blob: 00dbcd4d28e68097c612c628b7d4193124be4c9c [file] [log] [blame]
/*
* Copyright (c) 2007, 2020 Oracle and/or its affiliates.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
#include "rds.h"
/*
* XXX
* - build with sparse
* - should we detect duplicate keys on a socket? hmm.
* - an rdma is an mlock, apply rlimit?
*/
/*
* get the number of pages by looking at the page indices that the start and
* end addresses fall in.
*
* Returns 0 if the vec is invalid. It is invalid if the number of bytes
* causes the address to wrap or overflows an unsigned int. This comes
* from being stored in the 'length' member of 'struct scatterlist'.
*/
static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
{
if ((vec->addr + vec->bytes <= vec->addr) ||
(vec->bytes > (u64)UINT_MAX))
return 0;
return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
(vec->addr >> PAGE_SHIFT);
}
static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
struct rds_mr *insert)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct rds_mr *mr;
while (*p) {
parent = *p;
mr = rb_entry(parent, struct rds_mr, r_rb_node);
if (key < mr->r_key)
p = &(*p)->rb_left;
else if (key > mr->r_key)
p = &(*p)->rb_right;
else
return mr;
}
if (insert) {
rb_link_node(&insert->r_rb_node, parent, p);
rb_insert_color(&insert->r_rb_node, root);
kref_get(&insert->r_kref);
}
return NULL;
}
/*
* Destroy the transport-specific part of a MR.
*/
static void rds_destroy_mr(struct rds_mr *mr)
{
struct rds_sock *rs = mr->r_sock;
void *trans_private = NULL;
unsigned long flags;
rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
mr->r_key, kref_read(&mr->r_kref));
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
if (!RB_EMPTY_NODE(&mr->r_rb_node))
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
trans_private = mr->r_trans_private;
mr->r_trans_private = NULL;
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (trans_private)
mr->r_trans->free_mr(trans_private, mr->r_invalidate);
}
void __rds_put_mr_final(struct kref *kref)
{
struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref);
rds_destroy_mr(mr);
kfree(mr);
}
/*
* By the time this is called we can't have any more ioctls called on
* the socket so we don't need to worry about racing with others.
*/
void rds_rdma_drop_keys(struct rds_sock *rs)
{
struct rds_mr *mr;
struct rb_node *node;
unsigned long flags;
/* Release any MRs associated with this socket */
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
while ((node = rb_first(&rs->rs_rdma_keys))) {
mr = rb_entry(node, struct rds_mr, r_rb_node);
if (mr->r_trans == rs->rs_transport)
mr->r_invalidate = 0;
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
RB_CLEAR_NODE(&mr->r_rb_node);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
kref_put(&mr->r_kref, __rds_put_mr_final);
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
}
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (rs->rs_transport && rs->rs_transport->flush_mrs)
rs->rs_transport->flush_mrs();
}
/*
* Helper function to pin user pages.
*/
static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
struct page **pages, int write)
{
unsigned int gup_flags = FOLL_LONGTERM;
int ret;
if (write)
gup_flags |= FOLL_WRITE;
ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages);
if (ret >= 0 && ret < nr_pages) {
unpin_user_pages(pages, ret);
ret = -EFAULT;
}
return ret;
}
static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
u64 *cookie_ret, struct rds_mr **mr_ret,
struct rds_conn_path *cp)
{
struct rds_mr *mr = NULL, *found;
struct scatterlist *sg = NULL;
unsigned int nr_pages;
struct page **pages = NULL;
void *trans_private;
unsigned long flags;
rds_rdma_cookie_t cookie;
unsigned int nents = 0;
int need_odp = 0;
long i;
int ret;
if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
ret = -ENOTCONN; /* XXX not a great errno */
goto out;
}
if (!rs->rs_transport->get_mr) {
ret = -EOPNOTSUPP;
goto out;
}
/* If the combination of the addr and size requested for this memory
* region causes an integer overflow, return error.
