if (fmr->fmr_flags & FMR_OF_PREALLOC) |
| irec->rm_flags |= XFS_RMAP_UNWRITTEN; |
| } |
| |
| static inline bool |
| rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r) |
| { |
| if (!xfs_has_reflink(mp)) |
| return true; |
| if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner)) |
| return true; |
| if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK | |
| XFS_RMAP_UNWRITTEN)) |
| return true; |
| return false; |
| } |
| |
| /* Execute a getfsmap query against the regular data device. */ |
| STATIC int |
| __xfs_getfsmap_datadev( |
| struct xfs_trans *tp, |
| const struct xfs_fsmap *keys, |
| struct xfs_getfsmap_info *info, |
| int (*query_fn)(struct xfs_trans *, |
| struct xfs_getfsmap_info *, |
| struct xfs_btree_cur **, |
| void *), |
| void *priv) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_perag *pag; |
| struct xfs_btree_cur *bt_cur = NULL; |
| xfs_fsblock_t start_fsb; |
| xfs_fsblock_t end_fsb; |
| xfs_agnumber_t start_ag; |
| xfs_agnumber_t end_ag; |
| uint64_t eofs; |
| int error = 0; |
| |
| eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| if (keys[0].fmr_physical >= eofs) |
| return 0; |
| start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); |
| end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); |
| |
| /* |
| * Convert the fsmap low/high keys to AG based keys. Initialize |
| * low to the fsmap low key and max out the high key to the end |
| * of the AG. |
| */ |
| info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); |
| error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); |
| if (error) |
| return error; |
| info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length); |
| xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); |
| |
| /* Adjust the low key if we are continuing from where we left off. */ |
| if (info->low.rm_blockcount == 0) { |
| /* No previous record from which to continue */ |
| } else if (rmap_not_shareable(mp, &info->low)) { |
| /* Last record seen was an unshareable extent */ |
| info->low.rm_owner = 0; |
| info->low.rm_offset = 0; |
| |
| start_fsb += info->low.rm_blockcount; |
| if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs) |
| return 0; |
| } else { |
| /* Last record seen was a shareable file data extent */ |
| info->low.rm_offset += info->low.rm_blockcount; |
| } |
| info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); |
| |
| info->high.rm_startblock = -1U; |
| info->high.rm_owner = ULLONG_MAX; |
| info->high.rm_offset = ULLONG_MAX; |
| info->high.rm_blockcount = 0; |
| info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; |
| |
| start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); |
| end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); |
| |
| for_each_perag_range(mp, start_ag, end_ag, pag) { |
| /* |
| * Set the AG high key from the fsmap high key if this |
| * is the last AG that we're querying. |
| */ |
| info->pag = pag; |
| if (pag->pag_agno == end_ag) { |
| info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, |
| end_fsb); |
| info->high.rm_offset = XFS_BB_TO_FSBT(mp, |
| keys[1].fmr_offset); |
| error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); |
| if (error) |
| break; |
| xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); |
| } |
| |
| if (bt_cur) { |
| xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); |
| bt_cur = NULL; |
| xfs_trans_brelse(tp, info->agf_bp); |
| info->agf_bp = NULL; |
| } |
| |
| error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp); |
| if (error) |
| break; |
| |
| trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno, |
| &info->low); |
| trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno, |
| &info->high); |
| |
