| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/ceph/ceph_debug.h> |
| |
| #include <linux/crc32c.h> |
| #include <linux/ctype.h> |
| #include <linux/highmem.h> |
| #include <linux/inet.h> |
| #include <linux/kthread.h> |
| #include <linux/net.h> |
| #include <linux/nsproxy.h> |
| #include <linux/sched/mm.h> |
| #include <linux/slab.h> |
| #include <linux/socket.h> |
| #include <linux/string.h> |
| #ifdef CONFIG_BLOCK |
| #include <linux/bio.h> |
| #endif /* CONFIG_BLOCK */ |
| #include <linux/dns_resolver.h> |
| #include <net/tcp.h> |
| #include <trace/events/sock.h> |
| |
| #include <linux/ceph/ceph_features.h> |
| #include <linux/ceph/libceph.h> |
| #include <linux/ceph/messenger.h> |
| #include <linux/ceph/decode.h> |
| #include <linux/ceph/pagelist.h> |
| #include <linux/export.h> |
| |
| /* |
| * Ceph uses the messenger to exchange ceph_msg messages with other |
| * hosts in the system. The messenger provides ordered and reliable |
| * delivery. We tolerate TCP disconnects by reconnecting (with |
| * exponential backoff) in the case of a fault (disconnection, bad |
| * crc, protocol error). Acks allow sent messages to be discarded by |
| * the sender. |
| */ |
| |
| /* |
| * We track the state of the socket on a given connection using |
| * values defined below. The transition to a new socket state is |
| * handled by a function which verifies we aren't coming from an |
| * unexpected state. |
| * |
| * -------- |
| * | NEW* | transient initial state |
| * -------- |
| * | con_sock_state_init() |
| * v |
| * ---------- |
| * | CLOSED | initialized, but no socket (and no |
| * ---------- TCP connection) |
| * ^ \ |
| * | \ con_sock_state_connecting() |
| * | ---------------------- |
| * | \ |
| * + con_sock_state_closed() \ |
| * |+--------------------------- \ |
| * | \ \ \ |
| * | ----------- \ \ |
| * | | CLOSING | socket event; \ \ |
| * | ----------- await close \ \ |
| * | ^ \ | |
| * | | \ | |
| * | + con_sock_state_closing() \ | |
| * | / \ | | |
| * | / --------------- | | |
| * | / \ v v |
| * | / -------------- |
| * | / -----------------| CONNECTING | socket created, TCP |
| * | | / -------------- connect initiated |
| * | | | con_sock_state_connected() |
| * | | v |
| * ------------- |
| * | CONNECTED | TCP connection established |
| * ------------- |
| * |
| * State values for ceph_connection->sock_state; NEW is assumed to be 0. |
| */ |
| |
| #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ |
| #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ |
| #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ |
| #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ |
| #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ |
| |
| static bool con_flag_valid(unsigned long con_flag) |
| { |
| switch (con_flag) { |
| case CEPH_CON_F_LOSSYTX: |
| case CEPH_CON_F_KEEPALIVE_PENDING: |
| case CEPH_CON_F_WRITE_PENDING: |
| case CEPH_CON_F_SOCK_CLOSED: |
| case CEPH_CON_F_BACKOFF: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| clear_bit(con_flag, &con->flags); |
| } |
| |
| void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| set_bit(con_flag, &con->flags); |
| } |
| |
| bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| return test_bit(con_flag, &con->flags); |
| } |
| |
| bool ceph_con_flag_test_and_clear(struct ceph_connection *con, |
| unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| return test_and_clear_bit(con_flag, &con->flags); |
| } |
| |
| bool ceph_con_flag_test_and_set(struct ceph_connection *con, |
| unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| return test_and_set_bit(con_flag, &con->flags); |
| } |
| |
| /* Slab caches for frequently-allocated structures */ |
| |
| static struct kmem_cache *ceph_msg_cache; |
| |
| #ifdef CONFIG_LOCKDEP |
| static struct lock_class_key socket_class; |
| #endif |
| |
| static void queue_con(struct ceph_connection *con); |
| static void cancel_con(struct ceph_connection *con); |
| static void ceph_con_workfn(struct work_struct *); |
| static void con_fault(struct ceph_connection *con); |
| |
| /* |
| * Nicely render a sockaddr as a string. An array of formatted |
| * strings is used, to approximate reentrancy. |
| */ |
| #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ |
| #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) |
| #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) |
| #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ |
| |
| static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; |
| static atomic_t addr_str_seq = ATOMIC_INIT(0); |
| |
| struct page *ceph_zero_page; /* used in certain error cases */ |
| |
| const char *ceph_pr_addr(const struct ceph_entity_addr *addr) |
| { |
| int i; |
| char *s; |
| struct sockaddr_storage ss = addr->in_addr; /* align */ |
| struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; |
| struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; |
| |
| i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; |
| s = addr_str[i]; |
| |
| switch (ss.ss_family) { |
| case AF_INET: |
| snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu", |
| le32_to_cpu(addr->type), &in4->sin_addr, |
| ntohs(in4->sin_port)); |
| break; |
| |
| case AF_INET6: |
| snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu", |
| le32_to_cpu(addr->type), &in6->sin6_addr, |
| ntohs(in6->sin6_port)); |
| break; |
| |
| default: |
| snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", |
| ss.ss_family); |
| } |
| |
| return s; |
| } |
| EXPORT_SYMBOL(ceph_pr_addr); |
| |
| void ceph_encode_my_addr(struct ceph_messenger *msgr) |
| { |
| if (!ceph_msgr2(from_msgr(msgr))) { |
| memcpy(&msgr->my_enc_addr, &msgr->inst.addr, |
| sizeof(msgr->my_enc_addr)); |
| ceph_encode_banner_addr(&msgr->my_enc_addr); |
| } |
| } |
| |
| /* |
| * work queue for all reading and writing to/from the socket. |
| */ |
| static struct workqueue_struct *ceph_msgr_wq; |
| |
| static int ceph_msgr_slab_init(void) |
| { |
| BUG_ON(ceph_msg_cache); |
| ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); |
| if (!ceph_msg_cache) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void ceph_msgr_slab_exit(void) |
| { |
| BUG_ON(!ceph_msg_cache); |
| kmem_cache_destroy(ceph_msg_cache); |
| ceph_msg_cache = NULL; |
| } |
| |
| static void _ceph_msgr_exit(void) |
| { |
| if (ceph_msgr_wq) { |
| destroy_workqueue(ceph_msgr_wq); |
| ceph_msgr_wq = NULL; |
| } |
| |
| BUG_ON(!ceph_zero_page); |
| put_page(ceph_zero_page); |
| ceph_zero_page = NULL; |
| |
| ceph_msgr_slab_exit(); |
| } |
| |
| int __init ceph_msgr_init(void) |
| { |
| if (ceph_msgr_slab_init()) |
| return -ENOMEM; |
| |
| BUG_ON(ceph_zero_page); |
| ceph_zero_page = ZERO_PAGE(0); |
| get_page(ceph_zero_page); |
| |
| /* |
| * The number of active work items is limited by the number of |
| * connections, so leave @max_active at default. |
| */ |
| ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); |
| if (ceph_msgr_wq) |
| return 0; |
| |
| pr_err("msgr_init failed to create workqueue\n"); |
| _ceph_msgr_exit(); |
| |
| return -ENOMEM; |
| } |
| |
| void ceph_msgr_exit(void) |
| { |
| BUG_ON(ceph_msgr_wq == NULL); |
| |
| _ceph_msgr_exit(); |
| } |
| |
| void ceph_msgr_flush(void) |
| { |
| flush_workqueue(ceph_msgr_wq); |
| } |
| EXPORT_SYMBOL(ceph_msgr_flush); |
| |
| /* Connection socket state transition functions */ |
