| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| */ |
| |
| #ifndef _WG_QUEUEING_H |
| #define _WG_QUEUEING_H |
| |
| #include "peer.h" |
| #include <linux/types.h> |
| #include <linux/skbuff.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <net/ip_tunnels.h> |
| |
| struct wg_device; |
| struct wg_peer; |
| struct multicore_worker; |
| struct crypt_queue; |
| struct prev_queue; |
| struct sk_buff; |
| |
| /* queueing.c APIs: */ |
| int wg_packet_queue_init(struct crypt_queue *queue, work_func_t function, |
| unsigned int len); |
| void wg_packet_queue_free(struct crypt_queue *queue, bool purge); |
| struct multicore_worker __percpu * |
| wg_packet_percpu_multicore_worker_alloc(work_func_t function, void *ptr); |
| |
| /* receive.c APIs: */ |
| void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb); |
| void wg_packet_handshake_receive_worker(struct work_struct *work); |
| /* NAPI poll function: */ |
| int wg_packet_rx_poll(struct napi_struct *napi, int budget); |
| /* Workqueue worker: */ |
| void wg_packet_decrypt_worker(struct work_struct *work); |
| |
| /* send.c APIs: */ |
| void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer, |
| bool is_retry); |
| void wg_packet_send_handshake_response(struct wg_peer *peer); |
| void wg_packet_send_handshake_cookie(struct wg_device *wg, |
| struct sk_buff *initiating_skb, |
| __le32 sender_index); |
| void wg_packet_send_keepalive(struct wg_peer *peer); |
| void wg_packet_purge_staged_packets(struct wg_peer *peer); |
| void wg_packet_send_staged_packets(struct wg_peer *peer); |
| /* Workqueue workers: */ |
| void wg_packet_handshake_send_worker(struct work_struct *work); |
| void wg_packet_tx_worker(struct work_struct *work); |
| void wg_packet_encrypt_worker(struct work_struct *work); |
| |
| enum packet_state { |
| PACKET_STATE_UNCRYPTED, |
| PACKET_STATE_CRYPTED, |
| PACKET_STATE_DEAD |
| }; |
| |
| struct packet_cb { |
| u64 nonce; |
| struct noise_keypair *keypair; |
| atomic_t state; |
| u32 mtu; |
| u8 ds; |
| }; |
| |
| #define PACKET_CB(skb) ((struct packet_cb *)((skb)->cb)) |
| #define PACKET_PEER(skb) (PACKET_CB(skb)->keypair->entry.peer) |
| |
| static inline bool wg_check_packet_protocol(struct sk_buff *skb) |
| { |
| __be16 real_protocol = ip_tunnel_parse_protocol(skb); |
| return real_protocol && skb->protocol == real_protocol; |
| } |
| |
| static inline void wg_reset_packet(struct sk_buff *skb, bool encapsulating) |
| { |
| u8 l4_hash = skb->l4_hash; |
| u8 sw_hash = skb->sw_hash; |
| u32 hash = skb->hash; |
| skb_scrub_packet(skb, true); |
| memset(&skb->headers, 0, sizeof(skb->headers)); |
| if (encapsulating) { |
| skb->l4_hash = l4_hash; |
| skb->sw_hash = sw_hash; |
| skb->hash = hash; |
| } |
| skb->queue_mapping = 0; |
| skb->nohdr = 0; |
| skb->peeked = 0; |
| skb->mac_len = 0; |
| skb->dev = NULL; |
| #ifdef CONFIG_NET_SCHED |
| skb->tc_index = 0; |
| #endif |
| skb_reset_redirect(skb); |
| skb->hdr_len = skb_headroom(skb); |
| skb_reset_mac_header(skb); |
| skb_reset_network_header(skb); |
| skb_reset_transport_header(skb); |
| skb_probe_transport_header(skb); |
| skb_reset_inner_headers(skb); |
| } |
| |
| static inline int wg_cpumask_choose_online(int *stored_cpu, unsigned int id) |
| { |
| unsigned int cpu = *stored_cpu, cpu_index, i; |
| |
| if (unlikely(cpu == nr_cpumask_bits || |
| !cpumask_test_cpu(cpu, cpu_online_mask))) { |
| cpu_index = id % cpumask_weight(cpu_online_mask); |
| cpu = cpumask_first(cpu_online_mask); |
