| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/mm/memory_hotplug.c |
| * |
| * Copyright (C) |
| */ |
| |
| #include <linux/stddef.h> |
| #include <linux/mm.h> |
| #include <linux/sched/signal.h> |
| #include <linux/swap.h> |
| #include <linux/interrupt.h> |
| #include <linux/pagemap.h> |
| #include <linux/compiler.h> |
| #include <linux/export.h> |
| #include <linux/writeback.h> |
| #include <linux/slab.h> |
| #include <linux/sysctl.h> |
| #include <linux/cpu.h> |
| #include <linux/memory.h> |
| #include <linux/memremap.h> |
| #include <linux/memory_hotplug.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ioport.h> |
| #include <linux/delay.h> |
| #include <linux/migrate.h> |
| #include <linux/page-isolation.h> |
| #include <linux/pfn.h> |
| #include <linux/suspend.h> |
| #include <linux/mm_inline.h> |
| #include <linux/firmware-map.h> |
| #include <linux/stop_machine.h> |
| #include <linux/hugetlb.h> |
| #include <linux/memblock.h> |
| #include <linux/compaction.h> |
| #include <linux/rmap.h> |
| #include <linux/module.h> |
| |
| #include <asm/tlbflush.h> |
| |
| #include "internal.h" |
| #include "shuffle.h" |
| |
| enum { |
| MEMMAP_ON_MEMORY_DISABLE = 0, |
| MEMMAP_ON_MEMORY_ENABLE, |
| MEMMAP_ON_MEMORY_FORCE, |
| }; |
| |
| static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE; |
| |
| static inline unsigned long memory_block_memmap_size(void) |
| { |
| return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page); |
| } |
| |
| static inline unsigned long memory_block_memmap_on_memory_pages(void) |
| { |
| unsigned long nr_pages = PFN_UP(memory_block_memmap_size()); |
| |
| /* |
| * In "forced" memmap_on_memory mode, we add extra pages to align the |
| * vmemmap size to cover full pageblocks. That way, we can add memory |
| * even if the vmemmap size is not properly aligned, however, we might waste |
| * memory. |
| */ |
| if (memmap_mode == MEMMAP_ON_MEMORY_FORCE) |
| return pageblock_align(nr_pages); |
| return nr_pages; |
| } |
| |
| #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY |
| /* |
| * memory_hotplug.memmap_on_memory parameter |
| */ |
| static int set_memmap_mode(const char *val, const struct kernel_param *kp) |
| { |
| int ret, mode; |
| bool enabled; |
| |
| if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) { |
| mode = MEMMAP_ON_MEMORY_FORCE; |
| } else { |
| ret = kstrtobool(val, &enabled); |
| if (ret < 0) |
| return ret; |
| if (enabled) |
| mode = MEMMAP_ON_MEMORY_ENABLE; |
| else |
| mode = MEMMAP_ON_MEMORY_DISABLE; |
| } |
| *((int *)kp->arg) = mode; |
| if (mode == MEMMAP_ON_MEMORY_FORCE) { |
| unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); |
| |
| pr_info_once("Memory hotplug will waste %ld pages in each memory block\n", |
| memmap_pages - PFN_UP(memory_block_memmap_size())); |
| } |
| return 0; |
| } |
| |
| static int get_memmap_mode(char *buffer, const struct kernel_param *kp) |
| { |
| int mode = *((int *)kp->arg); |
| |
| if (mode == MEMMAP_ON_MEMORY_FORCE) |
| return sprintf(buffer, "force\n"); |
| return sprintf(buffer, "%c\n", mode ? 'Y' : 'N'); |
| } |
| |
| static const struct kernel_param_ops memmap_mode_ops = { |
| .set = set_memmap_mode, |
| .get = get_memmap_mode, |
| }; |
| module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444); |
| MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n" |
| "With value \"force\" it could result in memory wastage due " |
| "to memmap size limitations (Y/N/force)"); |
| |
| static inline bool mhp_memmap_on_memory(void) |
| { |
| return memmap_mode != MEMMAP_ON_MEMORY_DISABLE; |
| } |
| #else |
| static inline bool mhp_memmap_on_memory(void) |
| { |
| return false; |
| } |
| #endif |
| |
| enum { |
| ONLINE_POLICY_CONTIG_ZONES = 0, |
| ONLINE_POLICY_AUTO_MOVABLE, |
| }; |
| |
| static const char * const online_policy_to_str[] = { |
| [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", |
| [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", |
| }; |
| |
| static int set_online_policy(const char *val, const struct kernel_param *kp) |
| { |
| int ret = sysfs_match_string(online_policy_to_str, val); |
| |
| if (ret < 0) |
| return ret; |
| *((int *)kp->arg) = ret; |
| return 0; |
| } |
| |
| static int get_online_policy(char *buffer, const struct kernel_param *kp) |
| { |
| return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); |
| } |
| |
| /* |
| * memory_hotplug.online_policy: configure online behavior when onlining without |
| * specifying a zone (MMOP_ONLINE) |
| * |
| * "contig-zones": keep zone contiguous |
| * "auto-movable": online memory to ZONE_MOVABLE if the configuration |
| * (auto_movable_ratio, auto_movable_numa_aware) allows for it |
| */ |
| static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; |
| static const struct kernel_param_ops online_policy_ops = { |
| .set = set_online_policy, |
| .get = get_online_policy, |
| }; |
| module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); |
| MODULE_PARM_DESC(online_policy, |
| "Set the online policy (\"contig-zones\", \"auto-movable\") " |
| "Default: \"contig-zones\""); |
| |
| /* |
| * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio |
| * |
| * The ratio represent an upper limit and the kernel might decide to not |
| * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory |
| * doesn't allow for more MOVABLE memory. |
| */ |
| static unsigned int auto_movable_ratio __read_mostly = 301; |
| module_param(auto_movable_ratio, uint, 0644); |
| MODULE_PARM_DESC(auto_movable_ratio, |
| "Set the maximum ratio of MOVABLE:KERNEL memory in the system " |
| "in percent for \"auto-movable\" online policy. Default: 301"); |
| |
| /* |
| * memory_hotplug.auto_movable_numa_aware: consider numa node stats |
| */ |
| #ifdef CONFIG_NUMA |
| static bool auto_movable_numa_aware __read_mostly = true; |
| module_param(auto_movable_numa_aware, bool, 0644); |
| MODULE_PARM_DESC(auto_movable_numa_aware, |
| "Consider numa node stats in addition to global stats in " |
| "\"auto-movable\" online policy. Default: true"); |
| #endif /* CONFIG_NUMA */ |
| |
| /* |
| * online_page_callback contains pointer to current page onlining function. |
| * Initially it is generic_online_page(). If it is required it could be |
| * changed by calling set_online_page_callback() for callback registration |
| * and restore_online_page_callback() for generic callback restore. |
| */ |
| |
| static online_page_callback_t online_page_callback = generic_online_page; |
| static DEFINE_MUTEX(online_page_callback_lock); |
| |
| DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); |
| |
| void get_online_mems(void) |
| { |
| percpu_down_read(&mem_hotplug_lock); |
| } |
| |
| void put_online_mems(void) |
| { |
| percpu_up_read(&mem_hotplug_lock); |
| } |
| |
| bool movable_node_enabled = false; |
| |
| #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE |
| int mhp_default_online_type = MMOP_OFFLINE; |
| #else |
| int mhp_default_online_type = MMOP_ONLINE; |
| #endif |
| |
| static int __init setup_memhp_default_state(char *str) |
| { |
| const int online_type = mhp_online_type_from_str(str); |
| |
| if (online_type >= 0) |
| mhp_default_online_type = online_type; |
| |
| return 1; |
| } |
| __setup("memhp_default_state=", setup_memhp_default_state); |
| |
| void mem_hotplug_begin(void) |
| { |
| cpus_read_lock(); |
| percpu_down_write(&mem_hotplug_lock); |
| } |
| |
| void mem_hotplug_done(void) |
| { |
| percpu_up_write(&mem_hotplug_lock); |
| cpus_read_unlock(); |
| } |
| |
| u64 max_mem_size = U64_MAX; |
| |
| /* add this memory to iomem resource */ |
| static struct resource *register_memory_resource(u64 start, u64 size, |
| const char *resource_name) |
| { |
| struct resource *res; |
| unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; |
| |
| if (strcmp(resource_name, "System RAM")) |
| flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; |
| |
| if (!mhp_range_allowed(start, size, true)) |
| return ERR_PTR(-E2BIG); |
| |
| /* |
| * Make sure value parsed from 'mem=' only restricts memory adding |
| * while booting, so that memory hotplug won't be impacted. Please |
| * refer to document of 'mem=' in kernel-parameters.txt for more |
| * details. |
| */ |
| if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) |
| return ERR_PTR(-E2BIG); |
| |
| /* |
| * Request ownership of the new memory range. This might be |
| * a child of an existing resource that was present but |
| * not marked as busy. |
| */ |
| res = __request_region(&iomem_resource, start, size, |
| resource_name, flags); |
| |
| if (!res) { |
| pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", |
| start, start + size); |
| return ERR_PTR(-EEXIST); |
| } |
| return res; |
| } |
| |
| static void release_memory_resource(struct resource *res) |
| { |
| if (!res) |
| return; |
| release_resource(res); |
| kfree(res); |
| } |
| |
| static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) |
| { |
| /* |
| * Disallow all operations smaller than a sub-section and only |
| * allow operations smaller than a section for |
| * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() |
| * enforces a larger memory_block_size_bytes() granularity for |