*/
if (((args->vec.addr + args->vec.bytes) < args->vec.addr) ||
PAGE_ALIGN(args->vec.addr + args->vec.bytes) <
(args->vec.addr + args->vec.bytes)) {
ret = -EINVAL;
goto out;
}
if (!can_do_mlock()) {
ret = -EPERM;
goto out;
}
nr_pages = rds_pages_in_vec(&args->vec);
if (nr_pages == 0) {
ret = -EINVAL;
goto out;
}
/* Restrict the size of mr irrespective of underlying transport
* To account for unaligned mr regions, subtract one from nr_pages
*/
if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
ret = -EMSGSIZE;
goto out;
}
rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
args->vec.addr, args->vec.bytes, nr_pages);
/* XXX clamp nr_pages to limit the size of this alloc? */
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages) {
ret = -ENOMEM;
goto out;
}
mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
if (!mr) {
ret = -ENOMEM;
goto out;
}
kref_init(&mr->r_kref);
RB_CLEAR_NODE(&mr->r_rb_node);
mr->r_trans = rs->rs_transport;
mr->r_sock = rs;
if (args->flags & RDS_RDMA_USE_ONCE)
mr->r_use_once = 1;
if (args->flags & RDS_RDMA_INVALIDATE)
mr->r_invalidate = 1;
if (args->flags & RDS_RDMA_READWRITE)
mr->r_write = 1;
/*
* Pin the pages that make up the user buffer and transfer the page
* pointers to the mr's sg array. We check to see if we've mapped
* the whole region after transferring the partial page references
* to the sg array so that we can have one page ref cleanup path.
*
* For now we have no flag that tells us whether the mapping is
* r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
* the zero page.
*/
ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
if (ret == -EOPNOTSUPP) {
need_odp = 1;
} else if (ret <= 0) {
goto out;
} else {
nents = ret;
sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL);
if (!sg) {
ret = -ENOMEM;
goto out;
}
WARN_ON(!nents);
sg_init_table(sg, nents);
/* Stick all pages into the scatterlist */
for (i = 0 ; i < nents; i++)
sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
rdsdebug("RDS: trans_private nents is %u\n", nents);
}
/* Obtain a transport specific MR. If this succeeds, the
* s/g list is now owned by the MR.
* Note that dma_map() implies that pending writes are
* flushed to RAM, so no dma_sync is needed here. */
trans_private = rs->rs_transport->get_mr(
sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL,
args->vec.addr, args->vec.bytes,
need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED);
if (IS_ERR(trans_private)) {
/* In ODP case, we don't GUP pages, so don't need
* to release anything.
*/
if (!need_odp) {
unpin_user_pages(pages, nr_pages);
kfree(sg);
}
ret = PTR_ERR(trans_private);
/* Trigger connection so that its ready for the next retry */
if (ret == -ENODEV && cp)
rds_conn_connect_if_down(cp->cp_conn);
goto out;
}
mr->r_trans_private = trans_private;
rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
mr->r_key, (void *)(unsigned long) args->cookie_addr);
/* The user may pass us an unaligned address, but we can only
* map page aligned regions. So we keep the offset, and build
* a 64bit cookie containing <R_Key, offset> and pass that
* around. */
if (need_odp)
cookie = rds_rdma_make_cookie(mr->r_key, 0);
else
cookie = rds_rdma_make_cookie(mr->r_key,
args->vec.addr & ~PAGE_MASK);
if (cookie_ret)
*cookie_ret = cookie;
if (args->cookie_addr &&
put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) {
if (!need_odp) {
unpin_user_pages(pages, nr_pages);
kfree(sg);
}
ret = -EFAULT;
goto out;
}
/* Inserting the new MR into the rbtree bumps its
* reference count. */
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
BUG_ON(found && found != mr);
rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
if (mr_ret) {
kref_get(&mr->r_kref);
*mr_ret = mr;
}
ret = 0;
out:
kfree(pages);
if (mr)
kref_put(&mr->r_kref, __rds_put_mr_final);
return ret;
}
int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
{
struct rds_get_mr_args args;
if (optlen != sizeof(struct rds_get_mr_args))
return -EINVAL;
if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args)))
return -EFAULT;
return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
}
int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen)
{
struct rds_get_mr_for_dest_args args;
struct rds_get_mr_args new_args;
if (optlen != sizeof(struct rds_get_mr_for_dest_args))
return -EINVAL;
if (copy_from_sockptr(&args, optval,
sizeof(struct rds_get_mr_for_dest_args)))
return -EFAULT;
/*
* Initially, just behave like get_mr().
* TODO: Implement get_mr as wrapper around this
* and deprecate it.
*/
new_args.vec = args.vec;
new_args.cookie_addr = args.cookie_addr;
new_args.flags = args.flags;
return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
}
/*
* Free the MR indicated by the given R_Key
*/
int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
{
struct rds_free_mr_args args;
struct rds_mr *mr;
unsigned long flags;
if (optlen != sizeof(struct rds_free_mr_args))
return -EINVAL;
if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args)))
return -EFAULT;
/* Special case - a null cookie means flush all unused MRs */
if (args.cookie == 0) {
if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
return -EINVAL;
rs->rs_transport->flush_mrs();
return 0;
}
/* Look up the MR given its R_key and remove it from the rbtree
* so nobody else finds it.
