| // SPDX-License-Identifier: GPL-2.0+ |
| // |
| // Scalability test comparing RCU vs other mechanisms |
| // for acquiring references on objects. |
| // |
| // Copyright (C) Google, 2020. |
| // |
| // Author: Joel Fernandes <joel@joelfernandes.org> |
| |
| #define pr_fmt(fmt) fmt |
| |
| #include <linux/atomic.h> |
| #include <linux/bitops.h> |
| #include <linux/completion.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/kthread.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/notifier.h> |
| #include <linux/percpu.h> |
| #include <linux/rcupdate.h> |
| #include <linux/rcupdate_trace.h> |
| #include <linux/reboot.h> |
| #include <linux/sched.h> |
| #include <linux/seq_buf.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp.h> |
| #include <linux/stat.h> |
| #include <linux/srcu.h> |
| #include <linux/slab.h> |
| #include <linux/torture.h> |
| #include <linux/types.h> |
| |
| #include "rcu.h" |
| |
| #define SCALE_FLAG "-ref-scale: " |
| |
| #define SCALEOUT(s, x...) \ |
| pr_alert("%s" SCALE_FLAG s, scale_type, ## x) |
| |
| #define VERBOSE_SCALEOUT(s, x...) \ |
| do { \ |
| if (verbose) \ |
| pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \ |
| } while (0) |
| |
| static atomic_t verbose_batch_ctr; |
| |
| #define VERBOSE_SCALEOUT_BATCH(s, x...) \ |
| do { \ |
| if (verbose && \ |
| (verbose_batched <= 0 || \ |
| !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) { \ |
| schedule_timeout_uninterruptible(1); \ |
| pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \ |
| } \ |
| } while (0) |
| |
| #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x) |
| |
| MODULE_DESCRIPTION("Scalability test for object reference mechanisms"); |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>"); |
| |
| static char *scale_type = "rcu"; |
| module_param(scale_type, charp, 0444); |
| MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock."); |
| |
| torture_param(int, verbose, 0, "Enable verbose debugging printk()s"); |
| torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s"); |
| |
| // Wait until there are multiple CPUs before starting test. |
| torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0, |
| "Holdoff time before test start (s)"); |
| // Number of typesafe_lookup structures, that is, the degree of concurrency. |
| torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures."); |
| // Number of loops per experiment, all readers execute operations concurrently. |
| torture_param(long, loops, 10000, "Number of loops per experiment."); |
| // Number of readers, with -1 defaulting to about 75% of the CPUs. |
| torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs."); |
| // Number of runs. |
| torture_param(int, nruns, 30, "Number of experiments to run."); |
| // Reader delay in nanoseconds, 0 for no delay. |
| torture_param(int, readdelay, 0, "Read-side delay in nanoseconds."); |
| |
| #ifdef MODULE |
| # define REFSCALE_SHUTDOWN 0 |
| #else |
| # define REFSCALE_SHUTDOWN 1 |
| #endif |
| |
| torture_param(bool, shutdown, REFSCALE_SHUTDOWN, |
| "Shutdown at end of scalability tests."); |
| |
| struct reader_task { |
| struct task_struct *task; |
| int start_reader; |
| wait_queue_head_t wq; |
| u64 last_duration_ns; |
| }; |
| |
| static struct task_struct *shutdown_task; |
| static wait_queue_head_t shutdown_wq; |
| |
| static struct task_struct *main_task; |
| static wait_queue_head_t main_wq; |
| static int shutdown_start; |
| |
| static struct reader_task *reader_tasks; |
| |
| // Number of readers that are part of the current experiment. |
| static atomic_t nreaders_exp; |
| |
| // Use to wait for all threads to start. |
| static atomic_t n_init; |
| static atomic_t n_started; |
| static atomic_t n_warmedup; |
| static atomic_t n_cooleddown; |
| |
| // Track which experiment is currently running. |