| * memory that will be marked online, so this check should only |
| * fire for direct arch_{add,remove}_memory() users outside of |
| * add_memory_resource(). |
| */ |
| unsigned long min_align; |
| |
| if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) |
| min_align = PAGES_PER_SUBSECTION; |
| else |
| min_align = PAGES_PER_SECTION; |
| if (!IS_ALIGNED(pfn | nr_pages, min_align)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* |
| * Return page for the valid pfn only if the page is online. All pfn |
| * walkers which rely on the fully initialized page->flags and others |
| * should use this rather than pfn_valid && pfn_to_page |
| */ |
| struct page *pfn_to_online_page(unsigned long pfn) |
| { |
| unsigned long nr = pfn_to_section_nr(pfn); |
| struct dev_pagemap *pgmap; |
| struct mem_section *ms; |
| |
| if (nr >= NR_MEM_SECTIONS) |
| return NULL; |
| |
| ms = __nr_to_section(nr); |
| if (!online_section(ms)) |
| return NULL; |
| |
| /* |
| * Save some code text when online_section() + |
| * pfn_section_valid() are sufficient. |
| */ |
| if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) |
| return NULL; |
| |
| if (!pfn_section_valid(ms, pfn)) |
| return NULL; |
| |
| if (!online_device_section(ms)) |
| return pfn_to_page(pfn); |
| |
| /* |
| * Slowpath: when ZONE_DEVICE collides with |
| * ZONE_{NORMAL,MOVABLE} within the same section some pfns in |
| * the section may be 'offline' but 'valid'. Only |
| * get_dev_pagemap() can determine sub-section online status. |
| */ |
| pgmap = get_dev_pagemap(pfn, NULL); |
| put_dev_pagemap(pgmap); |
| |
| /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ |
| if (pgmap) |
| return NULL; |
| |
| return pfn_to_page(pfn); |
| } |
| EXPORT_SYMBOL_GPL(pfn_to_online_page); |
| |
| int __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, |
| struct mhp_params *params) |
| { |
| const unsigned long end_pfn = pfn + nr_pages; |
| unsigned long cur_nr_pages; |
| int err; |
| struct vmem_altmap *altmap = params->altmap; |
| |
| if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) |
| return -EINVAL; |
| |
| VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); |
| |
| if (altmap) { |
| /* |
| * Validate altmap is within bounds of the total request |
| */ |
| if (altmap->base_pfn != pfn |
| || vmem_altmap_offset(altmap) > nr_pages) { |
| pr_warn_once("memory add fail, invalid altmap\n"); |
| return -EINVAL; |
| } |
| altmap->alloc = 0; |
| } |
| |
| if (check_pfn_span(pfn, nr_pages)) { |
| WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); |
| return -EINVAL; |
| } |
| |
| for (; pfn < end_pfn; pfn += cur_nr_pages) { |
| /* Select all remaining pages up to the next section boundary */ |
| cur_nr_pages = min(end_pfn - pfn, |
| SECTION_ALIGN_UP(pfn + 1) - pfn); |
| err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, |
| params->pgmap); |
| if (err) |
| break; |
| cond_resched(); |
| } |
| vmemmap_populate_print_last(); |
| return err; |
| } |
| |
| /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ |
| static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, |
| unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { |
| if (unlikely(!pfn_to_online_page(start_pfn))) |
| continue; |
| |
| if (unlikely(pfn_to_nid(start_pfn) != nid)) |
| continue; |
| |
| if (zone != page_zone(pfn_to_page(start_pfn))) |
| continue; |
| |
| return start_pfn; |
| } |
| |
| return 0; |
| } |
| |
| /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ |
| static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, |
| unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long pfn; |
| |
| /* pfn is the end pfn of a memory section. */ |
| pfn = end_pfn - 1; |
| for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { |
| if (unlikely(!pfn_to_online_page(pfn))) |
| continue; |
| |
| if (unlikely(pfn_to_nid(pfn) != nid)) |
| continue; |
| |
| if (zone != page_zone(pfn_to_page(pfn))) |
| continue; |
| |
| return pfn; |
| } |
| |
| return 0; |
| } |
| |
| static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long pfn; |
| int nid = zone_to_nid(zone); |
| |
| if (zone->zone_start_pfn == start_pfn) { |
| /* |
| * If the section is smallest section in the zone, it need |
| * shrink zone->zone_start_pfn and zone->zone_spanned_pages. |
| * In this case, we find second smallest valid mem_section |
| * for shrinking zone. |
| */ |
| pfn = find_smallest_section_pfn(nid, zone, end_pfn, |
| zone_end_pfn(zone)); |
| if (pfn) { |
| zone->spanned_pages = zone_end_pfn(zone) - pfn; |
| zone->zone_start_pfn = pfn; |
| } else { |
| zone->zone_start_pfn = 0; |
| zone->spanned_pages = 0; |
| } |
| } else if (zone_end_pfn(zone) == end_pfn) { |
| /* |
| * If the section is biggest section in the zone, it need |
| * shrink zone->spanned_pages. |
| * In this case, we find second biggest valid mem_section for |
| * shrinking zone. |
| */ |
| pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, |
| start_pfn); |
| if (pfn) |
| zone->spanned_pages = pfn - zone->zone_start_pfn + 1; |
| else { |
| zone->zone_start_pfn = 0; |
| zone->spanned_pages = 0; |
| } |
| } |
| } |
| |
| static void update_pgdat_span(struct pglist_data *pgdat) |
| { |
| unsigned long node_start_pfn = 0, node_end_pfn = 0; |
| struct zone *zone; |
| |
| for (zone = pgdat->node_zones; |
| zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { |
| unsigned long end_pfn = zone_end_pfn(zone); |
| |
| /* No need to lock the zones, they can't change. */ |
| if (!zone->spanned_pages) |
| continue; |
| if (!node_end_pfn) { |
| node_start_pfn = zone->zone_start_pfn; |
| node_end_pfn = end_pfn; |
| continue; |
| } |
| |
| if (end_pfn > node_end_pfn) |
| node_end_pfn = end_pfn; |
| if (zone->zone_start_pfn < node_start_pfn) |
| node_start_pfn = zone->zone_start_pfn; |
| } |
| |
| pgdat->node_start_pfn = node_start_pfn; |
| pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; |
| } |
| |
| void remove_pfn_range_from_zone(struct zone *zone, |
| unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| const unsigned long end_pfn = start_pfn + nr_pages; |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| unsigned long pfn, cur_nr_pages; |
| |
| /* Poison struct pages because they are now uninitialized again. */ |
| for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { |
| cond_resched(); |
| |
| /* Select all remaining pages up to the next section boundary */ |
| cur_nr_pages = |
| min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); |
| page_init_poison(pfn_to_page(pfn), |
| sizeof(struct page) * cur_nr_pages); |
| } |
| |
| /* |
| * Zone shrinking code cannot properly deal with ZONE_DEVICE. So |
| * we will not try to shrink the zones - which is okay as |
| * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. |
| */ |
| if (zone_is_zone_device(zone)) |
| return; |
| |
| clear_zone_contiguous(zone); |
| |
| shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); |
| update_pgdat_span(pgdat); |
| |
| set_zone_contiguous(zone); |
| } |
| |
| /** |
| * __remove_pages() - remove sections of pages |
| * @pfn: starting pageframe (must be aligned to start of a section) |
| * @nr_pages: number of pages to remove (must be multiple of section size) |
| * @altmap: alternative device page map or %NULL if default memmap is used |
| * |
| * Generic helper function to remove section mappings and sysfs entries |
| * for the section of the memory we are removing. Caller needs to make |
| * sure that pages are marked reserved and zones are adjust properly by |
| * calling offline_pages(). |
| */ |
| void __remove_pages(unsigned long pfn, unsigned long nr_pages, |
| struct vmem_altmap *altmap) |
| { |
| const unsigned long end_pfn = pfn + nr_pages; |
| unsigned long cur_nr_pages; |
| |
| if (check_pfn_span(pfn, nr_pages)) { |
| WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); |
| return; |
| } |
| |
| for (; pfn < end_pfn; pfn += cur_nr_pages) { |
| cond_resched(); |
| /* Select all remaining pages up to the next section boundary */ |
| cur_nr_pages = min(end_pfn - pfn, |
| SECTION_ALIGN_UP(pfn + 1) - pfn); |
| sparse_remove_section(pfn, cur_nr_pages, altmap); |
| } |
| } |
| |
| int set_online_page_callback(online_page_callback_t callback) |
| { |
| int rc = -EINVAL; |
| |
| get_online_mems(); |
| mutex_lock(&online_page_callback_lock); |
| |
| if (online_page_callback == generic_online_page) { |
| online_page_callback = callback; |
| rc = 0; |
| } |
| |
| mutex_unlock(&online_page_callback_lock); |
| put_online_mems(); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(set_online_page_callback); |
| |
| int restore_online_page_callback(online_page_callback_t callback) |
| { |
| int rc = -EINVAL; |
| |
| get_online_mems(); |
| mutex_lock(&online_page_callback_lock); |
| |
| if (online_page_callback == callback) { |
| online_page_callback = generic_online_page; |
| rc = 0; |
| } |
| |
| mutex_unlock(&online_page_callback_lock); |
| put_online_mems(); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(restore_online_page_callback); |
| |
| /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ |
| void generic_online_page(struct page *page, unsigned int order) |
| { |
| __free_pages_core(page, order, MEMINIT_HOTPLUG); |
| } |
| EXPORT_SYMBOL_GPL(generic_online_page); |