* This should also prevent races with rds_rdma_unuse.
*/
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
if (mr) {
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
RB_CLEAR_NODE(&mr->r_rb_node);
if (args.flags & RDS_RDMA_INVALIDATE)
mr->r_invalidate = 1;
}
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (!mr)
return -EINVAL;
kref_put(&mr->r_kref, __rds_put_mr_final);
return 0;
}
/*
* This is called when we receive an extension header that
* tells us this MR was used. It allows us to implement
* use_once semantics
*/
void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
{
struct rds_mr *mr;
unsigned long flags;
int zot_me = 0;
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
if (!mr) {
pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
r_key);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
return;
}
/* Get a reference so that the MR won't go away before calling
* sync_mr() below.
*/
kref_get(&mr->r_kref);
/* If it is going to be freed, remove it from the tree now so
* that no other thread can find it and free it.
*/
if (mr->r_use_once || force) {
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
RB_CLEAR_NODE(&mr->r_rb_node);
zot_me = 1;
}
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
/* May have to issue a dma_sync on this memory region.
* Note we could avoid this if the operation was a RDMA READ,
* but at this point we can't tell. */
if (mr->r_trans->sync_mr)
mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
/* Release the reference held above. */
kref_put(&mr->r_kref, __rds_put_mr_final);
/* If the MR was marked as invalidate, this will
* trigger an async flush. */
if (zot_me)
kref_put(&mr->r_kref, __rds_put_mr_final);
}
void rds_rdma_free_op(struct rm_rdma_op *ro)
{
unsigned int i;
if (ro->op_odp_mr) {
kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final);
} else {
for (i = 0; i < ro->op_nents; i++) {
struct page *page = sg_page(&ro->op_sg[i]);
/* Mark page dirty if it was possibly modified, which
* is the case for a RDMA_READ which copies from remote
* to local memory
*/
unpin_user_pages_dirty_lock(&page, 1, !ro->op_write);
}
}
kfree(ro->op_notifier);
ro->op_notifier = NULL;
ro->op_active = 0;
ro->op_odp_mr = NULL;
}
void rds_atomic_free_op(struct rm_atomic_op *ao)
{
struct page *page = sg_page(ao->op_sg);
/* Mark page dirty if it was possibly modified, which
* is the case for a RDMA_READ which copies from remote
* to local memory */
unpin_user_pages_dirty_lock(&page, 1, true);
kfree(ao->op_notifier);
ao->op_notifier = NULL;
ao->op_active = 0;
}
/*
* Count the number of pages needed to describe an incoming iovec array.
*/
static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
{
int tot_pages = 0;
unsigned int nr_pages;
unsigned int i;
/* figure out the number of pages in the vector */
for (i = 0; i < nr_iovecs; i++) {
nr_pages = rds_pages_in_vec(&iov[i]);
if (nr_pages == 0)
return -EINVAL;
tot_pages += nr_pages;
/*
* nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
* so tot_pages cannot overflow without first going negative.
*/
if (tot_pages < 0)
return -EINVAL;
}
return tot_pages;
}
int rds_rdma_extra_size(struct rds_rdma_args *args,
struct rds_iov_vector *iov)
{
struct rds_iovec *vec;
struct rds_iovec __user *local_vec;
int tot_pages = 0;
unsigned int nr_pages;
unsigned int i;
local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
if (args->nr_local == 0)
return -EINVAL;
if (args->nr_local > UIO_MAXIOV)
return -EMSGSIZE;
iov->iov = kcalloc(args->nr_local,
sizeof(struct rds_iovec),
GFP_KERNEL);
if (!iov->iov)
return -ENOMEM;
vec = &iov->iov[0];
if (copy_from_user(vec, local_vec, args->nr_local *
sizeof(struct rds_iovec)))
return -EFAULT;
iov->len = args->nr_local;
/* figure out the number of pages in the vector */
for (i = 0; i < args->nr_local; i++, vec++) {
nr_pages = rds_pages_in_vec(vec);
if (nr_pages == 0)
return -EINVAL;
tot_pages += nr_pages;
/*
* nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
* so tot_pages cannot overflow without first going negative.