| |
| static void con_sock_state_init(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); |
| if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CLOSED); |
| } |
| |
| static void con_sock_state_connecting(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CONNECTING); |
| } |
| |
| static void con_sock_state_connected(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CONNECTED); |
| } |
| |
| static void con_sock_state_closing(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && |
| old_state != CON_SOCK_STATE_CONNECTED && |
| old_state != CON_SOCK_STATE_CLOSING)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CLOSING); |
| } |
| |
| static void con_sock_state_closed(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && |
| old_state != CON_SOCK_STATE_CLOSING && |
| old_state != CON_SOCK_STATE_CONNECTING && |
| old_state != CON_SOCK_STATE_CLOSED)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CLOSED); |
| } |
| |
| /* |
| * socket callback functions |
| */ |
| |
| /* data available on socket, or listen socket received a connect */ |
| static void ceph_sock_data_ready(struct sock *sk) |
| { |
| struct ceph_connection *con = sk->sk_user_data; |
| |
| trace_sk_data_ready(sk); |
| |
| if (atomic_read(&con->msgr->stopping)) { |
| return; |
| } |
| |
| if (sk->sk_state != TCP_CLOSE_WAIT) { |
| dout("%s %p state = %d, queueing work\n", __func__, |
| con, con->state); |
| queue_con(con); |
| } |
| } |
| |
| /* socket has buffer space for writing */ |
| static void ceph_sock_write_space(struct sock *sk) |
| { |
| struct ceph_connection *con = sk->sk_user_data; |
| |
| /* only queue to workqueue if there is data we want to write, |
| * and there is sufficient space in the socket buffer to accept |
| * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() |
| * doesn't get called again until try_write() fills the socket |
| * buffer. See net/ipv4/tcp_input.c:tcp_check_space() |
| * and net/core/stream.c:sk_stream_write_space(). |
| */ |
| if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) { |
| if (sk_stream_is_writeable(sk)) { |
| dout("%s %p queueing write work\n", __func__, con); |
| clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| queue_con(con); |
| } |
| } else { |
| dout("%s %p nothing to write\n", __func__, con); |
| } |
| } |
| |
| /* socket's state has changed */ |
| static void ceph_sock_state_change(struct sock *sk) |
| { |
| struct ceph_connection *con = sk->sk_user_data; |
| |
| dout("%s %p state = %d sk_state = %u\n", __func__, |
| con, con->state, sk->sk_state); |
| |
| switch (sk->sk_state) { |
| case TCP_CLOSE: |
| dout("%s TCP_CLOSE\n", __func__); |
| fallthrough; |
| case TCP_CLOSE_WAIT: |
| dout("%s TCP_CLOSE_WAIT\n", __func__); |
| con_sock_state_closing(con); |
| ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED); |
| queue_con(con); |
| break; |
| case TCP_ESTABLISHED: |
| dout("%s TCP_ESTABLISHED\n", __func__); |
| con_sock_state_connected(con); |
| queue_con(con); |
| break; |
| default: /* Everything else is uninteresting */ |
| break; |
| } |
| } |
| |
| /* |
| * set up socket callbacks |
| */ |
| static void set_sock_callbacks(struct socket *sock, |
| struct ceph_connection *con) |
| { |
| struct sock *sk = sock->sk; |
| sk->sk_user_data = con; |
| sk->sk_data_ready = ceph_sock_data_ready; |
| sk->sk_write_space = ceph_sock_write_space; |
| sk->sk_state_change = ceph_sock_state_change; |
| } |
| |
| |
| /* |
| * socket helpers |
| */ |
| |
| /* |
| * initiate connection to a remote socket. |
| */ |
| int ceph_tcp_connect(struct ceph_connection *con) |
| { |
| struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ |
| struct socket *sock; |
| unsigned int noio_flag; |
| int ret; |
| |
| dout("%s con %p peer_addr %s\n", __func__, con, |
| ceph_pr_addr(&con->peer_addr)); |
| BUG_ON(con->sock); |
| |
| /* sock_create_kern() allocates with GFP_KERNEL */ |
| noio_flag = memalloc_noio_save(); |
| ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, |
| SOCK_STREAM, IPPROTO_TCP, &sock); |
| memalloc_noio_restore(noio_flag); |
| if (ret) |
| return ret; |
| sock->sk->sk_allocation = GFP_NOFS; |
| sock->sk->sk_use_task_frag = false; |
| |
| #ifdef CONFIG_LOCKDEP |
| lockdep_set_class(&sock->sk->sk_lock, &socket_class); |
| #endif |
| |
| set_sock_callbacks(sock, con); |
| |
| con_sock_state_connecting(con); |
| ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss), |
| O_NONBLOCK); |
| if (ret == -EINPROGRESS) { |
| dout("connect %s EINPROGRESS sk_state = %u\n", |
| ceph_pr_addr(&con->peer_addr), |
| sock->sk->sk_state); |
| } else if (ret < 0) { |
| pr_err("connect %s error %d\n", |
| ceph_pr_addr(&con->peer_addr), ret); |
| sock_release(sock); |
| return ret; |
| } |
| |
| if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) |
| tcp_sock_set_nodelay(sock->sk); |
| |
| con->sock = sock; |
| return 0; |
| } |
| |
| /* |
| * Shutdown/close the socket for the given connection. |
| */ |
| int ceph_con_close_socket(struct ceph_connection *con) |
| { |
| int rc = 0; |
| |
| dout("%s con %p sock %p\n", __func__, con, con->sock); |
| if (con->sock) { |
| rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); |
| sock_release(con->sock); |
| con->sock = NULL; |
| } |
| |
| /* |
| * Forcibly clear the SOCK_CLOSED flag. It gets set |
| * independent of the connection mutex, and we could have |
| * received a socket close event before we had the chance to |
| * shut the socket down. |
| */ |
| ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED); |
| |
| con_sock_state_closed(con); |
| return rc; |
| } |
| |
| static void ceph_con_reset_protocol(struct ceph_connection *con) |
| { |
| dout("%s con %p\n", __func__, con); |
| |
| ceph_con_close_socket(con); |
| if (con->in_msg) { |
| WARN_ON(con->in_msg->con != con); |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| } |
| if (con->out_msg) { |
| WARN_ON(con->out_msg->con != con); |
| ceph_msg_put(con->out_msg); |
| con->out_msg = NULL; |
| } |
| if (con->bounce_page) { |
| __free_page(con->bounce_page); |
| con->bounce_page = NULL; |
| } |
| |
| if (ceph_msgr2(from_msgr(con->msgr))) |
| ceph_con_v2_reset_protocol(con); |
| else |
| ceph_con_v1_reset_protocol(con); |
| } |
| |
| /* |
| * Reset a connection. Discard all incoming and outgoing messages |
| * and clear *_seq state. |
| */ |
| static void ceph_msg_remove(struct ceph_msg *msg) |
| { |
| list_del_init(&msg->list_head); |
| |
| ceph_msg_put(msg); |
| } |
| |
| static void ceph_msg_remove_list(struct list_head *head) |
| { |
| while (!list_empty(head)) { |
| struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, |
| list_head); |
| ceph_msg_remove(msg); |
| } |
| } |
| |
| void ceph_con_reset_session(struct ceph_connection *con) |
| { |
| dout("%s con %p\n", __func__, con); |
| |
| WARN_ON(con->in_msg); |
| WARN_ON(con->out_msg); |
| ceph_msg_remove_list(&con->out_queue); |
| ceph_msg_remove_list(&con->out_sent); |
| con->out_seq = 0; |
| con->in_seq = 0; |
| con->in_seq_acked = 0; |
| |
| if (ceph_msgr2(from_msgr(con->msgr))) |
| ceph_con_v2_reset_session(con); |
| else |
| ceph_con_v1_reset_session(con); |
| } |
| |
| /* |
| * mark a peer down. drop any open connections. |
| */ |
| void ceph_con_close(struct ceph_connection *con) |
| { |
| mutex_lock(&con->mutex); |
| dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); |