| error = query_fn(tp, info, &bt_cur, priv); |
| if (error) |
| break; |
| |
| /* |
| * Set the AG low key to the start of the AG prior to |
| * moving on to the next AG. |
| */ |
| if (pag->pag_agno == start_ag) |
| memset(&info->low, 0, sizeof(info->low)); |
| |
| /* |
| * If this is the last AG, report any gap at the end of it |
| * before we drop the reference to the perag when the loop |
| * terminates. |
| */ |
| if (pag->pag_agno == end_ag) { |
| info->last = true; |
| error = query_fn(tp, info, &bt_cur, priv); |
| if (error) |
| break; |
| } |
| info->pag = NULL; |
| } |
| |
| if (bt_cur) |
| xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : |
| XFS_BTREE_NOERROR); |
| if (info->agf_bp) { |
| xfs_trans_brelse(tp, info->agf_bp); |
| info->agf_bp = NULL; |
| } |
| if (info->pag) { |
| xfs_perag_rele(info->pag); |
| info->pag = NULL; |
| } else if (pag) { |
| /* loop termination case */ |
| xfs_perag_rele(pag); |
| } |
| |
| return error; |
| } |
| |
| /* Actually query the rmap btree. */ |
| STATIC int |
| xfs_getfsmap_datadev_rmapbt_query( |
| struct xfs_trans *tp, |
| struct xfs_getfsmap_info *info, |
| struct xfs_btree_cur **curpp, |
| void *priv) |
| { |
| /* Report any gap at the end of the last AG. */ |
| if (info->last) |
| return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); |
| |
| /* Allocate cursor for this AG and query_range it. */ |
| *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, |
| info->pag); |
| return xfs_rmap_query_range(*curpp, &info->low, &info->high, |
| xfs_getfsmap_datadev_helper, info); |
| } |
| |
| /* Execute a getfsmap query against the regular data device rmapbt. */ |
| STATIC int |
| xfs_getfsmap_datadev_rmapbt( |
| struct xfs_trans *tp, |
| const struct xfs_fsmap *keys, |
| struct xfs_getfsmap_info *info) |
| { |
| info->missing_owner = XFS_FMR_OWN_FREE; |
| return __xfs_getfsmap_datadev(tp, keys, info, |
| xfs_getfsmap_datadev_rmapbt_query, NULL); |
| } |
| |
| /* Actually query the bno btree. */ |
| STATIC int |
| xfs_getfsmap_datadev_bnobt_query( |
| struct xfs_trans *tp, |
| struct xfs_getfsmap_info *info, |
| struct xfs_btree_cur **curpp, |
| void *priv) |
| { |
| struct xfs_alloc_rec_incore *key = priv; |
| |
| /* Report any gap at the end of the last AG. */ |
| if (info->last) |
| return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); |
| |
| /* Allocate cursor for this AG and query_range it. */ |
| *curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp, |
| info->pag); |
| key->ar_startblock = info->low.rm_startblock; |
| key[1].ar_startblock = info->high.rm_startblock; |
| return xfs_alloc_query_range(*curpp, key, &key[1], |
| xfs_getfsmap_datadev_bnobt_helper, info); |
| } |
| |
| /* Execute a getfsmap query against the regular data device's bnobt. */ |
| STATIC int |
| xfs_getfsmap_datadev_bnobt( |
| struct xfs_trans *tp, |
| const struct xfs_fsmap *keys, |
| struct xfs_getfsmap_info *info) |
| { |
| struct xfs_alloc_rec_incore akeys[2]; |
| |
| memset(akeys, 0, sizeof(akeys)); |
| info->missing_owner = XFS_FMR_OWN_UNKNOWN; |
| return __xfs_getfsmap_datadev(tp, keys, info, |
| xfs_getfsmap_datadev_bnobt_query, &akeys[0]); |
| } |
| |
| /* Execute a getfsmap query against the log device. */ |
| STATIC int |
| xfs_getfsmap_logdev( |
| struct xfs_trans *tp, |
| const struct xfs_fsmap *keys, |
| struct xfs_getfsmap_info *info) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_rmap_irec rmap; |
| xfs_daddr_t rec_daddr, len_daddr; |
| xfs_fsblock_t start_fsb, end_fsb; |
| uint64_t eofs; |
| |
| eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); |
| if (keys[0].fmr_physical >= eofs) |
| return 0; |
| start_fsb = XFS_BB_TO_FSBT(mp, |
| keys[0].fmr_physical + keys[0].fmr_length); |