| |
| static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) |
| { |
| const unsigned long end_pfn = start_pfn + nr_pages; |
| unsigned long pfn; |
| |
| /* |
| * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might |
| * decide to not expose all pages to the buddy (e.g., expose them |
| * later). We account all pages as being online and belonging to this |
| * zone ("present"). |
| * When using memmap_on_memory, the range might not be aligned to |
| * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect |
| * this and the first chunk to online will be pageblock_nr_pages. |
| */ |
| for (pfn = start_pfn; pfn < end_pfn;) { |
| int order; |
| |
| /* |
| * Free to online pages in the largest chunks alignment allows. |
| * |
| * __ffs() behaviour is undefined for 0. start == 0 is |
| * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for |
| * the case. |
| */ |
| if (pfn) |
| order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn)); |
| else |
| order = MAX_PAGE_ORDER; |
| |
| (*online_page_callback)(pfn_to_page(pfn), order); |
| pfn += (1UL << order); |
| } |
| |
| /* mark all involved sections as online */ |
| online_mem_sections(start_pfn, end_pfn); |
| } |
| |
| /* check which state of node_states will be changed when online memory */ |
| static void node_states_check_changes_online(unsigned long nr_pages, |
| struct zone *zone, struct memory_notify *arg) |
| { |
| int nid = zone_to_nid(zone); |
| |
| arg->status_change_nid = NUMA_NO_NODE; |
| arg->status_change_nid_normal = NUMA_NO_NODE; |
| |
| if (!node_state(nid, N_MEMORY)) |
| arg->status_change_nid = nid; |
| if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) |
| arg->status_change_nid_normal = nid; |
| } |
| |
| static void node_states_set_node(int node, struct memory_notify *arg) |
| { |
| if (arg->status_change_nid_normal >= 0) |
| node_set_state(node, N_NORMAL_MEMORY); |
| |
| if (arg->status_change_nid >= 0) |
| node_set_state(node, N_MEMORY); |
| } |
| |
| static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| unsigned long old_end_pfn = zone_end_pfn(zone); |
| |
| if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) |
| zone->zone_start_pfn = start_pfn; |
| |
| zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; |
| } |
| |
| static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| unsigned long old_end_pfn = pgdat_end_pfn(pgdat); |
| |
| if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) |
| pgdat->node_start_pfn = start_pfn; |
| |
| pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; |
| |
| } |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| static void section_taint_zone_device(unsigned long pfn) |
| { |
| struct mem_section *ms = __pfn_to_section(pfn); |
| |
| ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; |
| } |
| #else |
| static inline void section_taint_zone_device(unsigned long pfn) |
| { |
| } |
| #endif |
| |
| /* |
| * Associate the pfn range with the given zone, initializing the memmaps |
| * and resizing the pgdat/zone data to span the added pages. After this |
| * call, all affected pages are PageOffline(). |
| * |
| * All aligned pageblocks are initialized to the specified migratetype |
| * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related |
| * zone stats (e.g., nr_isolate_pageblock) are touched. |
| */ |
| void move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, |
| unsigned long nr_pages, |
| struct vmem_altmap *altmap, int migratetype) |
| { |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| int nid = pgdat->node_id; |
| |
| clear_zone_contiguous(zone); |
| |
| if (zone_is_empty(zone)) |
| init_currently_empty_zone(zone, start_pfn, nr_pages); |
| resize_zone_range(zone, start_pfn, nr_pages); |
| resize_pgdat_range(pgdat, start_pfn, nr_pages); |
| |
| /* |
| * Subsection population requires care in pfn_to_online_page(). |
| * Set the taint to enable the slow path detection of |
| * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} |
| * section. |
| */ |
| if (zone_is_zone_device(zone)) { |
| if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) |
| section_taint_zone_device(start_pfn); |
| if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) |
| section_taint_zone_device(start_pfn + nr_pages); |
| } |
| |
| /* |
| * TODO now we have a visible range of pages which are not associated |
| * with their zone properly. Not nice but set_pfnblock_flags_mask |
| * expects the zone spans the pfn range. All the pages in the range |
| * are reserved so nobody should be touching them so we should be safe |
| */ |
| memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, |
| MEMINIT_HOTPLUG, altmap, migratetype); |
| |
| set_zone_contiguous(zone); |
| } |
| |
| struct auto_movable_stats { |
| unsigned long kernel_early_pages; |
| unsigned long movable_pages; |
| }; |
| |
| static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, |
| struct zone *zone) |
| { |
| if (zone_idx(zone) == ZONE_MOVABLE) { |
| stats->movable_pages += zone->present_pages; |
| } else { |
| stats->kernel_early_pages += zone->present_early_pages; |
| #ifdef CONFIG_CMA |
| /* |
| * CMA pages (never on hotplugged memory) behave like |
| * ZONE_MOVABLE. |
| */ |
| stats->movable_pages += zone->cma_pages; |
| stats->kernel_early_pages -= zone->cma_pages; |
| #endif /* CONFIG_CMA */ |
| } |
| } |
| struct auto_movable_group_stats { |
| unsigned long movable_pages; |
| unsigned long req_kernel_early_pages; |
| }; |
| |
| static int auto_movable_stats_account_group(struct memory_group *group, |
| void *arg) |
| { |
| const int ratio = READ_ONCE(auto_movable_ratio); |
| struct auto_movable_group_stats *stats = arg; |
| long pages; |
| |
| /* |
| * We don't support modifying the config while the auto-movable online |
| * policy is already enabled. Just avoid the division by zero below. |
| */ |
| if (!ratio) |
| return 0; |
| |
| /* |
| * Calculate how many early kernel pages this group requires to |
| * satisfy the configured zone ratio. |
| */ |
| pages = group->present_movable_pages * 100 / ratio; |
| pages -= group->present_kernel_pages; |
| |
| if (pages > 0) |
| stats->req_kernel_early_pages += pages; |
| stats->movable_pages += group->present_movable_pages; |
| return 0; |
| } |
| |
| static bool auto_movable_can_online_movable(int nid, struct memory_group *group, |
| unsigned long nr_pages) |
| { |
| unsigned long kernel_early_pages, movable_pages; |
| struct auto_movable_group_stats group_stats = {}; |
| struct auto_movable_stats stats = {}; |
| struct zone *zone; |
| int i; |
| |
| /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ |
| if (nid == NUMA_NO_NODE) { |
| /* TODO: cache values */ |
| for_each_populated_zone(zone) |
| auto_movable_stats_account_zone(&stats, zone); |
| } else { |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| |
| zone = pgdat->node_zones + i; |
| if (populated_zone(zone)) |
| auto_movable_stats_account_zone(&stats, zone); |
| } |
| } |
| |
| kernel_early_pages = stats.kernel_early_pages; |
| movable_pages = stats.movable_pages; |
| |
| /* |
| * Kernel memory inside dynamic memory group allows for more MOVABLE |
| * memory within the same group. Remove the effect of all but the |
| * current group from the stats. |
| */ |
| walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, |
| group, &group_stats); |
| if (kernel_early_pages <= group_stats.req_kernel_early_pages) |
| return false; |
| kernel_early_pages -= group_stats.req_kernel_early_pages; |
| movable_pages -= group_stats.movable_pages; |
| |
| if (group && group->is_dynamic) |
| kernel_early_pages += group->present_kernel_pages; |
| |
| /* |
| * Test if we could online the given number of pages to ZONE_MOVABLE |
| * and still stay in the configured ratio. |
| */ |
| movable_pages += nr_pages; |
| return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; |
| } |
| |
| /* |
| * Returns a default kernel memory zone for the given pfn range. |
| * If no kernel zone covers this pfn range it will automatically go |
| * to the ZONE_NORMAL. |
| */ |
| static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| struct pglist_data *pgdat = NODE_DATA(nid); |
| int zid; |
| |
| for (zid = 0; zid < ZONE_NORMAL; zid++) { |
| struct zone *zone = &pgdat->node_zones[zid]; |
| |
| if (zone_intersects(zone, start_pfn, nr_pages)) |
| return zone; |
| } |
| |
| return &pgdat->node_zones[ZONE_NORMAL]; |
| } |
| |
| /* |
| * Determine to which zone to online memory dynamically based on user |
| * configuration and system stats. We care about the following ratio: |
| * |
| * MOVABLE : KERNEL |
| * |
| * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in |
| * one of the kernel zones. CMA pages inside one of the kernel zones really |
| * behaves like ZONE_MOVABLE, so we treat them accordingly. |
| * |
| * We don't allow for hotplugged memory in a KERNEL zone to increase the |
| * amount of MOVABLE memory we can have, so we end up with: |
| * |
| * MOVABLE : KERNEL_EARLY |
| * |
| * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze |
| * boot. We base our calculation on KERNEL_EARLY internally, because: |
| * |
| * a) Hotplugged memory in one of the kernel zones can sometimes still get |