| con->state = CEPH_CON_S_CLOSED; |
| |
| ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next |
| connect */ |
| ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING); |
| ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); |
| ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF); |
| |
| ceph_con_reset_protocol(con); |
| ceph_con_reset_session(con); |
| cancel_con(con); |
| mutex_unlock(&con->mutex); |
| } |
| EXPORT_SYMBOL(ceph_con_close); |
| |
| /* |
| * Reopen a closed connection, with a new peer address. |
| */ |
| void ceph_con_open(struct ceph_connection *con, |
| __u8 entity_type, __u64 entity_num, |
| struct ceph_entity_addr *addr) |
| { |
| mutex_lock(&con->mutex); |
| dout("con_open %p %s\n", con, ceph_pr_addr(addr)); |
| |
| WARN_ON(con->state != CEPH_CON_S_CLOSED); |
| con->state = CEPH_CON_S_PREOPEN; |
| |
| con->peer_name.type = (__u8) entity_type; |
| con->peer_name.num = cpu_to_le64(entity_num); |
| |
| memcpy(&con->peer_addr, addr, sizeof(*addr)); |
| con->delay = 0; /* reset backoff memory */ |
| mutex_unlock(&con->mutex); |
| queue_con(con); |
| } |
| EXPORT_SYMBOL(ceph_con_open); |
| |
| /* |
| * return true if this connection ever successfully opened |
| */ |
| bool ceph_con_opened(struct ceph_connection *con) |
| { |
| if (ceph_msgr2(from_msgr(con->msgr))) |
| return ceph_con_v2_opened(con); |
| |
| return ceph_con_v1_opened(con); |
| } |
| |
| /* |
| * initialize a new connection. |
| */ |
| void ceph_con_init(struct ceph_connection *con, void *private, |
| const struct ceph_connection_operations *ops, |
| struct ceph_messenger *msgr) |
| { |
| dout("con_init %p\n", con); |
| memset(con, 0, sizeof(*con)); |
| con->private = private; |
| con->ops = ops; |
| con->msgr = msgr; |
| |
| con_sock_state_init(con); |
| |
| mutex_init(&con->mutex); |
| INIT_LIST_HEAD(&con->out_queue); |
| INIT_LIST_HEAD(&con->out_sent); |
| INIT_DELAYED_WORK(&con->work, ceph_con_workfn); |
| |
| con->state = CEPH_CON_S_CLOSED; |
| } |
| EXPORT_SYMBOL(ceph_con_init); |
| |
| /* |
| * We maintain a global counter to order connection attempts. Get |
| * a unique seq greater than @gt. |
| */ |
| u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt) |
| { |
| u32 ret; |
| |
| spin_lock(&msgr->global_seq_lock); |
| if (msgr->global_seq < gt) |
| msgr->global_seq = gt; |
| ret = ++msgr->global_seq; |
| spin_unlock(&msgr->global_seq_lock); |
| return ret; |
| } |
| |
| /* |
| * Discard messages that have been acked by the server. |
| */ |
| void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq) |
| { |
| struct ceph_msg *msg; |
| u64 seq; |
| |
| dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq); |
| while (!list_empty(&con->out_sent)) { |
| msg = list_first_entry(&con->out_sent, struct ceph_msg, |
| list_head); |
| WARN_ON(msg->needs_out_seq); |
| seq = le64_to_cpu(msg->hdr.seq); |
| if (seq > ack_seq) |
| break; |
| |
| dout("%s con %p discarding msg %p seq %llu\n", __func__, con, |
| msg, seq); |
| ceph_msg_remove(msg); |
| } |
| } |
| |
| /* |
| * Discard messages that have been requeued in con_fault(), up to |
| * reconnect_seq. This avoids gratuitously resending messages that |
| * the server had received and handled prior to reconnect. |
| */ |
| void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq) |
| { |
| struct ceph_msg *msg; |
| u64 seq; |
| |
| dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq); |
| while (!list_empty(&con->out_queue)) { |
| msg = list_first_entry(&con->out_queue, struct ceph_msg, |
| list_head); |
| if (msg->needs_out_seq) |
| break; |
| seq = le64_to_cpu(msg->hdr.seq); |
| if (seq > reconnect_seq) |
| break; |
| |
| dout("%s con %p discarding msg %p seq %llu\n", __func__, con, |
| msg, seq); |
| ceph_msg_remove(msg); |
| } |
| } |
| |
| #ifdef CONFIG_BLOCK |
| |
| /* |
| * For a bio data item, a piece is whatever remains of the next |
| * entry in the current bio iovec, or the first entry in the next |
| * bio in the list. |
| */ |
| static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct ceph_bio_iter *it = &cursor->bio_iter; |
| |
| cursor->resid = min_t(size_t, length, data->bio_length); |
| *it = data->bio_pos; |
| if (cursor->resid < it->iter.bi_size) |
| it->iter.bi_size = cursor->resid; |
| |
| BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); |
| } |
| |
| static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, |
| size_t *length) |
| { |
| struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, |
| cursor->bio_iter.iter); |
| |
| *page_offset = bv.bv_offset; |
| *length = bv.bv_len; |
| return bv.bv_page; |
| } |
| |
| static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| struct ceph_bio_iter *it = &cursor->bio_iter; |
| struct page *page = bio_iter_page(it->bio, it->iter); |
| |
| BUG_ON(bytes > cursor->resid); |
| BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); |
| cursor->resid -= bytes; |
| bio_advance_iter(it->bio, &it->iter, bytes); |
| |
| if (!cursor->resid) |
| return false; /* no more data */ |
| |
| if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && |
| page == bio_iter_page(it->bio, it->iter))) |
| return false; /* more bytes to process in this segment */ |
| |
| if (!it->iter.bi_size) { |
| it->bio = it->bio->bi_next; |
| it->iter = it->bio->bi_iter; |
| if (cursor->resid < it->iter.bi_size) |
| it->iter.bi_size = cursor->resid; |
| } |
| |
| BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); |
| return true; |
| } |
| #endif /* CONFIG_BLOCK */ |
| |
| static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct bio_vec *bvecs = data->bvec_pos.bvecs; |
| |
| cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); |
| cursor->bvec_iter = data->bvec_pos.iter; |
| cursor->bvec_iter.bi_size = cursor->resid; |
| |
| BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); |
| } |
| |
| static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, |
| size_t *length) |
| { |
| struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, |
| cursor->bvec_iter); |
| |
| *page_offset = bv.bv_offset; |
| *length = bv.bv_len; |
| return bv.bv_page; |
| } |
| |
| static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; |
| struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); |
| |
| BUG_ON(bytes > cursor->resid); |
| BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); |
| cursor->resid -= bytes; |
| bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); |
| |
| if (!cursor->resid) |
| return false; /* no more data */ |
| |
| if (!bytes || (cursor->bvec_iter.bi_bvec_done && |
| page == bvec_iter_page(bvecs, cursor->bvec_iter))) |
| return false; /* more bytes to process in this segment */ |
| |
| BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); |
| return true; |
| } |
| |
| /* |
| * For a page array, a piece comes from the first page in the array |
| * that has not already been fully consumed. |
| */ |
| static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| int page_count; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGES); |
| |
| BUG_ON(!data->pages); |
| BUG_ON(!data->length); |
| |
| cursor->resid = min(length, data->length); |
| page_count = calc_pages_for(data->alignment, (u64)data->length); |
| cursor->page_offset = data->alignment & ~PAGE_MASK; |
| cursor->page_index = 0; |
| BUG_ON(page_count > (int)USHRT_MAX); |
| cursor->page_count = (unsigned short)page_count; |