*/
if (tot_pages < 0)
return -EINVAL;
}
return tot_pages * sizeof(struct scatterlist);
}
/*
* The application asks for a RDMA transfer.
* Extract all arguments and set up the rdma_op
*/
int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg,
struct rds_iov_vector *vec)
{
struct rds_rdma_args *args;
struct rm_rdma_op *op = &rm->rdma;
int nr_pages;
unsigned int nr_bytes;
struct page **pages = NULL;
struct rds_iovec *iovs;
unsigned int i, j;
int ret = 0;
bool odp_supported = true;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
|| rm->rdma.op_active)
return -EINVAL;
args = CMSG_DATA(cmsg);
if (ipv6_addr_any(&rs->rs_bound_addr)) {
ret = -ENOTCONN; /* XXX not a great errno */
goto out_ret;
}
if (args->nr_local > UIO_MAXIOV) {
ret = -EMSGSIZE;
goto out_ret;
}
if (vec->len != args->nr_local) {
ret = -EINVAL;
goto out_ret;
}
/* odp-mr is not supported for multiple requests within one message */
if (args->nr_local != 1)
odp_supported = false;
iovs = vec->iov;
nr_pages = rds_rdma_pages(iovs, args->nr_local);
if (nr_pages < 0) {
ret = -EINVAL;
goto out_ret;
}
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages) {
ret = -ENOMEM;
goto out_ret;
}
op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
op->op_active = 1;
op->op_recverr = rs->rs_recverr;
op->op_odp_mr = NULL;
WARN_ON(!nr_pages);
op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
if (IS_ERR(op->op_sg)) {
ret = PTR_ERR(op->op_sg);
goto out_pages;
}
if (op->op_notify || op->op_recverr) {
/* We allocate an uninitialized notifier here, because
* we don't want to do that in the completion handler. We
* would have to use GFP_ATOMIC there, and don't want to deal
* with failed allocations.
*/
op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
if (!op->op_notifier) {
ret = -ENOMEM;
goto out_pages;
}
op->op_notifier->n_user_token = args->user_token;
op->op_notifier->n_status = RDS_RDMA_SUCCESS;
}
/* The cookie contains the R_Key of the remote memory region, and
* optionally an offset into it. This is how we implement RDMA into
* unaligned memory.
* When setting up the RDMA, we need to add that offset to the
* destination address (which is really an offset into the MR)
* FIXME: We may want to move this into ib_rdma.c
*/
op->op_rkey = rds_rdma_cookie_key(args->cookie);
op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
nr_bytes = 0;
rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
(unsigned long long)args->nr_local,
(unsigned long long)args->remote_vec.addr,
op->op_rkey);
for (i = 0; i < args->nr_local; i++) {
struct rds_iovec *iov = &iovs[i];
/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
unsigned int nr = rds_pages_in_vec(iov);
rs->rs_user_addr = iov->addr;
rs->rs_user_bytes = iov->bytes;
/* If it's a WRITE operation, we want to pin the pages for reading.
* If it's a READ operation, we need to pin the pages for writing.
*/
ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
if ((!odp_supported && ret <= 0) ||
(odp_supported && ret <= 0 && ret != -EOPNOTSUPP))
goto out_pages;
if (ret == -EOPNOTSUPP) {
struct rds_mr *local_odp_mr;
if (!rs->rs_transport->get_mr) {
ret = -EOPNOTSUPP;
goto out_pages;
}
local_odp_mr =
kzalloc(sizeof(*local_odp_mr), GFP_KERNEL);
if (!local_odp_mr) {
ret = -ENOMEM;
goto out_pages;
}
RB_CLEAR_NODE(&local_odp_mr->r_rb_node);
kref_init(&local_odp_mr->r_kref);
local_odp_mr->r_trans = rs->rs_transport;
local_odp_mr->r_sock = rs;
local_odp_mr->r_trans_private =
rs->rs_transport->get_mr(
NULL, 0, rs, &local_odp_mr->r_key, NULL,
iov->addr, iov->bytes, ODP_VIRTUAL);
if (IS_ERR(local_odp_mr->r_trans_private)) {
ret = PTR_ERR(local_odp_mr->r_trans_private);
rdsdebug("get_mr ret %d %p\"", ret,
local_odp_mr->r_trans_private);
kfree(local_odp_mr);
ret = -EOPNOTSUPP;
goto out_pages;
}
rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
local_odp_mr, local_odp_mr->r_trans_private);
op->op_odp_mr = local_odp_mr;
op->op_odp_addr = iov->addr;
}
rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
nr_bytes, nr, iov->bytes, iov->addr);
nr_bytes += iov->bytes;
for (j = 0; j < nr; j++) {
unsigned int offset = iov->addr & ~PAGE_MASK;
struct scatterlist *sg;
sg = &op->op_sg[op->op_nents + j];
sg_set_page(sg, pages[j],