| end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); |
| |
| /* Adjust the low key if we are continuing from where we left off. */ |
| if (keys[0].fmr_length > 0) |
| info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb); |
| |
| trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb); |
| trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb); |
| |
| if (start_fsb > 0) |
| return 0; |
| |
| /* Fabricate an rmap entry for the external log device. */ |
| rmap.rm_startblock = 0; |
| rmap.rm_blockcount = mp->m_sb.sb_logblocks; |
| rmap.rm_owner = XFS_RMAP_OWN_LOG; |
| rmap.rm_offset = 0; |
| rmap.rm_flags = 0; |
| |
| rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock); |
| len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount); |
| return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr); |
| } |
| |
| #ifdef CONFIG_XFS_RT |
| /* Transform a rtbitmap "record" into a fsmap */ |
| STATIC int |
| xfs_getfsmap_rtdev_rtbitmap_helper( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| const struct xfs_rtalloc_rec *rec, |
| void *priv) |
| { |
| struct xfs_getfsmap_info *info = priv; |
| struct xfs_rmap_irec irec; |
| xfs_rtblock_t rtbno; |
| xfs_daddr_t rec_daddr, len_daddr; |
| |
| rtbno = xfs_rtx_to_rtb(mp, rec->ar_startext); |
| rec_daddr = XFS_FSB_TO_BB(mp, rtbno); |
| irec.rm_startblock = rtbno; |
| |
| rtbno = xfs_rtx_to_rtb(mp, rec->ar_extcount); |
| len_daddr = XFS_FSB_TO_BB(mp, rtbno); |
| irec.rm_blockcount = rtbno; |
| |
| irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ |
| irec.rm_offset = 0; |
| irec.rm_flags = 0; |
| |
| return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr); |
| } |
| |
| /* Execute a getfsmap query against the realtime device rtbitmap. */ |
| STATIC int |
| xfs_getfsmap_rtdev_rtbitmap( |
| struct xfs_trans *tp, |
| const struct xfs_fsmap *keys, |
| struct xfs_getfsmap_info *info) |
| { |
| |
| struct xfs_rtalloc_rec ahigh = { 0 }; |
| struct xfs_mount *mp = tp->t_mountp; |
| xfs_rtblock_t start_rtb; |
| xfs_rtblock_t end_rtb; |
| xfs_rtxnum_t high; |
| uint64_t eofs; |
| int error; |
| |
| eofs = XFS_FSB_TO_BB(mp, xfs_rtx_to_rtb(mp, mp->m_sb.sb_rextents)); |
| if (keys[0].fmr_physical >= eofs) |
| return 0; |
| start_rtb = XFS_BB_TO_FSBT(mp, |
| keys[0].fmr_physical + keys[0].fmr_length); |
| end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); |
| |
| info->missing_owner = XFS_FMR_OWN_UNKNOWN; |
| |
| /* Adjust the low key if we are continuing from where we left off. */ |
| if (keys[0].fmr_length > 0) { |
| info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb); |
| if (info->low_daddr >= eofs) |
| return 0; |
| } |
| |
| trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb); |
| trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb); |
| |
| xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP); |
| |
| /* |
| * Set up query parameters to return free rtextents covering the range |
| * we want. |
| */ |
| high = xfs_rtb_to_rtxup(mp, end_rtb); |
| error = xfs_rtalloc_query_range(mp, tp, xfs_rtb_to_rtx(mp, start_rtb), |
| high, xfs_getfsmap_rtdev_rtbitmap_helper, info); |
| if (error) |
| goto err; |
| |
| /* |
| * Report any gaps at the end of the rtbitmap by simulating a null |
| * rmap starting at the block after the end of the query range. |
| */ |
| info->last = true; |
| ahigh.ar_startext = min(mp->m_sb.sb_rextents, high); |
| |
| error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info); |
| if (error) |
| goto err; |
| err: |
| xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); |
| return error; |
| } |
| #endif /* CONFIG_XFS_RT */ |
| |
| /* Do we recognize the device? */ |
| STATIC bool |
| xfs_getfsmap_is_valid_device( |