| BUG_ON(length > SIZE_MAX - cursor->page_offset); |
| } |
| |
| static struct page * |
| ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, size_t *length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGES); |
| |
| BUG_ON(cursor->page_index >= cursor->page_count); |
| BUG_ON(cursor->page_offset >= PAGE_SIZE); |
| |
| *page_offset = cursor->page_offset; |
| *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); |
| return data->pages[cursor->page_index]; |
| } |
| |
| static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); |
| |
| BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); |
| |
| /* Advance the cursor page offset */ |
| |
| cursor->resid -= bytes; |
| cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; |
| if (!bytes || cursor->page_offset) |
| return false; /* more bytes to process in the current page */ |
| |
| if (!cursor->resid) |
| return false; /* no more data */ |
| |
| /* Move on to the next page; offset is already at 0 */ |
| |
| BUG_ON(cursor->page_index >= cursor->page_count); |
| cursor->page_index++; |
| return true; |
| } |
| |
| /* |
| * For a pagelist, a piece is whatever remains to be consumed in the |
| * first page in the list, or the front of the next page. |
| */ |
| static void |
| ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct ceph_pagelist *pagelist; |
| struct page *page; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); |
| |
| pagelist = data->pagelist; |
| BUG_ON(!pagelist); |
| |
| if (!length) |
| return; /* pagelist can be assigned but empty */ |
| |
| BUG_ON(list_empty(&pagelist->head)); |
| page = list_first_entry(&pagelist->head, struct page, lru); |
| |
| cursor->resid = min(length, pagelist->length); |
| cursor->page = page; |
| cursor->offset = 0; |
| } |
| |
| static struct page * |
| ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, size_t *length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct ceph_pagelist *pagelist; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); |
| |
| pagelist = data->pagelist; |
| BUG_ON(!pagelist); |
| |
| BUG_ON(!cursor->page); |
| BUG_ON(cursor->offset + cursor->resid != pagelist->length); |
| |
| /* offset of first page in pagelist is always 0 */ |
| *page_offset = cursor->offset & ~PAGE_MASK; |
| *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); |
| return cursor->page; |
| } |
| |
| static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct ceph_pagelist *pagelist; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); |
| |
| pagelist = data->pagelist; |
| BUG_ON(!pagelist); |
| |
| BUG_ON(cursor->offset + cursor->resid != pagelist->length); |
| BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); |
| |
| /* Advance the cursor offset */ |
| |
| cursor->resid -= bytes; |
| cursor->offset += bytes; |
| /* offset of first page in pagelist is always 0 */ |
| if (!bytes || cursor->offset & ~PAGE_MASK) |
| return false; /* more bytes to process in the current page */ |
| |
| if (!cursor->resid) |
| return false; /* no more data */ |
| |
| /* Move on to the next page */ |
| |
| BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); |
| cursor->page = list_next_entry(cursor->page, lru); |
| return true; |
| } |
| |
| static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| |
| cursor->iov_iter = data->iter; |
| cursor->lastlen = 0; |
| iov_iter_truncate(&cursor->iov_iter, length); |
| cursor->resid = iov_iter_count(&cursor->iov_iter); |
| } |
| |
| static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, size_t *length) |
| { |
| struct page *page; |
| ssize_t len; |
| |
| if (cursor->lastlen) |
| iov_iter_revert(&cursor->iov_iter, cursor->lastlen); |
| |
| len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE, |
| 1, page_offset); |
| BUG_ON(len < 0); |
| |
| cursor->lastlen = len; |
| |
| /* |
| * FIXME: The assumption is that the pages represented by the iov_iter |
| * are pinned, with the references held by the upper-level |
| * callers, or by virtue of being under writeback. Eventually, |
| * we'll get an iov_iter_get_pages2 variant that doesn't take |
| * page refs. Until then, just put the page ref. |
| */ |
| VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page); |
| put_page(page); |
| |
| *length = min_t(size_t, len, cursor->resid); |
| return page; |
| } |
| |
| static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| BUG_ON(bytes > cursor->resid); |
| cursor->resid -= bytes; |
| |
| if (bytes < cursor->lastlen) { |
| cursor->lastlen -= bytes; |
| } else { |
| iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen); |
| cursor->lastlen = 0; |
| } |
| |
| return cursor->resid; |
| } |
| |
| /* |
| * Message data is handled (sent or received) in pieces, where each |
| * piece resides on a single page. The network layer might not |
| * consume an entire piece at once. A data item's cursor keeps |
| * track of which piece is next to process and how much remains to |
| * be processed in that piece. It also tracks whether the current |
| * piece is the last one in the data item. |
| */ |
| static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) |
| { |
| size_t length = cursor->total_resid; |
| |
| switch (cursor->data->type) { |
| case CEPH_MSG_DATA_PAGELIST: |
| ceph_msg_data_pagelist_cursor_init(cursor, length); |
| break; |
| case CEPH_MSG_DATA_PAGES: |
| ceph_msg_data_pages_cursor_init(cursor, length); |
| break; |
| #ifdef CONFIG_BLOCK |
| case CEPH_MSG_DATA_BIO: |
| ceph_msg_data_bio_cursor_init(cursor, length); |
| break; |
| #endif /* CONFIG_BLOCK */ |
| case CEPH_MSG_DATA_BVECS: |
| ceph_msg_data_bvecs_cursor_init(cursor, length); |
| break; |
| case CEPH_MSG_DATA_ITER: |
| ceph_msg_data_iter_cursor_init(cursor, length); |
| break; |
| case CEPH_MSG_DATA_NONE: |
| default: |
| /* BUG(); */ |
| break; |
| } |
| cursor->need_crc = true; |
| } |
| |
| void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor, |
| struct ceph_msg *msg, size_t length) |
| { |
| BUG_ON(!length); |
| BUG_ON(length > msg->data_length); |
| BUG_ON(!msg->num_data_items); |
| |
| cursor->total_resid = length; |
| cursor->data = msg->data; |
| cursor->sr_resid = 0; |
| |
| __ceph_msg_data_cursor_init(cursor); |
| } |
| |
| /* |
| * Return the page containing the next piece to process for a given |
| * data item, and supply the page offset and length of that piece. |
| * Indicate whether this is the last piece in this data item. |
| */ |
| struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, size_t *length) |
| { |
| struct page *page; |
| |
| switch (cursor->data->type) { |
| case CEPH_MSG_DATA_PAGELIST: |
| page = ceph_msg_data_pagelist_next(cursor, page_offset, length); |
| break; |
| case CEPH_MSG_DATA_PAGES: |
| page = ceph_msg_data_pages_next(cursor, page_offset, length); |
| break; |
| #ifdef CONFIG_BLOCK |
| case CEPH_MSG_DATA_BIO: |
| page = ceph_msg_data_bio_next(cursor, page_offset, length); |
| break; |
| #endif /* CONFIG_BLOCK */ |
| case CEPH_MSG_DATA_BVECS: |
| page = ceph_msg_data_bvecs_next(cursor, page_offset, length); |
| break; |
| case CEPH_MSG_DATA_ITER: |
| page = ceph_msg_data_iter_next(cursor, page_offset, length); |
| break; |
| case CEPH_MSG_DATA_NONE: |
| default: |
| page = NULL; |
| break; |
| } |
| |
| BUG_ON(!page); |
| BUG_ON(*page_offset + *length > PAGE_SIZE); |
| BUG_ON(!*length); |
| BUG_ON(*length > cursor->resid); |