| * hotunplugged, especially when hot(un)plugging individual memory blocks. |
| * There is no coordination across memory devices, therefore "automatic" |
| * hotunplugging, as implemented in hypervisors, could result in zone |
| * imbalances. |
| * b) Early/boot memory in one of the kernel zones can usually not get |
| * hotunplugged again (e.g., no firmware interface to unplug, fragmented |
| * with unmovable allocations). While there are corner cases where it might |
| * still work, it is barely relevant in practice. |
| * |
| * Exceptions are dynamic memory groups, which allow for more MOVABLE |
| * memory within the same memory group -- because in that case, there is |
| * coordination within the single memory device managed by a single driver. |
| * |
| * We rely on "present pages" instead of "managed pages", as the latter is |
| * highly unreliable and dynamic in virtualized environments, and does not |
| * consider boot time allocations. For example, memory ballooning adjusts the |
| * managed pages when inflating/deflating the balloon, and balloon compaction |
| * can even migrate inflated pages between zones. |
| * |
| * Using "present pages" is better but some things to keep in mind are: |
| * |
| * a) Some memblock allocations, such as for the crashkernel area, are |
| * effectively unused by the kernel, yet they account to "present pages". |
| * Fortunately, these allocations are comparatively small in relevant setups |
| * (e.g., fraction of system memory). |
| * b) Some hotplugged memory blocks in virtualized environments, esecially |
| * hotplugged by virtio-mem, look like they are completely present, however, |
| * only parts of the memory block are actually currently usable. |
| * "present pages" is an upper limit that can get reached at runtime. As |
| * we base our calculations on KERNEL_EARLY, this is not an issue. |
| */ |
| static struct zone *auto_movable_zone_for_pfn(int nid, |
| struct memory_group *group, |
| unsigned long pfn, |
| unsigned long nr_pages) |
| { |
| unsigned long online_pages = 0, max_pages, end_pfn; |
| struct page *page; |
| |
| if (!auto_movable_ratio) |
| goto kernel_zone; |
| |
| if (group && !group->is_dynamic) { |
| max_pages = group->s.max_pages; |
| online_pages = group->present_movable_pages; |
| |
| /* If anything is !MOVABLE online the rest !MOVABLE. */ |
| if (group->present_kernel_pages) |
| goto kernel_zone; |
| } else if (!group || group->d.unit_pages == nr_pages) { |
| max_pages = nr_pages; |
| } else { |
| max_pages = group->d.unit_pages; |
| /* |
| * Take a look at all online sections in the current unit. |
| * We can safely assume that all pages within a section belong |
| * to the same zone, because dynamic memory groups only deal |
| * with hotplugged memory. |
| */ |
| pfn = ALIGN_DOWN(pfn, group->d.unit_pages); |
| end_pfn = pfn + group->d.unit_pages; |
| for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
| page = pfn_to_online_page(pfn); |
| if (!page) |
| continue; |
| /* If anything is !MOVABLE online the rest !MOVABLE. */ |
| if (!is_zone_movable_page(page)) |
| goto kernel_zone; |
| online_pages += PAGES_PER_SECTION; |
| } |
| } |
| |
| /* |
| * Online MOVABLE if we could *currently* online all remaining parts |
| * MOVABLE. We expect to (add+) online them immediately next, so if |
| * nobody interferes, all will be MOVABLE if possible. |
| */ |
| nr_pages = max_pages - online_pages; |
| if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) |
| goto kernel_zone; |
| |
| #ifdef CONFIG_NUMA |
| if (auto_movable_numa_aware && |
| !auto_movable_can_online_movable(nid, group, nr_pages)) |
| goto kernel_zone; |
| #endif /* CONFIG_NUMA */ |
| |
| return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; |
| kernel_zone: |
| return default_kernel_zone_for_pfn(nid, pfn, nr_pages); |
| } |
| |
| static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, |
| nr_pages); |
| struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; |
| bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); |
| bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); |
| |
| /* |
| * We inherit the existing zone in a simple case where zones do not |
| * overlap in the given range |
| */ |
| if (in_kernel ^ in_movable) |
| return (in_kernel) ? kernel_zone : movable_zone; |
| |
| /* |
| * If the range doesn't belong to any zone or two zones overlap in the |
| * given range then we use movable zone only if movable_node is |
| * enabled because we always online to a kernel zone by default. |
| */ |
| return movable_node_enabled ? movable_zone : kernel_zone; |
| } |
| |
| struct zone *zone_for_pfn_range(int online_type, int nid, |
| struct memory_group *group, unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| if (online_type == MMOP_ONLINE_KERNEL) |
| return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); |
| |
| if (online_type == MMOP_ONLINE_MOVABLE) |
| return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; |
| |
| if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) |
| return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); |
| |
| return default_zone_for_pfn(nid, start_pfn, nr_pages); |
| } |
| |
| /* |
| * This function should only be called by memory_block_{online,offline}, |
| * and {online,offline}_pages. |
| */ |
| void adjust_present_page_count(struct page *page, struct memory_group *group, |
| long nr_pages) |
| { |
| struct zone *zone = page_zone(page); |
| const bool movable = zone_idx(zone) == ZONE_MOVABLE; |
| |
| /* |
| * We only support onlining/offlining/adding/removing of complete |
| * memory blocks; therefore, either all is either early or hotplugged. |
| */ |
| if (early_section(__pfn_to_section(page_to_pfn(page)))) |
| zone->present_early_pages += nr_pages; |
| zone->present_pages += nr_pages; |
| zone->zone_pgdat->node_present_pages += nr_pages; |
| |
| if (group && movable) |
| group->present_movable_pages += nr_pages; |
| else if (group && !movable) |
| group->present_kernel_pages += nr_pages; |
| } |
| |
| int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, |
| struct zone *zone, bool mhp_off_inaccessible) |
| { |
| unsigned long end_pfn = pfn + nr_pages; |
| int ret, i; |
| |
| ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); |
| if (ret) |
| return ret; |
| |
| /* |
| * Memory block is accessible at this stage and hence poison the struct |
| * pages now. If the memory block is accessible during memory hotplug |
| * addition phase, then page poisining is already performed in |
| * sparse_add_section(). |
| */ |
| if (mhp_off_inaccessible) |
| page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages); |
| |
| move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pfn_to_page(pfn + i); |
| |
| __ClearPageOffline(page); |
| SetPageVmemmapSelfHosted(page); |
| } |
| |
| /* |
| * It might be that the vmemmap_pages fully span sections. If that is |
| * the case, mark those sections online here as otherwise they will be |
| * left offline. |
| */ |
| if (nr_pages >= PAGES_PER_SECTION) |
| online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); |
| |
| return ret; |
| } |
| |
| void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) |
| { |
| unsigned long end_pfn = pfn + nr_pages; |
| |
| /* |
| * It might be that the vmemmap_pages fully span sections. If that is |
| * the case, mark those sections offline here as otherwise they will be |
| * left online. |
| */ |
| if (nr_pages >= PAGES_PER_SECTION) |
| offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); |
| |
| /* |
| * The pages associated with this vmemmap have been offlined, so |
| * we can reset its state here. |
| */ |
| remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); |
| kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); |
| } |
| |
| /* |
| * Must be called with mem_hotplug_lock in write mode. |
| */ |
| int online_pages(unsigned long pfn, unsigned long nr_pages, |
| struct zone *zone, struct memory_group *group) |
| { |
| unsigned long flags; |
| int need_zonelists_rebuild = 0; |
| const int nid = zone_to_nid(zone); |
| int ret; |
| struct memory_notify arg; |
| |
| /* |
| * {on,off}lining is constrained to full memory sections (or more |
| * precisely to memory blocks from the user space POV). |
| * memmap_on_memory is an exception because it reserves initial part |
| * of the physical memory space for vmemmaps. That space is pageblock |
| * aligned. |
| */ |
| if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || |
| !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) |
| return -EINVAL; |
| |
| |
| /* associate pfn range with the zone */ |
| move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); |
| |
| arg.start_pfn = pfn; |
| arg.nr_pages = nr_pages; |
| node_states_check_changes_online(nr_pages, zone, &arg); |
| |
| ret = memory_notify(MEM_GOING_ONLINE, &arg); |
| ret = notifier_to_errno(ret); |
| if (ret) |
| goto failed_addition; |
| |
| /* |
| * Fixup the number of isolated pageblocks before marking the sections |
| * onlining, such that undo_isolate_page_range() works correctly. |
| */ |
| spin_lock_irqsave(&zone->lock, flags); |
| zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| /* |