| for (i = 0; i < cpu_index; ++i) |
| cpu = cpumask_next(cpu, cpu_online_mask); |
| *stored_cpu = cpu; |
| } |
| return cpu; |
| } |
| |
| /* This function is racy, in the sense that next is unlocked, so it could return |
| * the same CPU twice. A race-free version of this would be to instead store an |
| * atomic sequence number, do an increment-and-return, and then iterate through |
| * every possible CPU until we get to that index -- choose_cpu. However that's |
| * a bit slower, and it doesn't seem like this potential race actually |
| * introduces any performance loss, so we live with it. |
| */ |
| static inline int wg_cpumask_next_online(int *next) |
| { |
| int cpu = *next; |
| |
| while (unlikely(!cpumask_test_cpu(cpu, cpu_online_mask))) |
| cpu = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits; |
| *next = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits; |
| return cpu; |
| } |
| |
| void wg_prev_queue_init(struct prev_queue *queue); |
| |
| /* Multi producer */ |
| bool wg_prev_queue_enqueue(struct prev_queue *queue, struct sk_buff *skb); |
| |
| /* Single consumer */ |
| struct sk_buff *wg_prev_queue_dequeue(struct prev_queue *queue); |
| |
| /* Single consumer */ |
| static inline struct sk_buff *wg_prev_queue_peek(struct prev_queue *queue) |
| { |
| if (queue->peeked) |
| return queue->peeked; |
| queue->peeked = wg_prev_queue_dequeue(queue); |
| return queue->peeked; |
| } |
| |
| /* Single consumer */ |
| static inline void wg_prev_queue_drop_peeked(struct prev_queue *queue) |
| { |
| queue->peeked = NULL; |
| } |
| |
| static inline int wg_queue_enqueue_per_device_and_peer( |
| struct crypt_queue *device_queue, struct prev_queue *peer_queue, |
| struct sk_buff *skb, struct workqueue_struct *wq, int *next_cpu) |
| { |
| int cpu; |
| |
| atomic_set_release(&PACKET_CB(skb)->state, PACKET_STATE_UNCRYPTED); |
| /* We first queue this up for the peer ingestion, but the consumer |
| * will wait for the state to change to CRYPTED or DEAD before. |
| */ |
| if (unlikely(!wg_prev_queue_enqueue(peer_queue, skb))) |
| return -ENOSPC; |
| |
| /* Then we queue it up in the device queue, which consumes the |
| * packet as soon as it can. |
| */ |
| cpu = wg_cpumask_next_online(next_cpu); |
| if (unlikely(ptr_ring_produce_bh(&device_queue->ring, skb))) |
| return -EPIPE; |
| queue_work_on(cpu, wq, &per_cpu_ptr(device_queue->worker, cpu)->work); |
| return 0; |
| } |
| |
| static inline void wg_queue_enqueue_per_peer_tx(struct sk_buff *skb, enum packet_state state) |
| { |
| /* We take a reference, because as soon as we call atomic_set, the |
| * peer can be freed from below us. |
| */ |
| struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb)); |
| |
| atomic_set_release(&PACKET_CB(skb)->state, state); |
| queue_work_on(wg_cpumask_choose_online(&peer->serial_work_cpu, peer->internal_id), |
| peer->device->packet_crypt_wq, &peer->transmit_packet_work); |
| wg_peer_put(peer); |
| } |
| |
| static inline void wg_queue_enqueue_per_peer_rx(struct sk_buff *skb, enum packet_state state) |
| { |
| /* We take a reference, because as soon as we call atomic_set, the |
| * peer can be freed from below us. |
| */ |
| struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb)); |
| |
| atomic_set_release(&PACKET_CB(skb)->state, state); |
| napi_schedule(&peer->napi); |
| wg_peer_put(peer); |
| } |
| |
| #ifdef DEBUG |
| bool wg_packet_counter_selftest(void); |
| #endif |
| |
| #endif /* _WG_QUEUEING_H */ |