| |
| return page; |
| } |
| |
| /* |
| * Returns true if the result moves the cursor on to the next piece |
| * of the data item. |
| */ |
| void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) |
| { |
| bool new_piece; |
| |
| BUG_ON(bytes > cursor->resid); |
| switch (cursor->data->type) { |
| case CEPH_MSG_DATA_PAGELIST: |
| new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); |
| break; |
| case CEPH_MSG_DATA_PAGES: |
| new_piece = ceph_msg_data_pages_advance(cursor, bytes); |
| break; |
| #ifdef CONFIG_BLOCK |
| case CEPH_MSG_DATA_BIO: |
| new_piece = ceph_msg_data_bio_advance(cursor, bytes); |
| break; |
| #endif /* CONFIG_BLOCK */ |
| case CEPH_MSG_DATA_BVECS: |
| new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); |
| break; |
| case CEPH_MSG_DATA_ITER: |
| new_piece = ceph_msg_data_iter_advance(cursor, bytes); |
| break; |
| case CEPH_MSG_DATA_NONE: |
| default: |
| BUG(); |
| break; |
| } |
| cursor->total_resid -= bytes; |
| |
| if (!cursor->resid && cursor->total_resid) { |
| cursor->data++; |
| __ceph_msg_data_cursor_init(cursor); |
| new_piece = true; |
| } |
| cursor->need_crc = new_piece; |
| } |
| |
| u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset, |
| unsigned int length) |
| { |
| char *kaddr; |
| |
| kaddr = kmap(page); |
| BUG_ON(kaddr == NULL); |
| crc = crc32c(crc, kaddr + page_offset, length); |
| kunmap(page); |
| |
| return crc; |
| } |
| |
| bool ceph_addr_is_blank(const struct ceph_entity_addr *addr) |
| { |
| struct sockaddr_storage ss = addr->in_addr; /* align */ |
| struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; |
| struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; |
| |
| switch (ss.ss_family) { |
| case AF_INET: |
| return addr4->s_addr == htonl(INADDR_ANY); |
| case AF_INET6: |
| return ipv6_addr_any(addr6); |
| default: |
| return true; |
| } |
| } |
| EXPORT_SYMBOL(ceph_addr_is_blank); |
| |
| int ceph_addr_port(const struct ceph_entity_addr *addr) |
| { |
| switch (get_unaligned(&addr->in_addr.ss_family)) { |
| case AF_INET: |
| return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); |
| case AF_INET6: |
| return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); |
| } |
| return 0; |
| } |
| |
| void ceph_addr_set_port(struct ceph_entity_addr *addr, int p) |
| { |
| switch (get_unaligned(&addr->in_addr.ss_family)) { |
| case AF_INET: |
| put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); |
| break; |
| case AF_INET6: |
| put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); |
| break; |
| } |
| } |
| |
| /* |
| * Unlike other *_pton function semantics, zero indicates success. |
| */ |
| static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, |
| char delim, const char **ipend) |
| { |
| memset(&addr->in_addr, 0, sizeof(addr->in_addr)); |
| |
| if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { |
| put_unaligned(AF_INET, &addr->in_addr.ss_family); |
| return 0; |
| } |
| |
| if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { |
| put_unaligned(AF_INET6, &addr->in_addr.ss_family); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * Extract hostname string and resolve using kernel DNS facility. |
| */ |
| #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER |
| static int ceph_dns_resolve_name(const char *name, size_t namelen, |
| struct ceph_entity_addr *addr, char delim, const char **ipend) |
| { |
| const char *end, *delim_p; |
| char *colon_p, *ip_addr = NULL; |
| int ip_len, ret; |
| |
| /* |
| * The end of the hostname occurs immediately preceding the delimiter or |
| * the port marker (':') where the delimiter takes precedence. |
| */ |
| delim_p = memchr(name, delim, namelen); |
| colon_p = memchr(name, ':', namelen); |
| |
| if (delim_p && colon_p) |
| end = min(delim_p, colon_p); |
| else if (!delim_p && colon_p) |
| end = colon_p; |
| else { |
| end = delim_p; |
| if (!end) /* case: hostname:/ */ |
| end = name + namelen; |
| } |
| |
| if (end <= name) |
| return -EINVAL; |
| |
| /* do dns_resolve upcall */ |
| ip_len = dns_query(current->nsproxy->net_ns, |
| NULL, name, end - name, NULL, &ip_addr, NULL, false); |
| if (ip_len > 0) |
| ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); |
| else |
| ret = -ESRCH; |
| |
| kfree(ip_addr); |
| |
| *ipend = end; |
| |
| pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, |
| ret, ret ? "failed" : ceph_pr_addr(addr)); |
| |
| return ret; |
| } |
| #else |
| static inline int ceph_dns_resolve_name(const char *name, size_t namelen, |
| struct ceph_entity_addr *addr, char delim, const char **ipend) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| /* |
| * Parse a server name (IP or hostname). If a valid IP address is not found |
| * then try to extract a hostname to resolve using userspace DNS upcall. |
| */ |
| static int ceph_parse_server_name(const char *name, size_t namelen, |
| struct ceph_entity_addr *addr, char delim, const char **ipend) |
| { |
| int ret; |
| |
| ret = ceph_pton(name, namelen, addr, delim, ipend); |
| if (ret) |
| ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); |
| |
| return ret; |
| } |
| |
| /* |
| * Parse an ip[:port] list into an addr array. Use the default |
| * monitor port if a port isn't specified. |
| */ |
| int ceph_parse_ips(const char *c, const char *end, |
| struct ceph_entity_addr *addr, |
| int max_count, int *count, char delim) |
| { |
| int i, ret = -EINVAL; |
| const char *p = c; |
| |
| dout("parse_ips on '%.*s'\n", (int)(end-c), c); |
| for (i = 0; i < max_count; i++) { |
| char cur_delim = delim; |
| const char *ipend; |
| int port; |
| |
| if (*p == '[') { |
| cur_delim = ']'; |
| p++; |
| } |
| |
| ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim, |
| &ipend); |
| if (ret) |
| goto bad; |
| ret = -EINVAL; |
| |
| p = ipend; |
| |
| if (cur_delim == ']') { |
| if (*p != ']') { |
| dout("missing matching ']'\n"); |
| goto bad; |
| } |
| p++; |
| } |
| |
| /* port? */ |
| if (p < end && *p == ':') { |
| port = 0; |
| p++; |
| while (p < end && *p >= '0' && *p <= '9') { |
| port = (port * 10) + (*p - '0'); |
| p++; |
| } |
| if (port == 0) |
| port = CEPH_MON_PORT; |
| else if (port > 65535) |
| goto bad; |
| } else { |
| port = CEPH_MON_PORT; |
| } |
| |
| ceph_addr_set_port(&addr[i], port); |
| /* |
| * We want the type to be set according to ms_mode |
| * option, but options are normally parsed after mon |
| * addresses. Rather than complicating parsing, set |
| * to LEGACY and override in build_initial_monmap() |
| * for mon addresses and ceph_messenger_init() for |
| * ip option. |
| */ |
| addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY; |
| addr[i].nonce = 0; |
| |
| dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i])); |
| |
| if (p == end) |
| break; |
| if (*p != delim) |
| goto bad; |
| p++; |
| } |
| |
| if (p != end) |
| goto bad; |
| |
| if (count) |
| *count = i + 1; |
| return 0; |
| |
| bad: |
| return ret; |
| } |
| |
| /* |
| * Process message. This happens in the worker thread. The callback should |
| * be careful not to do anything that waits on other incoming messages or it |
| * may deadlock. |
| */ |
| void ceph_con_process_message(struct ceph_connection *con) |
| { |
| struct ceph_msg *msg = con->in_msg; |
| |
| BUG_ON(con->in_msg->con != con); |
| con->in_msg = NULL; |
| |
| /* if first message, set peer_name */ |