| * If this zone is not populated, then it is not in zonelist. |
| * This means the page allocator ignores this zone. |
| * So, zonelist must be updated after online. |
| */ |
| if (!populated_zone(zone)) { |
| need_zonelists_rebuild = 1; |
| setup_zone_pageset(zone); |
| } |
| |
| online_pages_range(pfn, nr_pages); |
| adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); |
| |
| node_states_set_node(nid, &arg); |
| if (need_zonelists_rebuild) |
| build_all_zonelists(NULL); |
| |
| /* Basic onlining is complete, allow allocation of onlined pages. */ |
| undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); |
| |
| /* |
| * Freshly onlined pages aren't shuffled (e.g., all pages are placed to |
| * the tail of the freelist when undoing isolation). Shuffle the whole |
| * zone to make sure the just onlined pages are properly distributed |
| * across the whole freelist - to create an initial shuffle. |
| */ |
| shuffle_zone(zone); |
| |
| /* reinitialise watermarks and update pcp limits */ |
| init_per_zone_wmark_min(); |
| |
| kswapd_run(nid); |
| kcompactd_run(nid); |
| |
| writeback_set_ratelimit(); |
| |
| memory_notify(MEM_ONLINE, &arg); |
| return 0; |
| |
| failed_addition: |
| pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", |
| (unsigned long long) pfn << PAGE_SHIFT, |
| (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); |
| memory_notify(MEM_CANCEL_ONLINE, &arg); |
| remove_pfn_range_from_zone(zone, pfn, nr_pages); |
| return ret; |
| } |
| |
| /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ |
| static pg_data_t *hotadd_init_pgdat(int nid) |
| { |
| struct pglist_data *pgdat; |
| |
| /* |
| * NODE_DATA is preallocated (free_area_init) but its internal |
| * state is not allocated completely. Add missing pieces. |
| * Completely offline nodes stay around and they just need |
| * reintialization. |
| */ |
| pgdat = NODE_DATA(nid); |
| |
| /* init node's zones as empty zones, we don't have any present pages.*/ |
| free_area_init_core_hotplug(pgdat); |
| |
| /* |
| * The node we allocated has no zone fallback lists. For avoiding |
| * to access not-initialized zonelist, build here. |
| */ |
| build_all_zonelists(pgdat); |
| |
| return pgdat; |
| } |
| |
| /* |
| * __try_online_node - online a node if offlined |
| * @nid: the node ID |
| * @set_node_online: Whether we want to online the node |
| * called by cpu_up() to online a node without onlined memory. |
| * |
| * Returns: |
| * 1 -> a new node has been allocated |
| * 0 -> the node is already online |
| * -ENOMEM -> the node could not be allocated |
| */ |
| static int __try_online_node(int nid, bool set_node_online) |
| { |
| pg_data_t *pgdat; |
| int ret = 1; |
| |
| if (node_online(nid)) |
| return 0; |
| |
| pgdat = hotadd_init_pgdat(nid); |
| if (!pgdat) { |
| pr_err("Cannot online node %d due to NULL pgdat\n", nid); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (set_node_online) { |
| node_set_online(nid); |
| ret = register_one_node(nid); |
| BUG_ON(ret); |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * Users of this function always want to online/register the node |
| */ |
| int try_online_node(int nid) |
| { |
| int ret; |
| |
| mem_hotplug_begin(); |
| ret = __try_online_node(nid, true); |
| mem_hotplug_done(); |
| return ret; |
| } |
| |
| static int check_hotplug_memory_range(u64 start, u64 size) |
| { |
| /* memory range must be block size aligned */ |
| if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || |
| !IS_ALIGNED(size, memory_block_size_bytes())) { |
| pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", |
| memory_block_size_bytes(), start, size); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int online_memory_block(struct memory_block *mem, void *arg) |
| { |
| mem->online_type = mhp_default_online_type; |
| return device_online(&mem->dev); |
| } |
| |
| #ifndef arch_supports_memmap_on_memory |
| static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size) |
| { |
| /* |
| * As default, we want the vmemmap to span a complete PMD such that we |
| * can map the vmemmap using a single PMD if supported by the |
| * architecture. |
| */ |
| return IS_ALIGNED(vmemmap_size, PMD_SIZE); |
| } |
| #endif |
| |
| bool mhp_supports_memmap_on_memory(void) |
| { |
| unsigned long vmemmap_size = memory_block_memmap_size(); |
| unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); |
| |
| /* |
| * Besides having arch support and the feature enabled at runtime, we |
| * need a few more assumptions to hold true: |
| * |
| * a) The vmemmap pages span complete PMDs: We don't want vmemmap code |
| * to populate memory from the altmap for unrelated parts (i.e., |
| * other memory blocks) |
| * |
| * b) The vmemmap pages (and thereby the pages that will be exposed to |
| * the buddy) have to cover full pageblocks: memory onlining/offlining |
| * code requires applicable ranges to be page-aligned, for example, to |
| * set the migratetypes properly. |
| * |
| * TODO: Although we have a check here to make sure that vmemmap pages |
| * fully populate a PMD, it is not the right place to check for |
| * this. A much better solution involves improving vmemmap code |
| * to fallback to base pages when trying to populate vmemmap using |
| * altmap as an alternative source of memory, and we do not exactly |
| * populate a single PMD. |
| */ |
| if (!mhp_memmap_on_memory()) |
| return false; |
| |
| /* |
| * Make sure the vmemmap allocation is fully contained |
| * so that we always allocate vmemmap memory from altmap area. |
| */ |
| if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE)) |
| return false; |
| |
| /* |
| * start pfn should be pageblock_nr_pages aligned for correctly |
| * setting migrate types |
| */ |
| if (!pageblock_aligned(memmap_pages)) |
| return false; |
| |
| if (memmap_pages == PHYS_PFN(memory_block_size_bytes())) |
| /* No effective hotplugged memory doesn't make sense. */ |
| return false; |
| |
| return arch_supports_memmap_on_memory(vmemmap_size); |
| } |
| EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory); |
| |
| static void remove_memory_blocks_and_altmaps(u64 start, u64 size) |
| { |
| unsigned long memblock_size = memory_block_size_bytes(); |
| u64 cur_start; |
| |
| /* |
| * For memmap_on_memory, the altmaps were added on a per-memblock |
| * basis; we have to process each individual memory block. |
| */ |
| for (cur_start = start; cur_start < start + size; |
| cur_start += memblock_size) { |
| struct vmem_altmap *altmap = NULL; |
| struct memory_block *mem; |
| |
| mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start))); |
| if (WARN_ON_ONCE(!mem)) |
| continue; |
| |
| altmap = mem->altmap; |
| mem->altmap = NULL; |
| |
| remove_memory_block_devices(cur_start, memblock_size); |
| |
| arch_remove_memory(cur_start, memblock_size, altmap); |
| |
| /* Verify that all vmemmap pages have actually been freed. */ |
| WARN(altmap->alloc, "Altmap not fully unmapped"); |
| kfree(altmap); |
| } |
| } |
| |
| static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group, |
| u64 start, u64 size, mhp_t mhp_flags) |
| { |
| unsigned long memblock_size = memory_block_size_bytes(); |
| u64 cur_start; |
| int ret; |
| |
| for (cur_start = start; cur_start < start + size; |
| cur_start += memblock_size) { |
| struct mhp_params params = { .pgprot = |
| pgprot_mhp(PAGE_KERNEL) }; |
| struct vmem_altmap mhp_altmap = { |
| .base_pfn = PHYS_PFN(cur_start), |
| .end_pfn = PHYS_PFN(cur_start + memblock_size - 1), |
| }; |
| |
| mhp_altmap.free = memory_block_memmap_on_memory_pages(); |
| if (mhp_flags & MHP_OFFLINE_INACCESSIBLE) |
| mhp_altmap.inaccessible = true; |
| params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap), |
| GFP_KERNEL); |
| if (!params.altmap) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* call arch's memory hotadd */ |
| ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms); |
| if (ret < 0) { |
| kfree(params.altmap); |
| goto out; |
| } |
| |
| /* create memory block devices after memory was added */ |
| ret = create_memory_block_devices(cur_start, memblock_size, |
| params.altmap, group); |
| if (ret) { |
| arch_remove_memory(cur_start, memblock_size, NULL); |
| kfree(params.altmap); |
| goto out; |
| } |
| } |
| |
| return 0; |
| out: |
| if (ret && cur_start != start) |
| remove_memory_blocks_and_altmaps(start, cur_start - start); |
| return ret; |
| } |
| |
| /* |
| * NOTE: The caller must call lock_device_hotplug() to serialize hotplug |
| * and online/offline operations (triggered e.g. by sysfs). |
| * |
| * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG |
| */ |
| int add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) |
| { |
| struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; |
| enum memblock_flags memblock_flags = MEMBLOCK_NONE; |
| struct memory_group *group = NULL; |
| u64 start, size; |
| bool new_node = false; |
| int ret; |
| |
| start = res->start; |
| size = resource_size(res); |
| |
| ret = check_hotplug_memory_range(start, size); |
| if (ret) |
| return ret; |
| |
| if (mhp_flags & MHP_NID_IS_MGID) { |
| group = memory_group_find_by_id(nid); |
| if (!group) |
| return -EINVAL; |
| nid = group->nid; |
| } |
| |