| struct xfs_mount *mp, |
| struct xfs_fsmap *fm) |
| { |
| if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || |
| fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) |
| return true; |
| if (mp->m_logdev_targp && |
| fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) |
| return true; |
| if (mp->m_rtdev_targp && |
| fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev)) |
| return true; |
| return false; |
| } |
| |
| /* Ensure that the low key is less than the high key. */ |
| STATIC bool |
| xfs_getfsmap_check_keys( |
| struct xfs_fsmap *low_key, |
| struct xfs_fsmap *high_key) |
| { |
| if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { |
| if (low_key->fmr_offset) |
| return false; |
| } |
| if (high_key->fmr_flags != -1U && |
| (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | |
| FMR_OF_EXTENT_MAP))) { |
| if (high_key->fmr_offset && high_key->fmr_offset != -1ULL) |
| return false; |
| } |
| if (high_key->fmr_length && high_key->fmr_length != -1ULL) |
| return false; |
| |
| if (low_key->fmr_device > high_key->fmr_device) |
| return false; |
| if (low_key->fmr_device < high_key->fmr_device) |
| return true; |
| |
| if (low_key->fmr_physical > high_key->fmr_physical) |
| return false; |
| if (low_key->fmr_physical < high_key->fmr_physical) |
| return true; |
| |
| if (low_key->fmr_owner > high_key->fmr_owner) |
| return false; |
| if (low_key->fmr_owner < high_key->fmr_owner) |
| return true; |
| |
| if (low_key->fmr_offset > high_key->fmr_offset) |
| return false; |
| if (low_key->fmr_offset < high_key->fmr_offset) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * There are only two devices if we didn't configure RT devices at build time. |
| */ |
| #ifdef CONFIG_XFS_RT |
| #define XFS_GETFSMAP_DEVS 3 |
| #else |
| #define XFS_GETFSMAP_DEVS 2 |
| #endif /* CONFIG_XFS_RT */ |
| |
| /* |
| * Get filesystem's extents as described in head, and format for output. Fills |
| * in the supplied records array until there are no more reverse mappings to |
| * return or head.fmh_entries == head.fmh_count. In the second case, this |
| * function returns -ECANCELED to indicate that more records would have been |
| * returned. |
| * |
| * Key to Confusion |
| * ---------------- |
| * There are multiple levels of keys and counters at work here: |
| * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; |
| * these reflect fs-wide sector addrs. |
| * dkeys -- fmh_keys used to query each device; |
| * these are fmh_keys but w/ the low key |
| * bumped up by fmr_length. |
| * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this |
| * is how we detect gaps in the fsmap |
| records and report them. |
| * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from |
| * dkeys; used to query the metadata. |
| */ |
| STATIC int |
| xfs_getfsmap( |
| struct xfs_mount *mp, |
| struct xfs_fsmap_head *head, |
| struct fsmap *fsmap_recs) |
| { |
| struct xfs_trans *tp = NULL; |
| struct xfs_fsmap dkeys[2]; /* per-dev keys */ |
| struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; |
| struct xfs_getfsmap_info info = { NULL }; |
| bool use_rmap; |
| int i; |
| int error = 0; |
| |
| if (head->fmh_iflags & ~FMH_IF_VALID) |
| return -EINVAL; |
| if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || |
| !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) |
| return -EINVAL; |
| if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1])) |
| return -EINVAL; |
| |
| use_rmap = xfs_has_rmapbt(mp) && |
| has_capability_noaudit(current, CAP_SYS_ADMIN); |
| head->fmh_entries = 0; |
| |
| /* Set up our device handlers. */ |
| memset(handlers, 0, sizeof(handlers)); |
| handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); |