| if (con->peer_name.type == 0) |
| con->peer_name = msg->hdr.src; |
| |
| con->in_seq++; |
| mutex_unlock(&con->mutex); |
| |
| dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n", |
| msg, le64_to_cpu(msg->hdr.seq), |
| ENTITY_NAME(msg->hdr.src), |
| le16_to_cpu(msg->hdr.type), |
| ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), |
| le32_to_cpu(msg->hdr.front_len), |
| le32_to_cpu(msg->hdr.middle_len), |
| le32_to_cpu(msg->hdr.data_len), |
| con->in_front_crc, con->in_middle_crc, con->in_data_crc); |
| con->ops->dispatch(con, msg); |
| |
| mutex_lock(&con->mutex); |
| } |
| |
| /* |
| * Atomically queue work on a connection after the specified delay. |
| * Bump @con reference to avoid races with connection teardown. |
| * Returns 0 if work was queued, or an error code otherwise. |
| */ |
| static int queue_con_delay(struct ceph_connection *con, unsigned long delay) |
| { |
| if (!con->ops->get(con)) { |
| dout("%s %p ref count 0\n", __func__, con); |
| return -ENOENT; |
| } |
| |
| if (delay >= HZ) |
| delay = round_jiffies_relative(delay); |
| |
| dout("%s %p %lu\n", __func__, con, delay); |
| if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { |
| dout("%s %p - already queued\n", __func__, con); |
| con->ops->put(con); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static void queue_con(struct ceph_connection *con) |
| { |
| (void) queue_con_delay(con, 0); |
| } |
| |
| static void cancel_con(struct ceph_connection *con) |
| { |
| if (cancel_delayed_work(&con->work)) { |
| dout("%s %p\n", __func__, con); |
| con->ops->put(con); |
| } |
| } |
| |
| static bool con_sock_closed(struct ceph_connection *con) |
| { |
| if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED)) |
| return false; |
| |
| #define CASE(x) \ |
| case CEPH_CON_S_ ## x: \ |
| con->error_msg = "socket closed (con state " #x ")"; \ |
| break; |
| |
| switch (con->state) { |
| CASE(CLOSED); |
| CASE(PREOPEN); |
| CASE(V1_BANNER); |
| CASE(V1_CONNECT_MSG); |
| CASE(V2_BANNER_PREFIX); |
| CASE(V2_BANNER_PAYLOAD); |
| CASE(V2_HELLO); |
| CASE(V2_AUTH); |
| CASE(V2_AUTH_SIGNATURE); |
| CASE(V2_SESSION_CONNECT); |
| CASE(V2_SESSION_RECONNECT); |
| CASE(OPEN); |
| CASE(STANDBY); |
| default: |
| BUG(); |
| } |
| #undef CASE |
| |
| return true; |
| } |
| |
| static bool con_backoff(struct ceph_connection *con) |
| { |
| int ret; |
| |
| if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF)) |
| return false; |
| |
| ret = queue_con_delay(con, con->delay); |
| if (ret) { |
| dout("%s: con %p FAILED to back off %lu\n", __func__, |
| con, con->delay); |
| BUG_ON(ret == -ENOENT); |
| ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); |
| } |
| |
| return true; |
| } |
| |
| /* Finish fault handling; con->mutex must *not* be held here */ |
| |
| static void con_fault_finish(struct ceph_connection *con) |
| { |
| dout("%s %p\n", __func__, con); |
| |
| /* |
| * in case we faulted due to authentication, invalidate our |
| * current tickets so that we can get new ones. |
| */ |
| if (con->v1.auth_retry) { |
| dout("auth_retry %d, invalidating\n", con->v1.auth_retry); |
| if (con->ops->invalidate_authorizer) |
| con->ops->invalidate_authorizer(con); |
| con->v1.auth_retry = 0; |
| } |
| |
| if (con->ops->fault) |
| con->ops->fault(con); |
| } |
| |
| /* |
| * Do some work on a connection. Drop a connection ref when we're done. |
| */ |
| static void ceph_con_workfn(struct work_struct *work) |
| { |
| struct ceph_connection *con = container_of(work, struct ceph_connection, |
| work.work); |
| bool fault; |
| |
| mutex_lock(&con->mutex); |
| while (true) { |
| int ret; |
| |
| if ((fault = con_sock_closed(con))) { |
| dout("%s: con %p SOCK_CLOSED\n", __func__, con); |
| break; |
| } |
| if (con_backoff(con)) { |
| dout("%s: con %p BACKOFF\n", __func__, con); |
| break; |
| } |
| if (con->state == CEPH_CON_S_STANDBY) { |
| dout("%s: con %p STANDBY\n", __func__, con); |
| break; |
| } |
| if (con->state == CEPH_CON_S_CLOSED) { |
| dout("%s: con %p CLOSED\n", __func__, con); |
| BUG_ON(con->sock); |
| break; |
| } |
| if (con->state == CEPH_CON_S_PREOPEN) { |
| dout("%s: con %p PREOPEN\n", __func__, con); |
| BUG_ON(con->sock); |
| } |
| |
| if (ceph_msgr2(from_msgr(con->msgr))) |
| ret = ceph_con_v2_try_read(con); |
| else |
| ret = ceph_con_v1_try_read(con); |
| if (ret < 0) { |
| if (ret == -EAGAIN) |
| continue; |
| if (!con->error_msg) |
| con->error_msg = "socket error on read"; |
| fault = true; |
| break; |
| } |
| |
| if (ceph_msgr2(from_msgr(con->msgr))) |
| ret = ceph_con_v2_try_write(con); |
| else |
| ret = ceph_con_v1_try_write(con); |
| if (ret < 0) { |
| if (ret == -EAGAIN) |
| continue; |
| if (!con->error_msg) |
| con->error_msg = "socket error on write"; |
| fault = true; |
| } |
| |
| break; /* If we make it to here, we're done */ |
| } |
| if (fault) |
| con_fault(con); |
| mutex_unlock(&con->mutex); |
| |
| if (fault) |
| con_fault_finish(con); |
| |
| con->ops->put(con); |
| } |
| |
| /* |
| * Generic error/fault handler. A retry mechanism is used with |
| * exponential backoff |
| */ |
| static void con_fault(struct ceph_connection *con) |
| { |
| dout("fault %p state %d to peer %s\n", |
| con, con->state, ceph_pr_addr(&con->peer_addr)); |
| |
| pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), |
| ceph_pr_addr(&con->peer_addr), con->error_msg); |
| con->error_msg = NULL; |
| |
| WARN_ON(con->state == CEPH_CON_S_STANDBY || |
| con->state == CEPH_CON_S_CLOSED); |
| |
| ceph_con_reset_protocol(con); |
| |
| if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) { |
| dout("fault on LOSSYTX channel, marking CLOSED\n"); |
| con->state = CEPH_CON_S_CLOSED; |
| return; |
| } |
| |
| /* Requeue anything that hasn't been acked */ |
| list_splice_init(&con->out_sent, &con->out_queue); |
| |
| /* If there are no messages queued or keepalive pending, place |
| * the connection in a STANDBY state */ |
| if (list_empty(&con->out_queue) && |
| !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) { |
| dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); |
| ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); |
| con->state = CEPH_CON_S_STANDBY; |
| } else { |
| /* retry after a delay. */ |
| con->state = CEPH_CON_S_PREOPEN; |
| if (!con->delay) { |
| con->delay = BASE_DELAY_INTERVAL; |
| } else if (con->delay < MAX_DELAY_INTERVAL) { |
| con->delay *= 2; |
| if (con->delay > MAX_DELAY_INTERVAL) |
| con->delay = MAX_DELAY_INTERVAL; |
| } |
| ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); |
| queue_con(con); |
| } |
| } |
| |
| void ceph_messenger_reset_nonce(struct ceph_messenger *msgr) |
| { |
| u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000; |
| msgr->inst.addr.nonce = cpu_to_le32(nonce); |
| ceph_encode_my_addr(msgr); |
| } |
| |
| /* |
| * initialize a new messenger instance |
| */ |
| void ceph_messenger_init(struct ceph_messenger *msgr, |
| struct ceph_entity_addr *myaddr) |
| { |
| spin_lock_init(&msgr->global_seq_lock); |
| |
| if (myaddr) { |
| memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr, |
| sizeof(msgr->inst.addr.in_addr)); |
| ceph_addr_set_port(&msgr->inst.addr, 0); |
| } |
| |
| /* |
| * Since nautilus, clients are identified using type ANY. |
| * For msgr1, ceph_encode_banner_addr() munges it to NONE. |
| */ |
| msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY; |