| static int exp_idx; |
| |
| // Operations vector for selecting different types of tests. |
| struct ref_scale_ops { |
| bool (*init)(void); |
| void (*cleanup)(void); |
| void (*readsection)(const int nloops); |
| void (*delaysection)(const int nloops, const int udl, const int ndl); |
| const char *name; |
| }; |
| |
| static const struct ref_scale_ops *cur_ops; |
| |
| static void un_delay(const int udl, const int ndl) |
| { |
| if (udl) |
| udelay(udl); |
| if (ndl) |
| ndelay(ndl); |
| } |
| |
| static void ref_rcu_read_section(const int nloops) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| rcu_read_lock(); |
| rcu_read_unlock(); |
| } |
| } |
| |
| static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| rcu_read_lock(); |
| un_delay(udl, ndl); |
| rcu_read_unlock(); |
| } |
| } |
| |
| static bool rcu_sync_scale_init(void) |
| { |
| return true; |
| } |
| |
| static const struct ref_scale_ops rcu_ops = { |
| .init = rcu_sync_scale_init, |
| .readsection = ref_rcu_read_section, |
| .delaysection = ref_rcu_delay_section, |
| .name = "rcu" |
| }; |
| |
| // Definitions for SRCU ref scale testing. |
| DEFINE_STATIC_SRCU(srcu_refctl_scale); |
| static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale; |
| |
| static void srcu_ref_scale_read_section(const int nloops) |
| { |
| int i; |
| int idx; |
| |
| for (i = nloops; i >= 0; i--) { |
| idx = srcu_read_lock(srcu_ctlp); |
| srcu_read_unlock(srcu_ctlp, idx); |
| } |
| } |
| |
| static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| int idx; |
| |
| for (i = nloops; i >= 0; i--) { |
| idx = srcu_read_lock(srcu_ctlp); |
| un_delay(udl, ndl); |
| srcu_read_unlock(srcu_ctlp, idx); |
| } |
| } |
| |
| static const struct ref_scale_ops srcu_ops = { |
| .init = rcu_sync_scale_init, |
| .readsection = srcu_ref_scale_read_section, |
| .delaysection = srcu_ref_scale_delay_section, |
| .name = "srcu" |
| }; |
| |
| #ifdef CONFIG_TASKS_RCU |
| |
| // Definitions for RCU Tasks ref scale testing: Empty read markers. |
| // These definitions also work for RCU Rude readers. |
| static void rcu_tasks_ref_scale_read_section(const int nloops) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) |
| continue; |
| } |
| |
| static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) |
| un_delay(udl, ndl); |
| } |
| |
| static const struct ref_scale_ops rcu_tasks_ops = { |
| .init = rcu_sync_scale_init, |
| .readsection = rcu_tasks_ref_scale_read_section, |
| .delaysection = rcu_tasks_ref_scale_delay_section, |
| .name = "rcu-tasks" |
| }; |
| |
| #define RCU_TASKS_OPS &rcu_tasks_ops, |
| |
| #else // #ifdef CONFIG_TASKS_RCU |
| |
| #define RCU_TASKS_OPS |
| |
| #endif // #else // #ifdef CONFIG_TASKS_RCU |
| |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| |
| // Definitions for RCU Tasks Trace ref scale testing. |
| static void rcu_trace_ref_scale_read_section(const int nloops) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| rcu_read_lock_trace(); |
| rcu_read_unlock_trace(); |
| } |
| } |
| |
| static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| rcu_read_lock_trace(); |
| un_delay(udl, ndl); |
| rcu_read_unlock_trace(); |
| } |
| } |
| |
| static const struct ref_scale_ops rcu_trace_ops = { |
| .init = rcu_sync_scale_init, |
| .readsection = rcu_trace_ref_scale_read_section, |
| .delaysection = rcu_trace_ref_scale_delay_section, |
| .name = "rcu-trace" |
| }; |
| |
| #define RCU_TRACE_OPS &rcu_trace_ops, |
| |
| #else // #ifdef CONFIG_TASKS_TRACE_RCU |
| |
| #define RCU_TRACE_OPS |
| |
| #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU |
| |
| // Definitions for reference count |
| static atomic_t refcnt; |
| |
| static void ref_refcnt_section(const int nloops) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| atomic_inc(&refcnt); |