| if (!node_possible(nid)) { |
| WARN(1, "node %d was absent from the node_possible_map\n", nid); |
| return -EINVAL; |
| } |
| |
| mem_hotplug_begin(); |
| |
| if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { |
| if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) |
| memblock_flags = MEMBLOCK_DRIVER_MANAGED; |
| ret = memblock_add_node(start, size, nid, memblock_flags); |
| if (ret) |
| goto error_mem_hotplug_end; |
| } |
| |
| ret = __try_online_node(nid, false); |
| if (ret < 0) |
| goto error; |
| new_node = ret; |
| |
| /* |
| * Self hosted memmap array |
| */ |
| if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) && |
| mhp_supports_memmap_on_memory()) { |
| ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags); |
| if (ret) |
| goto error; |
| } else { |
| ret = arch_add_memory(nid, start, size, ¶ms); |
| if (ret < 0) |
| goto error; |
| |
| /* create memory block devices after memory was added */ |
| ret = create_memory_block_devices(start, size, NULL, group); |
| if (ret) { |
| arch_remove_memory(start, size, params.altmap); |
| goto error; |
| } |
| } |
| |
| if (new_node) { |
| /* If sysfs file of new node can't be created, cpu on the node |
| * can't be hot-added. There is no rollback way now. |
| * So, check by BUG_ON() to catch it reluctantly.. |
| * We online node here. We can't roll back from here. |
| */ |
| node_set_online(nid); |
| ret = __register_one_node(nid); |
| BUG_ON(ret); |
| } |
| |
| register_memory_blocks_under_node(nid, PFN_DOWN(start), |
| PFN_UP(start + size - 1), |
| MEMINIT_HOTPLUG); |
| |
| /* create new memmap entry */ |
| if (!strcmp(res->name, "System RAM")) |
| firmware_map_add_hotplug(start, start + size, "System RAM"); |
| |
| /* device_online() will take the lock when calling online_pages() */ |
| mem_hotplug_done(); |
| |
| /* |
| * In case we're allowed to merge the resource, flag it and trigger |
| * merging now that adding succeeded. |
| */ |
| if (mhp_flags & MHP_MERGE_RESOURCE) |
| merge_system_ram_resource(res); |
| |
| /* online pages if requested */ |
| if (mhp_default_online_type != MMOP_OFFLINE) |
| walk_memory_blocks(start, size, NULL, online_memory_block); |
| |
| return ret; |
| error: |
| if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) |
| memblock_remove(start, size); |
| error_mem_hotplug_end: |
| mem_hotplug_done(); |
| return ret; |
| } |
| |
| /* requires device_hotplug_lock, see add_memory_resource() */ |
| int __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) |
| { |
| struct resource *res; |
| int ret; |
| |
| res = register_memory_resource(start, size, "System RAM"); |
| if (IS_ERR(res)) |
| return PTR_ERR(res); |
| |
| ret = add_memory_resource(nid, res, mhp_flags); |
| if (ret < 0) |
| release_memory_resource(res); |
| return ret; |
| } |
| |
| int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) |
| { |
| int rc; |
| |
| lock_device_hotplug(); |
| rc = __add_memory(nid, start, size, mhp_flags); |
| unlock_device_hotplug(); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(add_memory); |
| |
| /* |
| * Add special, driver-managed memory to the system as system RAM. Such |
| * memory is not exposed via the raw firmware-provided memmap as system |
| * RAM, instead, it is detected and added by a driver - during cold boot, |
| * after a reboot, and after kexec. |
| * |
| * Reasons why this memory should not be used for the initial memmap of a |
| * kexec kernel or for placing kexec images: |
| * - The booting kernel is in charge of determining how this memory will be |
| * used (e.g., use persistent memory as system RAM) |
| * - Coordination with a hypervisor is required before this memory |
| * can be used (e.g., inaccessible parts). |
| * |
| * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided |
| * memory map") are created. Also, the created memory resource is flagged |
| * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case |
| * this memory as well (esp., not place kexec images onto it). |
| * |
| * The resource_name (visible via /proc/iomem) has to have the format |
| * "System RAM ($DRIVER)". |
| */ |
| int add_memory_driver_managed(int nid, u64 start, u64 size, |
| const char *resource_name, mhp_t mhp_flags) |
| { |
| struct resource *res; |
| int rc; |
| |
| if (!resource_name || |
| strstr(resource_name, "System RAM (") != resource_name || |
| resource_name[strlen(resource_name) - 1] != ')') |
| return -EINVAL; |
| |
| lock_device_hotplug(); |
| |
| res = register_memory_resource(start, size, resource_name); |
| if (IS_ERR(res)) { |
| rc = PTR_ERR(res); |
| goto out_unlock; |
| } |
| |
| rc = add_memory_resource(nid, res, mhp_flags); |
| if (rc < 0) |
| release_memory_resource(res); |
| |
| out_unlock: |
| unlock_device_hotplug(); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(add_memory_driver_managed); |
| |
| /* |
| * Platforms should define arch_get_mappable_range() that provides |
| * maximum possible addressable physical memory range for which the |
| * linear mapping could be created. The platform returned address |
| * range must adhere to these following semantics. |
| * |
| * - range.start <= range.end |
| * - Range includes both end points [range.start..range.end] |
| * |
| * There is also a fallback definition provided here, allowing the |
| * entire possible physical address range in case any platform does |
| * not define arch_get_mappable_range(). |
| */ |
| struct range __weak arch_get_mappable_range(void) |
| { |
| struct range mhp_range = { |
| .start = 0UL, |
| .end = -1ULL, |
| }; |
| return mhp_range; |
| } |
| |
| struct range mhp_get_pluggable_range(bool need_mapping) |
| { |
| const u64 max_phys = PHYSMEM_END; |
| struct range mhp_range; |
| |
| if (need_mapping) { |
| mhp_range = arch_get_mappable_range(); |
| if (mhp_range.start > max_phys) { |
| mhp_range.start = 0; |
| mhp_range.end = 0; |
| } |
| mhp_range.end = min_t(u64, mhp_range.end, max_phys); |
| } else { |
| mhp_range.start = 0; |
| mhp_range.end = max_phys; |
| } |
| return mhp_range; |
| } |
| EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); |
| |
| bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) |
| { |
| struct range mhp_range = mhp_get_pluggable_range(need_mapping); |
| u64 end = start + size; |
| |
| if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) |
| return true; |
| |
| pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", |
| start, end, mhp_range.start, mhp_range.end); |
| return false; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTREMOVE |
| /* |
| * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, |
| * non-lru movable pages and hugepages). Will skip over most unmovable |
| * pages (esp., pages that can be skipped when offlining), but bail out on |
| * definitely unmovable pages. |
| * |
| * Returns: |
| * 0 in case a movable page is found and movable_pfn was updated. |
| * -ENOENT in case no movable page was found. |
| * -EBUSY in case a definitely unmovable page was found. |
| */ |
| static int scan_movable_pages(unsigned long start, unsigned long end, |
| unsigned long *movable_pfn) |
| { |
| unsigned long pfn; |
| |
| for (pfn = start; pfn < end; pfn++) { |
| struct page *page; |
| struct folio *folio; |
| |
| if (!pfn_valid(pfn)) |
| continue; |
| page = pfn_to_page(pfn); |
| if (PageLRU(page)) |
| goto found; |
| if (__PageMovable(page)) |
| goto found; |
| |
| /* |
| * PageOffline() pages that are not marked __PageMovable() and |
| * have a reference count > 0 (after MEM_GOING_OFFLINE) are |
| * definitely unmovable. If their reference count would be 0, |
| * they could at least be skipped when offlining memory. |
| */ |
| if (PageOffline(page) && page_count(page)) |
| return -EBUSY; |
| |
| if (!PageHuge(page)) |
| continue; |
| folio = page_folio(page); |
| /* |
| * This test is racy as we hold no reference or lock. The |
| * hugetlb page could have been free'ed and head is no longer |
| * a hugetlb page before the following check. In such unlikely |
| * cases false positives and negatives are possible. Calling |
| * code must deal with these scenarios. |
| */ |
| if (folio_test_hugetlb_migratable(folio)) |
| goto found; |
| pfn |= folio_nr_pages(folio) - 1; |
| } |
| return -ENOENT; |
| found: |
| *movable_pfn = pfn; |
| return 0; |
| } |
| |
| static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| struct folio *folio; |
| unsigned long pfn; |
| LIST_HEAD(source); |
| static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
| struct page *page; |
| |
| if (!pfn_valid(pfn)) |
| continue; |
| page = pfn_to_page(pfn); |
| folio = page_folio(page); |
| |
| /* |
| * No reference or lock is held on the folio, so it might |
| * be modified concurrently (e.g. split). As such, |
| * folio_nr_pages() may read garbage. This is fine as the outer |
| * loop will revisit the split folio later. |
| */ |
| if (folio_test_large(folio)) |
| pfn = folio_pfn(folio) + folio_nr_pages(folio) - 1; |
| |
| /* |
| * HWPoison pages have elevated reference counts so the migration would |
| * fail on them. It also doesn't make any sense to migrate them in the |
| * first place. Still try to unmap such a page in case it is still mapped |
| * (keep the unmap as the catch all safety net). |