| |
| /* generate a random non-zero nonce */ |
| do { |
| get_random_bytes(&msgr->inst.addr.nonce, |
| sizeof(msgr->inst.addr.nonce)); |
| } while (!msgr->inst.addr.nonce); |
| ceph_encode_my_addr(msgr); |
| |
| atomic_set(&msgr->stopping, 0); |
| write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); |
| |
| dout("%s %p\n", __func__, msgr); |
| } |
| |
| void ceph_messenger_fini(struct ceph_messenger *msgr) |
| { |
| put_net(read_pnet(&msgr->net)); |
| } |
| |
| static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) |
| { |
| if (msg->con) |
| msg->con->ops->put(msg->con); |
| |
| msg->con = con ? con->ops->get(con) : NULL; |
| BUG_ON(msg->con != con); |
| } |
| |
| static void clear_standby(struct ceph_connection *con) |
| { |
| /* come back from STANDBY? */ |
| if (con->state == CEPH_CON_S_STANDBY) { |
| dout("clear_standby %p and ++connect_seq\n", con); |
| con->state = CEPH_CON_S_PREOPEN; |
| con->v1.connect_seq++; |
| WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)); |
| WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)); |
| } |
| } |
| |
| /* |
| * Queue up an outgoing message on the given connection. |
| * |
| * Consumes a ref on @msg. |
| */ |
| void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) |
| { |
| /* set src+dst */ |
| msg->hdr.src = con->msgr->inst.name; |
| BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); |
| msg->needs_out_seq = true; |
| |
| mutex_lock(&con->mutex); |
| |
| if (con->state == CEPH_CON_S_CLOSED) { |
| dout("con_send %p closed, dropping %p\n", con, msg); |
| ceph_msg_put(msg); |
| mutex_unlock(&con->mutex); |
| return; |
| } |
| |
| msg_con_set(msg, con); |
| |
| BUG_ON(!list_empty(&msg->list_head)); |
| list_add_tail(&msg->list_head, &con->out_queue); |
| dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, |
| ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), |
| ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), |
| le32_to_cpu(msg->hdr.front_len), |
| le32_to_cpu(msg->hdr.middle_len), |
| le32_to_cpu(msg->hdr.data_len)); |
| |
| clear_standby(con); |
| mutex_unlock(&con->mutex); |
| |
| /* if there wasn't anything waiting to send before, queue |
| * new work */ |
| if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) |
| queue_con(con); |
| } |
| EXPORT_SYMBOL(ceph_con_send); |
| |
| /* |
| * Revoke a message that was previously queued for send |
| */ |
| void ceph_msg_revoke(struct ceph_msg *msg) |
| { |
| struct ceph_connection *con = msg->con; |
| |
| if (!con) { |
| dout("%s msg %p null con\n", __func__, msg); |
| return; /* Message not in our possession */ |
| } |
| |
| mutex_lock(&con->mutex); |
| if (list_empty(&msg->list_head)) { |
| WARN_ON(con->out_msg == msg); |
| dout("%s con %p msg %p not linked\n", __func__, con, msg); |
| mutex_unlock(&con->mutex); |
| return; |
| } |
| |
| dout("%s con %p msg %p was linked\n", __func__, con, msg); |
| msg->hdr.seq = 0; |
| ceph_msg_remove(msg); |
| |
| if (con->out_msg == msg) { |
| WARN_ON(con->state != CEPH_CON_S_OPEN); |
| dout("%s con %p msg %p was sending\n", __func__, con, msg); |
| if (ceph_msgr2(from_msgr(con->msgr))) |
| ceph_con_v2_revoke(con); |
| else |
| ceph_con_v1_revoke(con); |
| ceph_msg_put(con->out_msg); |
| con->out_msg = NULL; |
| } else { |
| dout("%s con %p msg %p not current, out_msg %p\n", __func__, |
| con, msg, con->out_msg); |
| } |
| mutex_unlock(&con->mutex); |
| } |
| |
| /* |
| * Revoke a message that we may be reading data into |
| */ |
| void ceph_msg_revoke_incoming(struct ceph_msg *msg) |
| { |
| struct ceph_connection *con = msg->con; |
| |
| if (!con) { |
| dout("%s msg %p null con\n", __func__, msg); |
| return; /* Message not in our possession */ |
| } |
| |
| mutex_lock(&con->mutex); |
| if (con->in_msg == msg) { |
| WARN_ON(con->state != CEPH_CON_S_OPEN); |
| dout("%s con %p msg %p was recving\n", __func__, con, msg); |
| if (ceph_msgr2(from_msgr(con->msgr))) |
| ceph_con_v2_revoke_incoming(con); |
| else |
| ceph_con_v1_revoke_incoming(con); |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| } else { |
| dout("%s con %p msg %p not current, in_msg %p\n", __func__, |
| con, msg, con->in_msg); |
| } |
| mutex_unlock(&con->mutex); |
| } |
| |
| /* |
| * Queue a keepalive byte to ensure the tcp connection is alive. |
| */ |
| void ceph_con_keepalive(struct ceph_connection *con) |
| { |
| dout("con_keepalive %p\n", con); |
| mutex_lock(&con->mutex); |
| clear_standby(con); |
| ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING); |
| mutex_unlock(&con->mutex); |
| |
| if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) |
| queue_con(con); |
| } |
| EXPORT_SYMBOL(ceph_con_keepalive); |
| |
| bool ceph_con_keepalive_expired(struct ceph_connection *con, |
| unsigned long interval) |
| { |
| if (interval > 0 && |
| (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { |
| struct timespec64 now; |
| struct timespec64 ts; |
| ktime_get_real_ts64(&now); |
| jiffies_to_timespec64(interval, &ts); |
| ts = timespec64_add(con->last_keepalive_ack, ts); |
| return timespec64_compare(&now, &ts) >= 0; |
| } |
| return false; |
| } |
| |
| static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) |
| { |
| BUG_ON(msg->num_data_items >= msg->max_data_items); |
| return &msg->data[msg->num_data_items++]; |
| } |
| |
| static void ceph_msg_data_destroy(struct ceph_msg_data *data) |
| { |
| if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) { |
| int num_pages = calc_pages_for(data->alignment, data->length); |
| ceph_release_page_vector(data->pages, num_pages); |
| } else if (data->type == CEPH_MSG_DATA_PAGELIST) { |
| ceph_pagelist_release(data->pagelist); |
| } |
| } |
| |
| void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, |
| size_t length, size_t alignment, bool own_pages) |
| { |
| struct ceph_msg_data *data; |
| |
| BUG_ON(!pages); |
| BUG_ON(!length); |
| |
| data = ceph_msg_data_add(msg); |
| data->type = CEPH_MSG_DATA_PAGES; |
| data->pages = pages; |
| data->length = length; |
| data->alignment = alignment & ~PAGE_MASK; |
| data->own_pages = own_pages; |
| |
| msg->data_length += length; |
| } |
| EXPORT_SYMBOL(ceph_msg_data_add_pages); |
| |
| void ceph_msg_data_add_pagelist(struct ceph_msg *msg, |
| struct ceph_pagelist *pagelist) |
| { |
| struct ceph_msg_data *data; |
| |
| BUG_ON(!pagelist); |
| BUG_ON(!pagelist->length); |
| |
| data = ceph_msg_data_add(msg); |
| data->type = CEPH_MSG_DATA_PAGELIST; |
| refcount_inc(&pagelist->refcnt); |
| data->pagelist = pagelist; |
| |
| msg->data_length += pagelist->length; |
| } |
| EXPORT_SYMBOL(ceph_msg_data_add_pagelist); |
| |
| #ifdef CONFIG_BLOCK |
| void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, |
| u32 length) |
| { |
| struct ceph_msg_data *data; |
| |
| data = ceph_msg_data_add(msg); |
| data->type = CEPH_MSG_DATA_BIO; |
| data->bio_pos = *bio_pos; |
| data->bio_length = length; |
| |
| msg->data_length += length; |
| } |
| EXPORT_SYMBOL(ceph_msg_data_add_bio); |
| #endif /* CONFIG_BLOCK */ |
| |
| void ceph_msg_data_add_bvecs(struct ceph_msg *msg, |
| struct ceph_bvec_iter *bvec_pos) |
| { |
| struct ceph_msg_data *data; |
| |
| data = ceph_msg_data_add(msg); |
| data->type = CEPH_MSG_DATA_BVECS; |
| data->bvec_pos = *bvec_pos; |
| |
| msg->data_length += bvec_pos->iter.bi_size; |
| } |
| EXPORT_SYMBOL(ceph_msg_data_add_bvecs); |