| atomic_dec(&refcnt); |
| } |
| } |
| |
| static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| atomic_inc(&refcnt); |
| un_delay(udl, ndl); |
| atomic_dec(&refcnt); |
| } |
| } |
| |
| static const struct ref_scale_ops refcnt_ops = { |
| .init = rcu_sync_scale_init, |
| .readsection = ref_refcnt_section, |
| .delaysection = ref_refcnt_delay_section, |
| .name = "refcnt" |
| }; |
| |
| // Definitions for rwlock |
| static rwlock_t test_rwlock; |
| |
| static bool ref_rwlock_init(void) |
| { |
| rwlock_init(&test_rwlock); |
| return true; |
| } |
| |
| static void ref_rwlock_section(const int nloops) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| read_lock(&test_rwlock); |
| read_unlock(&test_rwlock); |
| } |
| } |
| |
| static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| read_lock(&test_rwlock); |
| un_delay(udl, ndl); |
| read_unlock(&test_rwlock); |
| } |
| } |
| |
| static const struct ref_scale_ops rwlock_ops = { |
| .init = ref_rwlock_init, |
| .readsection = ref_rwlock_section, |
| .delaysection = ref_rwlock_delay_section, |
| .name = "rwlock" |
| }; |
| |
| // Definitions for rwsem |
| static struct rw_semaphore test_rwsem; |
| |
| static bool ref_rwsem_init(void) |
| { |
| init_rwsem(&test_rwsem); |
| return true; |
| } |
| |
| static void ref_rwsem_section(const int nloops) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| down_read(&test_rwsem); |
| up_read(&test_rwsem); |
| } |
| } |
| |
| static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| |
| for (i = nloops; i >= 0; i--) { |
| down_read(&test_rwsem); |
| un_delay(udl, ndl); |
| up_read(&test_rwsem); |
| } |
| } |
| |
| static const struct ref_scale_ops rwsem_ops = { |
| .init = ref_rwsem_init, |
| .readsection = ref_rwsem_section, |
| .delaysection = ref_rwsem_delay_section, |
| .name = "rwsem" |
| }; |
| |
| // Definitions for global spinlock |
| static DEFINE_RAW_SPINLOCK(test_lock); |
| |
| static void ref_lock_section(const int nloops) |
| { |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| raw_spin_lock(&test_lock); |
| raw_spin_unlock(&test_lock); |
| } |
| preempt_enable(); |
| } |
| |
| static void ref_lock_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| raw_spin_lock(&test_lock); |
| un_delay(udl, ndl); |
| raw_spin_unlock(&test_lock); |
| } |
| preempt_enable(); |
| } |
| |
| static const struct ref_scale_ops lock_ops = { |
| .readsection = ref_lock_section, |
| .delaysection = ref_lock_delay_section, |
| .name = "lock" |
| }; |
| |
| // Definitions for global irq-save spinlock |
| |
| static void ref_lock_irq_section(const int nloops) |
| { |
| unsigned long flags; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| raw_spin_lock_irqsave(&test_lock, flags); |
| raw_spin_unlock_irqrestore(&test_lock, flags); |
| } |
| preempt_enable(); |
| } |
| |
| static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| unsigned long flags; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| raw_spin_lock_irqsave(&test_lock, flags); |
| un_delay(udl, ndl); |
| raw_spin_unlock_irqrestore(&test_lock, flags); |
| } |
| preempt_enable(); |
| } |
| |
| static const struct ref_scale_ops lock_irq_ops = { |
| .readsection = ref_lock_irq_section, |
| .delaysection = ref_lock_irq_delay_section, |
| .name = "lock-irq" |
| }; |
| |
| // Definitions acquire-release. |
| static DEFINE_PER_CPU(unsigned long, test_acqrel); |
| |
| static void ref_acqrel_section(const int nloops) |
| { |
| unsigned long x; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| x = smp_load_acquire(this_cpu_ptr(&test_acqrel)); |
| smp_store_release(this_cpu_ptr(&test_acqrel), x + 1); |
| } |
| preempt_enable(); |
| } |
| |
| static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| unsigned long x; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| x = smp_load_acquire(this_cpu_ptr(&test_acqrel)); |
