|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Pid namespaces | 
|  | * | 
|  | * Authors: | 
|  | *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. | 
|  | *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM | 
|  | *     Many thanks to Oleg Nesterov for comments and help | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/pid.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/acct.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/proc_ns.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/idr.h> | 
|  |  | 
|  | static DEFINE_MUTEX(pid_caches_mutex); | 
|  | static struct kmem_cache *pid_ns_cachep; | 
|  | /* Write once array, filled from the beginning. */ | 
|  | static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; | 
|  |  | 
|  | /* | 
|  | * creates the kmem cache to allocate pids from. | 
|  | * @level: pid namespace level | 
|  | */ | 
|  |  | 
|  | static struct kmem_cache *create_pid_cachep(unsigned int level) | 
|  | { | 
|  | /* Level 0 is init_pid_ns.pid_cachep */ | 
|  | struct kmem_cache **pkc = &pid_cache[level - 1]; | 
|  | struct kmem_cache *kc; | 
|  | char name[4 + 10 + 1]; | 
|  | unsigned int len; | 
|  |  | 
|  | kc = READ_ONCE(*pkc); | 
|  | if (kc) | 
|  | return kc; | 
|  |  | 
|  | snprintf(name, sizeof(name), "pid_%u", level + 1); | 
|  | len = sizeof(struct pid) + level * sizeof(struct upid); | 
|  | mutex_lock(&pid_caches_mutex); | 
|  | /* Name collision forces to do allocation under mutex. */ | 
|  | if (!*pkc) | 
|  | *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0); | 
|  | mutex_unlock(&pid_caches_mutex); | 
|  | /* current can fail, but someone else can succeed. */ | 
|  | return READ_ONCE(*pkc); | 
|  | } | 
|  |  | 
|  | static void proc_cleanup_work(struct work_struct *work) | 
|  | { | 
|  | struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); | 
|  | pid_ns_release_proc(ns); | 
|  | } | 
|  |  | 
|  | static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) | 
|  | { | 
|  | return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); | 
|  | } | 
|  |  | 
|  | static void dec_pid_namespaces(struct ucounts *ucounts) | 
|  | { | 
|  | dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); | 
|  | } | 
|  |  | 
|  | static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, | 
|  | struct pid_namespace *parent_pid_ns) | 
|  | { | 
|  | struct pid_namespace *ns; | 
|  | unsigned int level = parent_pid_ns->level + 1; | 
|  | struct ucounts *ucounts; | 
|  | int err; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (!in_userns(parent_pid_ns->user_ns, user_ns)) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOSPC; | 
|  | if (level > MAX_PID_NS_LEVEL) | 
|  | goto out; | 
|  | ucounts = inc_pid_namespaces(user_ns); | 
|  | if (!ucounts) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); | 
|  | if (ns == NULL) | 
|  | goto out_dec; | 
|  |  | 
|  | idr_init(&ns->idr); | 
|  |  | 
|  | ns->pid_cachep = create_pid_cachep(level); | 
|  | if (ns->pid_cachep == NULL) | 
|  | goto out_free_idr; | 
|  |  | 
|  | err = ns_alloc_inum(&ns->ns); | 
|  | if (err) | 
|  | goto out_free_idr; | 
|  | ns->ns.ops = &pidns_operations; | 
|  |  | 
|  | kref_init(&ns->kref); | 
|  | ns->level = level; | 
|  | ns->parent = get_pid_ns(parent_pid_ns); | 
|  | ns->user_ns = get_user_ns(user_ns); | 
|  | ns->ucounts = ucounts; | 
|  | ns->pid_allocated = PIDNS_ADDING; | 
|  | INIT_WORK(&ns->proc_work, proc_cleanup_work); | 
|  |  | 
|  | return ns; | 
|  |  | 
|  | out_free_idr: | 
|  | idr_destroy(&ns->idr); | 
|  | kmem_cache_free(pid_ns_cachep, ns); | 
|  | out_dec: | 
|  | dec_pid_namespaces(ucounts); | 
|  | out: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void delayed_free_pidns(struct rcu_head *p) | 
|  | { | 
|  | struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); | 
|  |  | 
|  | dec_pid_namespaces(ns->ucounts); | 
|  | put_user_ns(ns->user_ns); | 
|  |  | 
|  | kmem_cache_free(pid_ns_cachep, ns); | 
|  | } | 
|  |  | 
|  | static void destroy_pid_namespace(struct pid_namespace *ns) | 
|  | { | 
|  | ns_free_inum(&ns->ns); | 
|  |  | 
|  | idr_destroy(&ns->idr); | 
|  | call_rcu(&ns->rcu, delayed_free_pidns); | 
|  | } | 
|  |  | 
|  | struct pid_namespace *copy_pid_ns(unsigned long flags, | 
|  | struct user_namespace *user_ns, struct pid_namespace *old_ns) | 
|  | { | 
|  | if (!(flags & CLONE_NEWPID)) | 
|  | return get_pid_ns(old_ns); | 
|  | if (task_active_pid_ns(current) != old_ns) | 