| |
| void ceph_msg_data_add_iter(struct ceph_msg *msg, |
| struct iov_iter *iter) |
| { |
| struct ceph_msg_data *data; |
| |
| data = ceph_msg_data_add(msg); |
| data->type = CEPH_MSG_DATA_ITER; |
| data->iter = *iter; |
| |
| msg->data_length += iov_iter_count(&data->iter); |
| } |
| |
| /* |
| * construct a new message with given type, size |
| * the new msg has a ref count of 1. |
| */ |
| struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, |
| gfp_t flags, bool can_fail) |
| { |
| struct ceph_msg *m; |
| |
| m = kmem_cache_zalloc(ceph_msg_cache, flags); |
| if (m == NULL) |
| goto out; |
| |
| m->hdr.type = cpu_to_le16(type); |
| m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); |
| m->hdr.front_len = cpu_to_le32(front_len); |
| |
| INIT_LIST_HEAD(&m->list_head); |
| kref_init(&m->kref); |
| |
| /* front */ |
| if (front_len) { |
| m->front.iov_base = kvmalloc(front_len, flags); |
| if (m->front.iov_base == NULL) { |
| dout("ceph_msg_new can't allocate %d bytes\n", |
| front_len); |
| goto out2; |
| } |
| } else { |
| m->front.iov_base = NULL; |
| } |
| m->front_alloc_len = m->front.iov_len = front_len; |
| |
| if (max_data_items) { |
| m->data = kmalloc_array(max_data_items, sizeof(*m->data), |
| flags); |
| if (!m->data) |
| goto out2; |
| |
| m->max_data_items = max_data_items; |
| } |
| |
| dout("ceph_msg_new %p front %d\n", m, front_len); |
| return m; |
| |
| out2: |
| ceph_msg_put(m); |
| out: |
| if (!can_fail) { |
| pr_err("msg_new can't create type %d front %d\n", type, |
| front_len); |
| WARN_ON(1); |
| } else { |
| dout("msg_new can't create type %d front %d\n", type, |
| front_len); |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(ceph_msg_new2); |
| |
| struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, |
| bool can_fail) |
| { |
| return ceph_msg_new2(type, front_len, 0, flags, can_fail); |
| } |
| EXPORT_SYMBOL(ceph_msg_new); |
| |
| /* |
| * Allocate "middle" portion of a message, if it is needed and wasn't |
| * allocated by alloc_msg. This allows us to read a small fixed-size |
| * per-type header in the front and then gracefully fail (i.e., |
| * propagate the error to the caller based on info in the front) when |
| * the middle is too large. |
| */ |
| static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) |
| { |
| int type = le16_to_cpu(msg->hdr.type); |
| int middle_len = le32_to_cpu(msg->hdr.middle_len); |
| |
| dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, |
| ceph_msg_type_name(type), middle_len); |
| BUG_ON(!middle_len); |
| BUG_ON(msg->middle); |
| |
| msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); |
| if (!msg->middle) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /* |
| * Allocate a message for receiving an incoming message on a |
| * connection, and save the result in con->in_msg. Uses the |
| * connection's private alloc_msg op if available. |
| * |
| * Returns 0 on success, or a negative error code. |
| * |
| * On success, if we set *skip = 1: |
| * - the next message should be skipped and ignored. |
| * - con->in_msg == NULL |
| * or if we set *skip = 0: |
| * - con->in_msg is non-null. |
| * On error (ENOMEM, EAGAIN, ...), |
| * - con->in_msg == NULL |
| */ |
| int ceph_con_in_msg_alloc(struct ceph_connection *con, |
| struct ceph_msg_header *hdr, int *skip) |
| { |
| int middle_len = le32_to_cpu(hdr->middle_len); |
| struct ceph_msg *msg; |
| int ret = 0; |
| |
| BUG_ON(con->in_msg != NULL); |
| BUG_ON(!con->ops->alloc_msg); |
| |
| mutex_unlock(&con->mutex); |
| msg = con->ops->alloc_msg(con, hdr, skip); |
| mutex_lock(&con->mutex); |
| if (con->state != CEPH_CON_S_OPEN) { |
| if (msg) |
| ceph_msg_put(msg); |
| return -EAGAIN; |
| } |
| if (msg) { |
| BUG_ON(*skip); |
| msg_con_set(msg, con); |
| con->in_msg = msg; |
| } else { |
| /* |
| * Null message pointer means either we should skip |
| * this message or we couldn't allocate memory. The |
| * former is not an error. |
| */ |
| if (*skip) |
| return 0; |
| |
| con->error_msg = "error allocating memory for incoming message"; |
| return -ENOMEM; |
| } |
| memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr)); |
| |
| if (middle_len && !con->in_msg->middle) { |
| ret = ceph_alloc_middle(con, con->in_msg); |
| if (ret < 0) { |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| } |
| } |
| |
| return ret; |
| } |
| |
| void ceph_con_get_out_msg(struct ceph_connection *con) |
| { |
| struct ceph_msg *msg; |
| |
| BUG_ON(list_empty(&con->out_queue)); |
| msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head); |
| WARN_ON(msg->con != con); |
| |
| /* |
| * Put the message on "sent" list using a ref from ceph_con_send(). |
| * It is put when the message is acked or revoked. |
| */ |
| list_move_tail(&msg->list_head, &con->out_sent); |
| |
| /* |
| * Only assign outgoing seq # if we haven't sent this message |
| * yet. If it is requeued, resend with it's original seq. |
| */ |
| if (msg->needs_out_seq) { |
| msg->hdr.seq = cpu_to_le64(++con->out_seq); |
| msg->needs_out_seq = false; |
| |
| if (con->ops->reencode_message) |
| con->ops->reencode_message(msg); |
| } |
| |
| /* |
| * Get a ref for out_msg. It is put when we are done sending the |
| * message or in case of a fault. |
| */ |
| WARN_ON(con->out_msg); |
| con->out_msg = ceph_msg_get(msg); |
| } |
| |
| /* |
| * Free a generically kmalloc'd message. |
| */ |
| static void ceph_msg_free(struct ceph_msg *m) |
| { |
| dout("%s %p\n", __func__, m); |
| kvfree(m->front.iov_base); |
| kfree(m->data); |
| kmem_cache_free(ceph_msg_cache, m); |
| } |
| |
| static void ceph_msg_release(struct kref *kref) |
| { |
| struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); |
| int i; |
| |
| dout("%s %p\n", __func__, m); |
| WARN_ON(!list_empty(&m->list_head)); |
| |
| msg_con_set(m, NULL); |
| |
| /* drop middle, data, if any */ |
| if (m->middle) { |
| ceph_buffer_put(m->middle); |
| m->middle = NULL; |
| } |
| |
| for (i = 0; i < m->num_data_items; i++) |
| ceph_msg_data_destroy(&m->data[i]); |
| |
| if (m->pool) |
| ceph_msgpool_put(m->pool, m); |
| else |
| ceph_msg_free(m); |
| } |
| |
| struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) |
| { |
| dout("%s %p (was %d)\n", __func__, msg, |
| kref_read(&msg->kref)); |
| kref_get(&msg->kref); |
| return msg; |
| } |
| EXPORT_SYMBOL(ceph_msg_get); |
| |
| void ceph_msg_put(struct ceph_msg *msg) |
| { |
| dout("%s %p (was %d)\n", __func__, msg, |
| kref_read(&msg->kref)); |
| kref_put(&msg->kref, ceph_msg_release); |
| } |
| EXPORT_SYMBOL(ceph_msg_put); |
| |
| void ceph_msg_dump(struct ceph_msg *msg) |
| { |
| pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, |
| msg->front_alloc_len, msg->data_length); |
| print_hex_dump(KERN_DEBUG, "header: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| &msg->hdr, sizeof(msg->hdr), true); |
| print_hex_dump(KERN_DEBUG, " front: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| msg->front.iov_base, msg->front.iov_len, true); |
| if (msg->middle) |
| print_hex_dump(KERN_DEBUG, "middle: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| msg->middle->vec.iov_base, |
| msg->middle->vec.iov_len, true); |
| print_hex_dump(KERN_DEBUG, "footer: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| &msg->footer, sizeof(msg->footer), true); |
| } |
| EXPORT_SYMBOL(ceph_msg_dump); |