| un_delay(udl, ndl); |
| smp_store_release(this_cpu_ptr(&test_acqrel), x + 1); |
| } |
| preempt_enable(); |
| } |
| |
| static const struct ref_scale_ops acqrel_ops = { |
| .readsection = ref_acqrel_section, |
| .delaysection = ref_acqrel_delay_section, |
| .name = "acqrel" |
| }; |
| |
| static volatile u64 stopopts; |
| |
| static void ref_clock_section(const int nloops) |
| { |
| u64 x = 0; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) |
| x += ktime_get_real_fast_ns(); |
| preempt_enable(); |
| stopopts = x; |
| } |
| |
| static void ref_clock_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| u64 x = 0; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| x += ktime_get_real_fast_ns(); |
| un_delay(udl, ndl); |
| } |
| preempt_enable(); |
| stopopts = x; |
| } |
| |
| static const struct ref_scale_ops clock_ops = { |
| .readsection = ref_clock_section, |
| .delaysection = ref_clock_delay_section, |
| .name = "clock" |
| }; |
| |
| static void ref_jiffies_section(const int nloops) |
| { |
| u64 x = 0; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) |
| x += jiffies; |
| preempt_enable(); |
| stopopts = x; |
| } |
| |
| static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| u64 x = 0; |
| int i; |
| |
| preempt_disable(); |
| for (i = nloops; i >= 0; i--) { |
| x += jiffies; |
| un_delay(udl, ndl); |
| } |
| preempt_enable(); |
| stopopts = x; |
| } |
| |
| static const struct ref_scale_ops jiffies_ops = { |
| .readsection = ref_jiffies_section, |
| .delaysection = ref_jiffies_delay_section, |
| .name = "jiffies" |
| }; |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Methods leveraging SLAB_TYPESAFE_BY_RCU. |
| // |
| |
| // Item to look up in a typesafe manner. Array of pointers to these. |
| struct refscale_typesafe { |
| atomic_t rts_refctr; // Used by all flavors |
| spinlock_t rts_lock; |
| seqlock_t rts_seqlock; |
| unsigned int a; |
| unsigned int b; |
| }; |
| |
| static struct kmem_cache *typesafe_kmem_cachep; |
| static struct refscale_typesafe **rtsarray; |
| static long rtsarray_size; |
| static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand); |
| static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start); |
| static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start); |
| |
| // Conditionally acquire an explicit in-structure reference count. |
| static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start) |
| { |
| return atomic_inc_not_zero(&rtsp->rts_refctr); |
| } |
| |
| // Unconditionally release an explicit in-structure reference count. |
| static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start) |
| { |
| if (!atomic_dec_return(&rtsp->rts_refctr)) { |
| WRITE_ONCE(rtsp->a, rtsp->a + 1); |
| kmem_cache_free(typesafe_kmem_cachep, rtsp); |
| } |
| return true; |
| } |
| |
| // Unconditionally acquire an explicit in-structure spinlock. |
| static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) |
| { |
| spin_lock(&rtsp->rts_lock); |
| return true; |
| } |
| |
| // Unconditionally release an explicit in-structure spinlock. |
| static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start) |
| { |
| spin_unlock(&rtsp->rts_lock); |
| return true; |
| } |
| |
| // Unconditionally acquire an explicit in-structure sequence lock. |
| static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) |
| { |
| *start = read_seqbegin(&rtsp->rts_seqlock); |
| return true; |
| } |
| |
| // Conditionally release an explicit in-structure sequence lock. Return |
| // true if this release was successful, that is, if no retry is required. |
| static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start) |
| { |
| return !read_seqretry(&rtsp->rts_seqlock, start); |
| } |
| |