|  | return ERR_PTR(-EINVAL); | 
|  | return create_pid_namespace(user_ns, old_ns); | 
|  | } | 
|  |  | 
|  | static void free_pid_ns(struct kref *kref) | 
|  | { | 
|  | struct pid_namespace *ns; | 
|  |  | 
|  | ns = container_of(kref, struct pid_namespace, kref); | 
|  | destroy_pid_namespace(ns); | 
|  | } | 
|  |  | 
|  | void put_pid_ns(struct pid_namespace *ns) | 
|  | { | 
|  | struct pid_namespace *parent; | 
|  |  | 
|  | while (ns != &init_pid_ns) { | 
|  | parent = ns->parent; | 
|  | if (!kref_put(&ns->kref, free_pid_ns)) | 
|  | break; | 
|  | ns = parent; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(put_pid_ns); | 
|  |  | 
|  | void zap_pid_ns_processes(struct pid_namespace *pid_ns) | 
|  | { | 
|  | int nr; | 
|  | int rc; | 
|  | struct task_struct *task, *me = current; | 
|  | int init_pids = thread_group_leader(me) ? 1 : 2; | 
|  | struct pid *pid; | 
|  |  | 
|  | /* Don't allow any more processes into the pid namespace */ | 
|  | disable_pid_allocation(pid_ns); | 
|  |  | 
|  | /* | 
|  | * Ignore SIGCHLD causing any terminated children to autoreap. | 
|  | * This speeds up the namespace shutdown, plus see the comment | 
|  | * below. | 
|  | */ | 
|  | spin_lock_irq(&me->sighand->siglock); | 
|  | me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; | 
|  | spin_unlock_irq(&me->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * The last thread in the cgroup-init thread group is terminating. | 
|  | * Find remaining pid_ts in the namespace, signal and wait for them | 
|  | * to exit. | 
|  | * | 
|  | * Note:  This signals each threads in the namespace - even those that | 
|  | * 	  belong to the same thread group, To avoid this, we would have | 
|  | * 	  to walk the entire tasklist looking a processes in this | 
|  | * 	  namespace, but that could be unnecessarily expensive if the | 
|  | * 	  pid namespace has just a few processes. Or we need to | 
|  | * 	  maintain a tasklist for each pid namespace. | 
|  | * | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | read_lock(&tasklist_lock); | 
|  | nr = 2; | 
|  | idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { | 
|  | task = pid_task(pid, PIDTYPE_PID); | 
|  | if (task && !__fatal_signal_pending(task)) | 
|  | group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. | 
|  | * kernel_wait4() will also block until our children traced from the | 
|  | * parent namespace are detached and become EXIT_DEAD. | 
|  | */ | 
|  | do { | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  | rc = kernel_wait4(-1, NULL, __WALL, NULL); | 
|  | } while (rc != -ECHILD); | 
|  |  | 
|  | /* | 
|  | * kernel_wait4() above can't reap the EXIT_DEAD children but we do not | 
|  | * really care, we could reparent them to the global init. We could | 
|  | * exit and reap ->child_reaper even if it is not the last thread in | 
|  | * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(), | 
|  | * pid_ns can not go away until proc_kill_sb() drops the reference. | 
|  | * | 
|  | * But this ns can also have other tasks injected by setns()+fork(). | 
|  | * Again, ignoring the user visible semantics we do not really need | 
|  | * to wait until they are all reaped, but they can be reparented to | 
|  | * us and thus we need to ensure that pid->child_reaper stays valid | 
|  | * until they all go away. See free_pid()->wake_up_process(). | 
|  | * | 
|  | * We rely on ignored SIGCHLD, an injected zombie must be autoreaped | 
|  | * if reparented. | 
|  | */ | 
|  | for (;;) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | if (pid_ns->pid_allocated == init_pids) | 
|  | break; | 
|  | schedule(); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | if (pid_ns->reboot) | 
|  | current->signal->group_exit_code = pid_ns->reboot; | 
|  |  | 
|  | acct_exit_ns(pid_ns); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CHECKPOINT_RESTORE | 
|  | static int pid_ns_ctl_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct pid_namespace *pid_ns = task_active_pid_ns(current); | 
|  | struct ctl_table tmp = *table; | 
|  | int ret, next; | 
|  |  | 
|  | if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Writing directly to ns' last_pid field is OK, since this field | 
|  | * is volatile in a living namespace anyway and a code writing to | 
|  | * it should synchronize its usage with external means. | 
|  | */ | 
|  |  | 
|  | next = idr_get_cursor(&pid_ns->idr) - 1; | 
|  |  | 
|  | tmp.data = &next; | 
|  | ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); | 