min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
offset);
sg_dma_len(sg) = sg->length;
rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
sg->offset, sg->length, iov->addr, iov->bytes);
iov->addr += sg->length;
iov->bytes -= sg->length;
}
op->op_nents += nr;
}
if (nr_bytes > args->remote_vec.bytes) {
rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
nr_bytes,
(unsigned int) args->remote_vec.bytes);
ret = -EINVAL;
goto out_pages;
}
op->op_bytes = nr_bytes;
ret = 0;
out_pages:
kfree(pages);
out_ret:
if (ret)
rds_rdma_free_op(op);
else
rds_stats_inc(s_send_rdma);
return ret;
}
/*
* The application wants us to pass an RDMA destination (aka MR)
* to the remote
*/
int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
unsigned long flags;
struct rds_mr *mr;
u32 r_key;
int err = 0;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
rm->m_rdma_cookie != 0)
return -EINVAL;
memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
/* We are reusing a previously mapped MR here. Most likely, the
* application has written to the buffer, so we need to explicitly
* flush those writes to RAM. Otherwise the HCA may not see them
* when doing a DMA from that buffer.
*/
r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
if (!mr)
err = -EINVAL; /* invalid r_key */
else
kref_get(&mr->r_kref);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (mr) {
mr->r_trans->sync_mr(mr->r_trans_private,
DMA_TO_DEVICE);
rm->rdma.op_rdma_mr = mr;
}
return err;
}
/*
* The application passes us an address range it wants to enable RDMA
* to/from. We map the area, and save the <R_Key,offset> pair
* in rm->m_rdma_cookie. This causes it to be sent along to the peer
* in an extension header.
*/
int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
rm->m_rdma_cookie != 0)
return -EINVAL;
return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
&rm->rdma.op_rdma_mr, rm->m_conn_path);
}
/*
* Fill in rds_message for an atomic request.
*/
int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
struct page *page = NULL;
struct rds_atomic_args *args;
int ret = 0;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
|| rm->atomic.op_active)
return -EINVAL;
args = CMSG_DATA(cmsg);
/* Nonmasked & masked cmsg ops converted to masked hw ops */
switch (cmsg->cmsg_type) {
case RDS_CMSG_ATOMIC_FADD:
rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
rm->atomic.op_m_fadd.add = args->fadd.add;
rm->atomic.op_m_fadd.nocarry_mask = 0;
break;
case RDS_CMSG_MASKED_ATOMIC_FADD:
rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
rm->atomic.op_m_fadd.add = args->m_fadd.add;
rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
break;
case RDS_CMSG_ATOMIC_CSWP:
rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
rm->atomic.op_m_cswp.compare = args->cswp.compare;
rm->atomic.op_m_cswp.swap = args->cswp.swap;
rm->atomic.op_m_cswp.compare_mask = ~0;
rm->atomic.op_m_cswp.swap_mask = ~0;
break;
case RDS_CMSG_MASKED_ATOMIC_CSWP:
rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
break;
default:
BUG(); /* should never happen */
}
rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
rm->atomic.op_active = 1;
rm->atomic.op_recverr = rs->rs_recverr;
rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
if (IS_ERR(rm->atomic.op_sg)) {
ret = PTR_ERR(rm->atomic.op_sg);
goto err;
}
/* verify 8 byte-aligned */
if (args->local_addr & 0x7) {
ret = -EFAULT;
goto err;
}
ret = rds_pin_pages(args->local_addr, 1, &page, 1);
if (ret != 1)
goto err;
ret = 0;
sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
if (rm->atomic.op_notify || rm->atomic.op_recverr) {
/* We allocate an uninitialized notifier here, because
* we don't want to do that in the completion handler. We
* would have to use GFP_ATOMIC there, and don't want to deal
* with failed allocations.
*/
rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
if (!rm->atomic.op_notifier) {
ret = -ENOMEM;
goto err;
}
rm->atomic.op_notifier->n_user_token = args->user_token;
rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
}
rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
return ret;
err:
if (page)
unpin_user_page(page);
rm->atomic.op_active = 0;
kfree(rm->atomic.op_notifier);
return ret;
}