| // Do a read-side critical section with the specified delay in |
| // microseconds and nanoseconds inserted so as to increase probability |
| // of failure. |
| static void typesafe_delay_section(const int nloops, const int udl, const int ndl) |
| { |
| unsigned int a; |
| unsigned int b; |
| int i; |
| long idx; |
| struct refscale_typesafe *rtsp; |
| unsigned int start; |
| |
| for (i = nloops; i >= 0; i--) { |
| preempt_disable(); |
| idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size; |
| preempt_enable(); |
| retry: |
| rcu_read_lock(); |
| rtsp = rcu_dereference(rtsarray[idx]); |
| a = READ_ONCE(rtsp->a); |
| if (!rts_acquire(rtsp, &start)) { |
| rcu_read_unlock(); |
| goto retry; |
| } |
| if (a != READ_ONCE(rtsp->a)) { |
| (void)rts_release(rtsp, start); |
| rcu_read_unlock(); |
| goto retry; |
| } |
| un_delay(udl, ndl); |
| b = READ_ONCE(rtsp->a); |
| // Remember, seqlock read-side release can fail. |
| if (!rts_release(rtsp, start)) { |
| rcu_read_unlock(); |
| goto retry; |
| } |
| WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b); |
| b = rtsp->b; |
| rcu_read_unlock(); |
| WARN_ON_ONCE(a * a != b); |
| } |
| } |
| |
| // Because the acquisition and release methods are expensive, there |
| // is no point in optimizing away the un_delay() function's two checks. |
| // Thus simply define typesafe_read_section() as a simple wrapper around |
| // typesafe_delay_section(). |
| static void typesafe_read_section(const int nloops) |
| { |
| typesafe_delay_section(nloops, 0, 0); |
| } |
| |
| // Allocate and initialize one refscale_typesafe structure. |
| static struct refscale_typesafe *typesafe_alloc_one(void) |
| { |
| struct refscale_typesafe *rtsp; |
| |
| rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL); |
| if (!rtsp) |
| return NULL; |
| atomic_set(&rtsp->rts_refctr, 1); |
| WRITE_ONCE(rtsp->a, rtsp->a + 1); |
| WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a); |
| return rtsp; |
| } |
| |
| // Slab-allocator constructor for refscale_typesafe structures created |
| // out of a new slab of system memory. |
| static void refscale_typesafe_ctor(void *rtsp_in) |
| { |
| struct refscale_typesafe *rtsp = rtsp_in; |
| |
| spin_lock_init(&rtsp->rts_lock); |
| seqlock_init(&rtsp->rts_seqlock); |
| preempt_disable(); |
| rtsp->a = torture_random(this_cpu_ptr(&refscale_rand)); |
| preempt_enable(); |
| } |
| |
| static const struct ref_scale_ops typesafe_ref_ops; |
| static const struct ref_scale_ops typesafe_lock_ops; |
| static const struct ref_scale_ops typesafe_seqlock_ops; |
| |
| // Initialize for a typesafe test. |
| static bool typesafe_init(void) |
| { |
| long idx; |
| long si = lookup_instances; |
| |
| typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe", |
| sizeof(struct refscale_typesafe), sizeof(void *), |
| SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor); |
| if (!typesafe_kmem_cachep) |
| return false; |
| if (si < 0) |
| si = -si * nr_cpu_ids; |
| else if (si == 0) |
| si = nr_cpu_ids; |
| rtsarray_size = si; |
| rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL); |
| if (!rtsarray) |
| return false; |
| for (idx = 0; idx < rtsarray_size; idx++) { |
| rtsarray[idx] = typesafe_alloc_one(); |
| if (!rtsarray[idx]) |
| return false; |
| } |
| if (cur_ops == &typesafe_ref_ops) { |
| rts_acquire = typesafe_ref_acquire; |
| rts_release = typesafe_ref_release; |
| } else if (cur_ops == &typesafe_lock_ops) { |
| rts_acquire = typesafe_lock_acquire; |
| rts_release = typesafe_lock_release; |
| } else if (cur_ops == &typesafe_seqlock_ops) { |
| rts_acquire = typesafe_seqlock_acquire; |
| rts_release = typesafe_seqlock_release; |
| } else { |
| WARN_ON_ONCE(1); |
| return false; |
| } |
| return true; |
| } |
| |
| // Clean up after a typesafe test. |
| static void typesafe_cleanup(void) |
| { |
| long idx; |