| if (use_rmap) |
| handlers[0].fn = xfs_getfsmap_datadev_rmapbt; |
| else |
| handlers[0].fn = xfs_getfsmap_datadev_bnobt; |
| if (mp->m_logdev_targp != mp->m_ddev_targp) { |
| handlers[1].nr_sectors = XFS_FSB_TO_BB(mp, |
| mp->m_sb.sb_logblocks); |
| handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); |
| handlers[1].fn = xfs_getfsmap_logdev; |
| } |
| #ifdef CONFIG_XFS_RT |
| if (mp->m_rtdev_targp) { |
| handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); |
| handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev); |
| handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; |
| } |
| #endif /* CONFIG_XFS_RT */ |
| |
| xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), |
| xfs_getfsmap_dev_compare); |
| |
| /* |
| * To continue where we left off, we allow userspace to use the |
| * last mapping from a previous call as the low key of the next. |
| * This is identified by a non-zero length in the low key. We |
| * have to increment the low key in this scenario to ensure we |
| * don't return the same mapping again, and instead return the |
| * very next mapping. |
| * |
| * If the low key mapping refers to file data, the same physical |
| * blocks could be mapped to several other files/offsets. |
| * According to rmapbt record ordering, the minimal next |
| * possible record for the block range is the next starting |
| * offset in the same inode. Therefore, each fsmap backend bumps |
| * the file offset to continue the search appropriately. For |
| * all other low key mapping types (attr blocks, metadata), each |
| * fsmap backend bumps the physical offset as there can be no |
| * other mapping for the same physical block range. |
| */ |
| dkeys[0] = head->fmh_keys[0]; |
| memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); |
| |
| info.next_daddr = head->fmh_keys[0].fmr_physical + |
| head->fmh_keys[0].fmr_length; |
| info.end_daddr = XFS_BUF_DADDR_NULL; |
| info.fsmap_recs = fsmap_recs; |
| info.head = head; |
| |
| /* For each device we support... */ |
| for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { |
| /* Is this device within the range the user asked for? */ |
| if (!handlers[i].fn) |
| continue; |
| if (head->fmh_keys[0].fmr_device > handlers[i].dev) |
| continue; |
| if (head->fmh_keys[1].fmr_device < handlers[i].dev) |
| break; |
| |
| /* |
| * If this device number matches the high key, we have |
| * to pass the high key to the handler to limit the |
| * query results. If the device number exceeds the |
| * low key, zero out the low key so that we get |
| * everything from the beginning. |
| */ |
| if (handlers[i].dev == head->fmh_keys[1].fmr_device) { |
| dkeys[1] = head->fmh_keys[1]; |
| info.end_daddr = min(handlers[i].nr_sectors - 1, |
| dkeys[1].fmr_physical); |
| } |
| if (handlers[i].dev > head->fmh_keys[0].fmr_device) |
| memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); |
| |
| /* |
| * Grab an empty transaction so that we can use its recursive |
| * buffer locking abilities to detect cycles in the rmapbt |
| * without deadlocking. |
| */ |
| error = xfs_trans_alloc_empty(mp, &tp); |
| if (error) |
| break; |
| |
| info.dev = handlers[i].dev; |
| info.last = false; |
| info.pag = NULL; |
| info.low_daddr = XFS_BUF_DADDR_NULL; |
| info.low.rm_blockcount = 0; |
| error = handlers[i].fn(tp, dkeys, &info); |
| if (error) |
| break; |
| xfs_trans_cancel(tp); |
| tp = NULL; |
| info.next_daddr = 0; |
| } |
| |
| if (tp) |
| xfs_trans_cancel(tp); |
| head->fmh_oflags = FMH_OF_DEV_T; |
| return error; |
| } |
| |
| int |
| xfs_ioc_getfsmap( |
| struct xfs_inode *ip, |
| struct fsmap_head __user *arg) |
| { |
| struct xfs_fsmap_head xhead = {0}; |
| struct fsmap_head head; |