| */ |
| if (folio_test_hwpoison(folio) || |
| (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) { |
| if (WARN_ON(folio_test_lru(folio))) |
| folio_isolate_lru(folio); |
| if (folio_mapped(folio)) |
| unmap_poisoned_folio(folio, TTU_IGNORE_MLOCK); |
| continue; |
| } |
| |
| if (!folio_try_get(folio)) |
| continue; |
| |
| if (unlikely(page_folio(page) != folio)) |
| goto put_folio; |
| |
| if (!isolate_folio_to_list(folio, &source)) { |
| if (__ratelimit(&migrate_rs)) { |
| pr_warn("failed to isolate pfn %lx\n", |
| page_to_pfn(page)); |
| dump_page(page, "isolation failed"); |
| } |
| } |
| put_folio: |
| folio_put(folio); |
| } |
| if (!list_empty(&source)) { |
| nodemask_t nmask = node_states[N_MEMORY]; |
| struct migration_target_control mtc = { |
| .nmask = &nmask, |
| .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, |
| .reason = MR_MEMORY_HOTPLUG, |
| }; |
| int ret; |
| |
| /* |
| * We have checked that migration range is on a single zone so |
| * we can use the nid of the first page to all the others. |
| */ |
| mtc.nid = folio_nid(list_first_entry(&source, struct folio, lru)); |
| |
| /* |
| * try to allocate from a different node but reuse this node |
| * if there are no other online nodes to be used (e.g. we are |
| * offlining a part of the only existing node) |
| */ |
| node_clear(mtc.nid, nmask); |
| if (nodes_empty(nmask)) |
| node_set(mtc.nid, nmask); |
| ret = migrate_pages(&source, alloc_migration_target, NULL, |
| (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); |
| if (ret) { |
| list_for_each_entry(folio, &source, lru) { |
| if (__ratelimit(&migrate_rs)) { |
| pr_warn("migrating pfn %lx failed ret:%d\n", |
| folio_pfn(folio), ret); |
| dump_page(&folio->page, |
| "migration failure"); |
| } |
| } |
| putback_movable_pages(&source); |
| } |
| } |
| } |
| |
| static int __init cmdline_parse_movable_node(char *p) |
| { |
| movable_node_enabled = true; |
| return 0; |
| } |
| early_param("movable_node", cmdline_parse_movable_node); |
| |
| /* check which state of node_states will be changed when offline memory */ |
| static void node_states_check_changes_offline(unsigned long nr_pages, |
| struct zone *zone, struct memory_notify *arg) |
| { |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| unsigned long present_pages = 0; |
| enum zone_type zt; |
| |
| arg->status_change_nid = NUMA_NO_NODE; |
| arg->status_change_nid_normal = NUMA_NO_NODE; |
| |
| /* |
| * Check whether node_states[N_NORMAL_MEMORY] will be changed. |
| * If the memory to be offline is within the range |
| * [0..ZONE_NORMAL], and it is the last present memory there, |
| * the zones in that range will become empty after the offlining, |
| * thus we can determine that we need to clear the node from |
| * node_states[N_NORMAL_MEMORY]. |
| */ |
| for (zt = 0; zt <= ZONE_NORMAL; zt++) |
| present_pages += pgdat->node_zones[zt].present_pages; |
| if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) |
| arg->status_change_nid_normal = zone_to_nid(zone); |
| |
| /* |
| * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM |
| * does not apply as we don't support 32bit. |
| * Here we count the possible pages from ZONE_MOVABLE. |
| * If after having accounted all the pages, we see that the nr_pages |
| * to be offlined is over or equal to the accounted pages, |
| * we know that the node will become empty, and so, we can clear |
| * it for N_MEMORY as well. |
| */ |
| present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; |
| |
| if (nr_pages >= present_pages) |
| arg->status_change_nid = zone_to_nid(zone); |
| } |
| |
| static void node_states_clear_node(int node, struct memory_notify *arg) |
| { |
| if (arg->status_change_nid_normal >= 0) |
| node_clear_state(node, N_NORMAL_MEMORY); |
| |
| if (arg->status_change_nid >= 0) |
| node_clear_state(node, N_MEMORY); |
| } |
| |
| static int count_system_ram_pages_cb(unsigned long start_pfn, |
| unsigned long nr_pages, void *data) |
| { |
| unsigned long *nr_system_ram_pages = data; |
| |
| *nr_system_ram_pages += nr_pages; |
| return 0; |
| } |
| |
| /* |
| * Must be called with mem_hotplug_lock in write mode. |
| */ |
| int offline_pages(unsigned long start_pfn, unsigned long nr_pages, |
| struct zone *zone, struct memory_group *group) |
| { |
| const unsigned long end_pfn = start_pfn + nr_pages; |
| unsigned long pfn, managed_pages, system_ram_pages = 0; |
| const int node = zone_to_nid(zone); |
| unsigned long flags; |
| struct memory_notify arg; |
| char *reason; |
| int ret; |
| |
| /* |
| * {on,off}lining is constrained to full memory sections (or more |
| * precisely to memory blocks from the user space POV). |
| * memmap_on_memory is an exception because it reserves initial part |
| * of the physical memory space for vmemmaps. That space is pageblock |
| * aligned. |
| */ |
| if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || |
| !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) |
| return -EINVAL; |
| |
| /* |
| * Don't allow to offline memory blocks that contain holes. |
| * Consequently, memory blocks with holes can never get onlined |
| * via the hotplug path - online_pages() - as hotplugged memory has |
| * no holes. This way, we don't have to worry about memory holes, |
| * don't need pfn_valid() checks, and can avoid using |
| * walk_system_ram_range() later. |
| */ |
| walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, |
| count_system_ram_pages_cb); |
| if (system_ram_pages != nr_pages) { |
| ret = -EINVAL; |
| reason = "memory holes"; |
| goto failed_removal; |
| } |
| |
| /* |
| * We only support offlining of memory blocks managed by a single zone, |
| * checked by calling code. This is just a sanity check that we might |
| * want to remove in the future. |
| */ |
| if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || |
| page_zone(pfn_to_page(end_pfn - 1)) != zone)) { |
| ret = -EINVAL; |
| reason = "multizone range"; |
| goto failed_removal; |
| } |
| |
| /* |
| * Disable pcplists so that page isolation cannot race with freeing |
| * in a way that pages from isolated pageblock are left on pcplists. |
| */ |
| zone_pcp_disable(zone); |
| lru_cache_disable(); |
| |
| /* set above range as isolated */ |
| ret = start_isolate_page_range(start_pfn, end_pfn, |
| MIGRATE_MOVABLE, |
| MEMORY_OFFLINE | REPORT_FAILURE, |
| GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); |
| if (ret) { |
| reason = "failure to isolate range"; |
| goto failed_removal_pcplists_disabled; |
| } |
| |
| arg.start_pfn = start_pfn; |
| arg.nr_pages = nr_pages; |
| node_states_check_changes_offline(nr_pages, zone, &arg); |
| |
| ret = memory_notify(MEM_GOING_OFFLINE, &arg); |
| ret = notifier_to_errno(ret); |
| if (ret) { |
| reason = "notifier failure"; |
| goto failed_removal_isolated; |
| } |
| |
| do { |
| pfn = start_pfn; |
| do { |
| /* |
| * Historically we always checked for any signal and |
| * can't limit it to fatal signals without eventually |
| * breaking user space. |
| */ |
| if (signal_pending(current)) { |
| ret = -EINTR; |
| reason = "signal backoff"; |
| goto failed_removal_isolated; |
| } |
| |
| cond_resched(); |
| |
| ret = scan_movable_pages(pfn, end_pfn, &pfn); |
| if (!ret) { |
| /* |
| * TODO: fatal migration failures should bail |
| * out |
| */ |
| do_migrate_range(pfn, end_pfn); |
| } |
| } while (!ret); |
| |
| if (ret != -ENOENT) { |
| reason = "unmovable page"; |
| goto failed_removal_isolated; |
| } |
| |
| /* |
| * Dissolve free hugetlb folios in the memory block before doing |
| * offlining actually in order to make hugetlbfs's object |
| * counting consistent. |
| */ |
| ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn); |
| if (ret) { |
| reason = "failure to dissolve huge pages"; |
| goto failed_removal_isolated; |
| } |
| |
| ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); |
| |
| } while (ret); |
| |
| /* Mark all sections offline and remove free pages from the buddy. */ |
| managed_pages = __offline_isolated_pages(start_pfn, end_pfn); |
| pr_debug("Offlined Pages %ld\n", nr_pages); |
| |
| /* |
| * The memory sections are marked offline, and the pageblock flags |
| * effectively stale; nobody should be touching them. Fixup the number |
| * of isolated pageblocks, memory onlining will properly revert this. |
| */ |
| spin_lock_irqsave(&zone->lock, flags); |
| zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| lru_cache_enable(); |
| zone_pcp_enable(zone); |
| |
| /* removal success */ |
| adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages); |
| adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); |
| |
| /* reinitialise watermarks and update pcp limits */ |
| init_per_zone_wmark_min(); |
| |
| /* |
| * Make sure to mark the node as memory-less before rebuilding the zone |
| * list. Otherwise this node would still appear in the fallback lists. |
| */ |
| node_states_clear_node(node, &arg); |
| if (!populated_zone(zone)) { |
| zone_pcp_reset(zone); |
| build_all_zonelists(NULL); |
| } |
| |
| if (arg.status_change_nid >= 0) { |
| kcompactd_stop(node); |
| kswapd_stop(node); |
| } |
| |
| writeback_set_ratelimit(); |
| |
| memory_notify(MEM_OFFLINE, &arg); |