| |
| if (rtsarray) { |
| for (idx = 0; idx < rtsarray_size; idx++) |
| kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]); |
| kfree(rtsarray); |
| rtsarray = NULL; |
| rtsarray_size = 0; |
| } |
| kmem_cache_destroy(typesafe_kmem_cachep); |
| typesafe_kmem_cachep = NULL; |
| rts_acquire = NULL; |
| rts_release = NULL; |
| } |
| |
| // The typesafe_init() function distinguishes these structures by address. |
| static const struct ref_scale_ops typesafe_ref_ops = { |
| .init = typesafe_init, |
| .cleanup = typesafe_cleanup, |
| .readsection = typesafe_read_section, |
| .delaysection = typesafe_delay_section, |
| .name = "typesafe_ref" |
| }; |
| |
| static const struct ref_scale_ops typesafe_lock_ops = { |
| .init = typesafe_init, |
| .cleanup = typesafe_cleanup, |
| .readsection = typesafe_read_section, |
| .delaysection = typesafe_delay_section, |
| .name = "typesafe_lock" |
| }; |
| |
| static const struct ref_scale_ops typesafe_seqlock_ops = { |
| .init = typesafe_init, |
| .cleanup = typesafe_cleanup, |
| .readsection = typesafe_read_section, |
| .delaysection = typesafe_delay_section, |
| .name = "typesafe_seqlock" |
| }; |
| |
| static void rcu_scale_one_reader(void) |
| { |
| if (readdelay <= 0) |
| cur_ops->readsection(loops); |
| else |
| cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000); |
| } |
| |
| // Reader kthread. Repeatedly does empty RCU read-side |
| // critical section, minimizing update-side interference. |
| static int |
| ref_scale_reader(void *arg) |
| { |
| unsigned long flags; |
| long me = (long)arg; |
| struct reader_task *rt = &(reader_tasks[me]); |
| u64 start; |
| s64 duration; |
| |
| VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me); |
| WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids))); |
| set_user_nice(current, MAX_NICE); |
| atomic_inc(&n_init); |
| if (holdoff) |
| schedule_timeout_interruptible(holdoff * HZ); |
| repeat: |
| VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id()); |
| |
| // Wait for signal that this reader can start. |
| wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) || |
| torture_must_stop()); |
| |
| if (torture_must_stop()) |
| goto end; |
| |
| // Make sure that the CPU is affinitized appropriately during testing. |
| WARN_ON_ONCE(raw_smp_processor_id() != me); |
| |
| WRITE_ONCE(rt->start_reader, 0); |
| if (!atomic_dec_return(&n_started)) |
| while (atomic_read_acquire(&n_started)) |
| cpu_relax(); |
| |
| VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx); |
| |
| |
| // To reduce noise, do an initial cache-warming invocation, check |
| // in, and then keep warming until everyone has checked in. |
| rcu_scale_one_reader(); |
| if (!atomic_dec_return(&n_warmedup)) |
| while (atomic_read_acquire(&n_warmedup)) |
| rcu_scale_one_reader(); |
| // Also keep interrupts disabled. This also has the effect |
| // of preventing entries into slow path for rcu_read_unlock(). |
| local_irq_save(flags); |
| start = ktime_get_mono_fast_ns(); |
| |
| rcu_scale_one_reader(); |
| |
| duration = ktime_get_mono_fast_ns() - start; |
| local_irq_restore(flags); |
| |
| rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration; |
| // To reduce runtime-skew noise, do maintain-load invocations until |
| // everyone is done. |
| if (!atomic_dec_return(&n_cooleddown)) |
| while (atomic_read_acquire(&n_cooleddown)) |
| rcu_scale_one_reader(); |
| |
| if (atomic_dec_and_test(&nreaders_exp)) |
| wake_up(&main_wq); |
| |
| VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)", |
| me, exp_idx, atomic_read(&nreaders_exp)); |
| |
| if (!torture_must_stop()) |
| goto repeat; |
| end: |
| torture_kthread_stopping("ref_scale_reader"); |
| return 0; |
| } |
| |
| static void reset_readers(void) |
| { |
| int i; |
| struct reader_task *rt; |
| |