| struct fsmap *recs; |
| unsigned int count; |
| __u32 last_flags = 0; |
| bool done = false; |
| int error; |
| |
| if (copy_from_user(&head, arg, sizeof(struct fsmap_head))) |
| return -EFAULT; |
| if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) || |
| memchr_inv(head.fmh_keys[0].fmr_reserved, 0, |
| sizeof(head.fmh_keys[0].fmr_reserved)) || |
| memchr_inv(head.fmh_keys[1].fmr_reserved, 0, |
| sizeof(head.fmh_keys[1].fmr_reserved))) |
| return -EINVAL; |
| |
| /* |
| * Use an internal memory buffer so that we don't have to copy fsmap |
| * data to userspace while holding locks. Start by trying to allocate |
| * up to 128k for the buffer, but fall back to a single page if needed. |
| */ |
| count = min_t(unsigned int, head.fmh_count, |
| 131072 / sizeof(struct fsmap)); |
| recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL); |
| if (!recs) { |
| count = min_t(unsigned int, head.fmh_count, |
| PAGE_SIZE / sizeof(struct fsmap)); |
| recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL); |
| if (!recs) |
| return -ENOMEM; |
| } |
| |
| xhead.fmh_iflags = head.fmh_iflags; |
| xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]); |
| xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]); |
| |
| trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]); |
| trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]); |
| |
| head.fmh_entries = 0; |
| do { |
| struct fsmap __user *user_recs; |
| struct fsmap *last_rec; |
| |
| user_recs = &arg->fmh_recs[head.fmh_entries]; |
| xhead.fmh_entries = 0; |
| xhead.fmh_count = min_t(unsigned int, count, |
| head.fmh_count - head.fmh_entries); |
| |
| /* Run query, record how many entries we got. */ |
| error = xfs_getfsmap(ip->i_mount, &xhead, recs); |
| switch (error) { |
| case 0: |
| /* |
| * There are no more records in the result set. Copy |
| * whatever we got to userspace and break out. |
| */ |
| done = true; |
| break; |
| case -ECANCELED: |
| /* |
| * The internal memory buffer is full. Copy whatever |
| * records we got to userspace and go again if we have |
| * not yet filled the userspace buffer. |
| */ |
| error = 0; |
| break; |
| default: |
| goto out_free; |
| } |
| head.fmh_entries += xhead.fmh_entries; |
| head.fmh_oflags = xhead.fmh_oflags; |
| |
| /* |
| * If the caller wanted a record count or there aren't any |
| * new records to return, we're done. |
| */ |
| if (head.fmh_count == 0 || xhead.fmh_entries == 0) |
| break; |
| |
| /* Copy all the records we got out to userspace. */ |
| if (copy_to_user(user_recs, recs, |
| xhead.fmh_entries * sizeof(struct fsmap))) { |
| error = -EFAULT; |
| goto out_free; |
| } |
| |
| /* Remember the last record flags we copied to userspace. */ |
| last_rec = &recs[xhead.fmh_entries - 1]; |
| last_flags = last_rec->fmr_flags; |
| |
| /* Set up the low key for the next iteration. */ |
| xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec); |
| trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]); |
| } while (!done && head.fmh_entries < head.fmh_count); |
| |
| /* |
| * If there are no more records in the query result set and we're not |
| * in counting mode, mark the last record returned with the LAST flag. |
| */ |
| if (done && head.fmh_count > 0 && head.fmh_entries > 0) { |
| struct fsmap __user *user_rec; |
| |
| last_flags |= FMR_OF_LAST; |
| user_rec = &arg->fmh_recs[head.fmh_entries - 1]; |
| |
| if (copy_to_user(&user_rec->fmr_flags, &last_flags, |
| sizeof(last_flags))) { |
| error = -EFAULT; |
| goto out_free; |
| } |
| } |
| |
| /* copy back header */ |
| if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) { |
| error = -EFAULT; |
| goto out_free; |
| } |
| |
| out_free: |
| kvfree(recs); |
| return error; |
| } |