| remove_pfn_range_from_zone(zone, start_pfn, nr_pages); |
| return 0; |
| |
| failed_removal_isolated: |
| /* pushback to free area */ |
| undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); |
| memory_notify(MEM_CANCEL_OFFLINE, &arg); |
| failed_removal_pcplists_disabled: |
| lru_cache_enable(); |
| zone_pcp_enable(zone); |
| failed_removal: |
| pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", |
| (unsigned long long) start_pfn << PAGE_SHIFT, |
| ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, |
| reason); |
| return ret; |
| } |
| |
| static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) |
| { |
| int *nid = arg; |
| |
| *nid = mem->nid; |
| if (unlikely(mem->state != MEM_OFFLINE)) { |
| phys_addr_t beginpa, endpa; |
| |
| beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); |
| endpa = beginpa + memory_block_size_bytes() - 1; |
| pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", |
| &beginpa, &endpa); |
| |
| return -EBUSY; |
| } |
| return 0; |
| } |
| |
| static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg) |
| { |
| u64 *num_altmaps = (u64 *)arg; |
| |
| if (mem->altmap) |
| *num_altmaps += 1; |
| |
| return 0; |
| } |
| |
| static int check_cpu_on_node(int nid) |
| { |
| int cpu; |
| |
| for_each_present_cpu(cpu) { |
| if (cpu_to_node(cpu) == nid) |
| /* |
| * the cpu on this node isn't removed, and we can't |
| * offline this node. |
| */ |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) |
| { |
| int nid = *(int *)arg; |
| |
| /* |
| * If a memory block belongs to multiple nodes, the stored nid is not |
| * reliable. However, such blocks are always online (e.g., cannot get |
| * offlined) and, therefore, are still spanned by the node. |
| */ |
| return mem->nid == nid ? -EEXIST : 0; |
| } |
| |
| /** |
| * try_offline_node |
| * @nid: the node ID |
| * |
| * Offline a node if all memory sections and cpus of the node are removed. |
| * |
| * NOTE: The caller must call lock_device_hotplug() to serialize hotplug |
| * and online/offline operations before this call. |
| */ |
| void try_offline_node(int nid) |
| { |
| int rc; |
| |
| /* |
| * If the node still spans pages (especially ZONE_DEVICE), don't |
| * offline it. A node spans memory after move_pfn_range_to_zone(), |
| * e.g., after the memory block was onlined. |
| */ |
| if (node_spanned_pages(nid)) |
| return; |
| |
| /* |
| * Especially offline memory blocks might not be spanned by the |
| * node. They will get spanned by the node once they get onlined. |
| * However, they link to the node in sysfs and can get onlined later. |
| */ |
| rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); |
| if (rc) |
| return; |
| |
| if (check_cpu_on_node(nid)) |
| return; |
| |
| /* |
| * all memory/cpu of this node are removed, we can offline this |
| * node now. |
| */ |
| node_set_offline(nid); |
| unregister_one_node(nid); |
| } |
| EXPORT_SYMBOL(try_offline_node); |
| |
| static int memory_blocks_have_altmaps(u64 start, u64 size) |
| { |
| u64 num_memblocks = size / memory_block_size_bytes(); |
| u64 num_altmaps = 0; |
| |
| if (!mhp_memmap_on_memory()) |
| return 0; |
| |
| walk_memory_blocks(start, size, &num_altmaps, |
| count_memory_range_altmaps_cb); |
| |
| if (num_altmaps == 0) |
| return 0; |
| |
| if (WARN_ON_ONCE(num_memblocks != num_altmaps)) |
| return -EINVAL; |
| |
| return 1; |
| } |
| |
| static int try_remove_memory(u64 start, u64 size) |
| { |
| int rc, nid = NUMA_NO_NODE; |
| |
| BUG_ON(check_hotplug_memory_range(start, size)); |
| |
| /* |
| * All memory blocks must be offlined before removing memory. Check |
| * whether all memory blocks in question are offline and return error |
| * if this is not the case. |
| * |
| * While at it, determine the nid. Note that if we'd have mixed nodes, |
| * we'd only try to offline the last determined one -- which is good |
| * enough for the cases we care about. |
| */ |
| rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); |
| if (rc) |
| return rc; |
| |
| /* remove memmap entry */ |
| firmware_map_remove(start, start + size, "System RAM"); |
| |
| mem_hotplug_begin(); |
| |
| rc = memory_blocks_have_altmaps(start, size); |
| if (rc < 0) { |
| mem_hotplug_done(); |
| return rc; |
| } else if (!rc) { |
| /* |
| * Memory block device removal under the device_hotplug_lock is |
| * a barrier against racing online attempts. |
| * No altmaps present, do the removal directly |
| */ |
| remove_memory_block_devices(start, size); |
| arch_remove_memory(start, size, NULL); |
| } else { |
| /* all memblocks in the range have altmaps */ |
| remove_memory_blocks_and_altmaps(start, size); |
| } |
| |
| if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) |
| memblock_remove(start, size); |
| |
| release_mem_region_adjustable(start, size); |
| |
| if (nid != NUMA_NO_NODE) |
| try_offline_node(nid); |
| |
| mem_hotplug_done(); |
| return 0; |
| } |
| |
| /** |
| * __remove_memory - Remove memory if every memory block is offline |
| * @start: physical address of the region to remove |
| * @size: size of the region to remove |
| * |
| * NOTE: The caller must call lock_device_hotplug() to serialize hotplug |
| * and online/offline operations before this call, as required by |
| * try_offline_node(). |
| */ |
| void __remove_memory(u64 start, u64 size) |
| { |
| |
| /* |
| * trigger BUG() if some memory is not offlined prior to calling this |
| * function |
| */ |
| if (try_remove_memory(start, size)) |
| BUG(); |
| } |
| |
| /* |
| * Remove memory if every memory block is offline, otherwise return -EBUSY is |
| * some memory is not offline |
| */ |
| int remove_memory(u64 start, u64 size) |
| { |
| int rc; |
| |
| lock_device_hotplug(); |
| rc = try_remove_memory(start, size); |
| unlock_device_hotplug(); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(remove_memory); |
| |
| static int try_offline_memory_block(struct memory_block *mem, void *arg) |
| { |
| uint8_t online_type = MMOP_ONLINE_KERNEL; |
| uint8_t **online_types = arg; |
| struct page *page; |
| int rc; |
| |
| /* |
| * Sense the online_type via the zone of the memory block. Offlining |
| * with multiple zones within one memory block will be rejected |
| * by offlining code ... so we don't care about that. |
| */ |
| page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); |
| if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) |
| online_type = MMOP_ONLINE_MOVABLE; |
| |
| rc = device_offline(&mem->dev); |
| /* |
| * Default is MMOP_OFFLINE - change it only if offlining succeeded, |
| * so try_reonline_memory_block() can do the right thing. |
| */ |
| if (!rc) |
| **online_types = online_type; |
| |
| (*online_types)++; |
| /* Ignore if already offline. */ |
| return rc < 0 ? rc : 0; |
| } |
| |
| static int try_reonline_memory_block(struct memory_block *mem, void *arg) |
| { |
| uint8_t **online_types = arg; |
| int rc; |
| |
| if (**online_types != MMOP_OFFLINE) { |
| mem->online_type = **online_types; |
| rc = device_online(&mem->dev); |
| if (rc < 0) |
| pr_warn("%s: Failed to re-online memory: %d", |
| __func__, rc); |
| } |
| |
| /* Continue processing all remaining memory blocks. */ |
| (*online_types)++; |
| return 0; |
| } |
| |
| /* |
| * Try to offline and remove memory. Might take a long time to finish in case |
| * memory is still in use. Primarily useful for memory devices that logically |
| * unplugged all memory (so it's no longer in use) and want to offline + remove |
| * that memory. |
| */ |
| int offline_and_remove_memory(u64 start, u64 size) |
| { |
| const unsigned long mb_count = size / memory_block_size_bytes(); |
| uint8_t *online_types, *tmp; |
| int rc; |
| |
| if (!IS_ALIGNED(start, memory_block_size_bytes()) || |
| !IS_ALIGNED(size, memory_block_size_bytes()) || !size) |
| return -EINVAL; |
| |
| /* |
| * We'll remember the old online type of each memory block, so we can |
| * try to revert whatever we did when offlining one memory block fails |
| * after offlining some others succeeded. |
| */ |
| online_types = kmalloc_array(mb_count, sizeof(*online_types), |
| GFP_KERNEL); |
| if (!online_types) |
| return -ENOMEM; |
| /* |
| * Initialize all states to MMOP_OFFLINE, so when we abort processing in |
| * try_offline_memory_block(), we'll skip all unprocessed blocks in |
| * try_reonline_memory_block(). |
| */ |
| memset(online_types, MMOP_OFFLINE, mb_count); |
| |
| lock_device_hotplug(); |
| |
| tmp = online_types; |
| rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); |
| |
| /* |
| * In case we succeeded to offline all memory, remove it. |
| * This cannot fail as it cannot get onlined in the meantime. |
| */ |
| if (!rc) { |
| rc = try_remove_memory(start, size); |
| if (rc) |
| pr_err("%s: Failed to remove memory: %d", __func__, rc); |
| } |
| |
| /* |
| * Rollback what we did. While memory onlining might theoretically fail |
| * (nacked by a notifier), it barely ever happens. |
| */ |
| if (rc) { |
| tmp = online_types; |
| walk_memory_blocks(start, size, &tmp, |
| try_reonline_memory_block); |
| } |
| unlock_device_hotplug(); |
| |
| kfree(online_types); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(offline_and_remove_memory); |
| #endif /* CONFIG_MEMORY_HOTREMOVE */ |