| for (i = 0; i < nreaders; i++) { |
| rt = &(reader_tasks[i]); |
| |
| rt->last_duration_ns = 0; |
| } |
| } |
| |
| // Print the results of each reader and return the sum of all their durations. |
| static u64 process_durations(int n) |
| { |
| int i; |
| struct reader_task *rt; |
| struct seq_buf s; |
| char *buf; |
| u64 sum = 0; |
| |
| buf = kmalloc(800 + 64, GFP_KERNEL); |
| if (!buf) |
| return 0; |
| seq_buf_init(&s, buf, 800 + 64); |
| |
| seq_buf_printf(&s, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)", |
| exp_idx); |
| |
| for (i = 0; i < n && !torture_must_stop(); i++) { |
| rt = &(reader_tasks[i]); |
| |
| if (i % 5 == 0) |
| seq_buf_putc(&s, '\n'); |
| |
| if (seq_buf_used(&s) >= 800) { |
| pr_alert("%s", seq_buf_str(&s)); |
| seq_buf_clear(&s); |
| } |
| |
| seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns); |
| |
| sum += rt->last_duration_ns; |
| } |
| pr_alert("%s\n", seq_buf_str(&s)); |
| |
| kfree(buf); |
| return sum; |
| } |
| |
| // The main_func is the main orchestrator, it performs a bunch of |
| // experiments. For every experiment, it orders all the readers |
| // involved to start and waits for them to finish the experiment. It |
| // then reads their timestamps and starts the next experiment. Each |
| // experiment progresses from 1 concurrent reader to N of them at which |
| // point all the timestamps are printed. |
| static int main_func(void *arg) |
| { |
| int exp, r; |
| char buf1[64]; |
| char *buf; |
| u64 *result_avg; |
| |
| set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids)); |
| set_user_nice(current, MAX_NICE); |
| |
| VERBOSE_SCALEOUT("main_func task started"); |
| result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL); |
| buf = kzalloc(800 + 64, GFP_KERNEL); |
| if (!result_avg || !buf) { |
| SCALEOUT_ERRSTRING("out of memory"); |
| goto oom_exit; |
| } |
| if (holdoff) |
| schedule_timeout_interruptible(holdoff * HZ); |
| |
| // Wait for all threads to start. |
| atomic_inc(&n_init); |
| while (atomic_read(&n_init) < nreaders + 1) |
| schedule_timeout_uninterruptible(1); |
| |
| // Start exp readers up per experiment |
| for (exp = 0; exp < nruns && !torture_must_stop(); exp++) { |
| if (torture_must_stop()) |
| goto end; |
| |
| reset_readers(); |
| atomic_set(&nreaders_exp, nreaders); |
| atomic_set(&n_started, nreaders); |
| atomic_set(&n_warmedup, nreaders); |
| atomic_set(&n_cooleddown, nreaders); |
| |
| exp_idx = exp; |
| |
| for (r = 0; r < nreaders; r++) { |
| smp_store_release(&reader_tasks[r].start_reader, 1); |
| wake_up(&reader_tasks[r].wq); |
| } |
| |
| VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers", |
| nreaders); |
| |
| wait_event(main_wq, |
| !atomic_read(&nreaders_exp) || torture_must_stop()); |
| |
| VERBOSE_SCALEOUT("main_func: experiment ended"); |
| |
| if (torture_must_stop()) |
| goto end; |
| |
| result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops); |
| } |
| |
| // Print the average of all experiments |
| SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n"); |
| |
| pr_alert("Runs\tTime(ns)\n"); |
| for (exp = 0; exp < nruns; exp++) { |
| u64 avg; |
| u32 rem; |
| |
| avg = div_u64_rem(result_avg[exp], 1000, &rem); |
| sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem); |
| strcat(buf, buf1); |
| if (strlen(buf) >= 800) { |
| pr_alert("%s", buf); |
| buf[0] = 0; |
| } |
| } |
| |
| pr_alert("%s", buf); |
| |
| oom_exit: |
| // This will shutdown everything including us. |
| if (shutdown) { |
| shutdown_start = 1; |
| wake_up(&shutdown_wq); |
| } |
| |
| // Wait for torture to stop us |
| while (!torture_must_stop()) |
| schedule_timeout_uninterruptible(1); |
| |
| end: |
| torture_kthread_stopping("main_func"); |
| kfree(result_avg); |
| kfree(buf); |
| return 0; |
| } |
| |
| static void |
| ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag) |
| { |
| pr_alert("%s" SCALE_FLAG |
| "--- %s: verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag, |
| verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay); |
| } |
| |
| static void |
| ref_scale_cleanup(void) |
| { |
| int i; |
| |
| if (torture_cleanup_begin()) |
| return; |
| |
| if (!cur_ops) { |
| torture_cleanup_end(); |
| return; |
| } |
| |
| if (reader_tasks) { |
| for (i = 0; i < nreaders; i++) |
| torture_stop_kthread("ref_scale_reader", |
| reader_tasks[i].task); |
| } |
| kfree(reader_tasks); |
| |
| torture_stop_kthread("main_task", main_task); |
| kfree(main_task); |
| |
| // Do scale-type-specific cleanup operations. |
| if (cur_ops->cleanup != NULL) |
| cur_ops->cleanup(); |
| |
| torture_cleanup_end(); |
| } |
| |
| // Shutdown kthread. Just waits to be awakened, then shuts down system. |
| static int |
| ref_scale_shutdown(void *arg) |
| { |
| wait_event_idle(shutdown_wq, shutdown_start); |
| |
| smp_mb(); // Wake before output. |
| ref_scale_cleanup(); |
| kernel_power_off(); |
| |
| return -EINVAL; |
| } |
| |
| static int __init |
| ref_scale_init(void) |
| { |
| long i; |
| int firsterr = 0; |
| static const struct ref_scale_ops *scale_ops[] = { |
| &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops, |
| &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops, |
| &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops, |
| }; |
| |
| if (!torture_init_begin(scale_type, verbose)) |
| return -EBUSY; |
| |
| for (i = 0; i < ARRAY_SIZE(scale_ops); i++) { |
| cur_ops = scale_ops[i]; |
| if (strcmp(scale_type, cur_ops->name) == 0) |
| break; |
| } |
| if (i == ARRAY_SIZE(scale_ops)) { |
| pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type); |
| pr_alert("rcu-scale types:"); |
| for (i = 0; i < ARRAY_SIZE(scale_ops); i++) |
| pr_cont(" %s", scale_ops[i]->name); |
| pr_cont("\n"); |
| firsterr = -EINVAL; |
| cur_ops = NULL; |
| goto unwind; |
| } |
| if (cur_ops->init) |
| if (!cur_ops->init()) { |
| firsterr = -EUCLEAN; |
| goto unwind; |
| } |
| |
| ref_scale_print_module_parms(cur_ops, "Start of test"); |
| |
| // Shutdown task |
| if (shutdown) { |
| init_waitqueue_head(&shutdown_wq); |
| firsterr = torture_create_kthread(ref_scale_shutdown, NULL, |
| shutdown_task); |
| if (torture_init_error(firsterr)) |
| goto unwind; |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| // Reader tasks (default to ~75% of online CPUs). |
| if (nreaders < 0) |
| nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2); |
| if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops)) |
| loops = 1; |
| if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders)) |
| nreaders = 1; |
| if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns)) |
| nruns = 1; |
| reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]), |
| GFP_KERNEL); |
| if (!reader_tasks) { |
| SCALEOUT_ERRSTRING("out of memory"); |
| firsterr = -ENOMEM; |
| goto unwind; |
| } |
| |
| VERBOSE_SCALEOUT("Starting %d reader threads", nreaders); |
| |
| for (i = 0; i < nreaders; i++) { |
| init_waitqueue_head(&reader_tasks[i].wq); |
| firsterr = torture_create_kthread(ref_scale_reader, (void *)i, |
| reader_tasks[i].task); |
| if (torture_init_error(firsterr)) |
| goto unwind; |
| } |
| |
| // Main Task |
| init_waitqueue_head(&main_wq); |
| firsterr = torture_create_kthread(main_func, NULL, main_task); |
| if (torture_init_error(firsterr)) |
| goto unwind; |
| |
| torture_init_end(); |
| return 0; |
| |
| unwind: |
| torture_init_end(); |
| ref_scale_cleanup(); |
| if (shutdown) { |
| WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST)); |
| kernel_power_off(); |
| } |
| return firsterr; |
| } |
| |
| module_init(ref_scale_init); |
| module_exit(ref_scale_cleanup); |