|  | if (!ret && write) | 
|  | idr_set_cursor(&pid_ns->idr, next + 1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | extern int pid_max; | 
|  | static struct ctl_table pid_ns_ctl_table[] = { | 
|  | { | 
|  | .procname = "ns_last_pid", | 
|  | .maxlen = sizeof(int), | 
|  | .mode = 0666, /* permissions are checked in the handler */ | 
|  | .proc_handler = pid_ns_ctl_handler, | 
|  | .extra1 = SYSCTL_ZERO, | 
|  | .extra2 = &pid_max, | 
|  | }, | 
|  | { } | 
|  | }; | 
|  | static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; | 
|  | #endif	/* CONFIG_CHECKPOINT_RESTORE */ | 
|  |  | 
|  | int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) | 
|  | { | 
|  | if (pid_ns == &init_pid_ns) | 
|  | return 0; | 
|  |  | 
|  | switch (cmd) { | 
|  | case LINUX_REBOOT_CMD_RESTART2: | 
|  | case LINUX_REBOOT_CMD_RESTART: | 
|  | pid_ns->reboot = SIGHUP; | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_POWER_OFF: | 
|  | case LINUX_REBOOT_CMD_HALT: | 
|  | pid_ns->reboot = SIGINT; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | send_sig(SIGKILL, pid_ns->child_reaper, 1); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | do_exit(0); | 
|  |  | 
|  | /* Not reached */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) | 
|  | { | 
|  | return container_of(ns, struct pid_namespace, ns); | 
|  | } | 
|  |  | 
|  | static struct ns_common *pidns_get(struct task_struct *task) | 
|  | { | 
|  | struct pid_namespace *ns; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ns = task_active_pid_ns(task); | 
|  | if (ns) | 
|  | get_pid_ns(ns); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ns ? &ns->ns : NULL; | 
|  | } | 
|  |  | 
|  | static struct ns_common *pidns_for_children_get(struct task_struct *task) | 
|  | { | 
|  | struct pid_namespace *ns = NULL; | 
|  |  | 
|  | task_lock(task); | 
|  | if (task->nsproxy) { | 
|  | ns = task->nsproxy->pid_ns_for_children; | 
|  | get_pid_ns(ns); | 
|  | } | 
|  | task_unlock(task); | 
|  |  | 
|  | if (ns) { | 
|  | read_lock(&tasklist_lock); | 
|  | if (!ns->child_reaper) { | 
|  | put_pid_ns(ns); | 
|  | ns = NULL; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | return ns ? &ns->ns : NULL; | 
|  | } | 
|  |  | 
|  | static void pidns_put(struct ns_common *ns) | 
|  | { | 
|  | put_pid_ns(to_pid_ns(ns)); | 
|  | } | 
|  |  | 
|  | static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) | 
|  | { | 
|  | struct pid_namespace *active = task_active_pid_ns(current); | 
|  | struct pid_namespace *ancestor, *new = to_pid_ns(ns); | 
|  |  | 
|  | if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || | 
|  | !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Only allow entering the current active pid namespace | 
|  | * or a child of the current active pid namespace. | 
|  | * | 
|  | * This is required for fork to return a usable pid value and | 
|  | * this maintains the property that processes and their | 
|  | * children can not escape their current pid namespace. | 
|  | */ | 
|  | if (new->level < active->level) | 
|  | return -EINVAL; | 
|  |  | 
|  | ancestor = new; | 
|  | while (ancestor->level > active->level) | 
|  | ancestor = ancestor->parent; | 
|  | if (ancestor != active) | 
|  | return -EINVAL; | 
|  |  | 
|  | put_pid_ns(nsproxy->pid_ns_for_children); | 
|  | nsproxy->pid_ns_for_children = get_pid_ns(new); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct ns_common *pidns_get_parent(struct ns_common *ns) | 
|  | { | 
|  | struct pid_namespace *active = task_active_pid_ns(current); | 
|  | struct pid_namespace *pid_ns, *p; | 
|  |  | 
|  | /* See if the parent is in the current namespace */ | 
|  | pid_ns = p = to_pid_ns(ns)->parent; | 
|  | for (;;) { | 
|  | if (!p) | 
|  | return ERR_PTR(-EPERM); | 
|  | if (p == active) | 
|  | break; | 
|  | p = p->parent; | 
|  | } | 
|  |  | 
|  | return &get_pid_ns(pid_ns)->ns; | 
|  | } | 
|  |  | 
|  | static struct user_namespace *pidns_owner(struct ns_common *ns) | 
|  | { | 
|  | return to_pid_ns(ns)->user_ns; | 
|  | } | 
|  |  | 
|  | const struct proc_ns_operations pidns_operations = { | 
|  | .name		= "pid", | 
|  | .type		= CLONE_NEWPID, | 
|  | .get		= pidns_get, | 
|  | .put		= pidns_put, | 
|  | .install	= pidns_install, | 
|  | .owner		= pidns_owner, | 
|  | .get_parent	= pidns_get_parent, | 
|  | }; | 
|  |  | 
|  | const struct proc_ns_operations pidns_for_children_operations = { | 
|  | .name		= "pid_for_children", | 
|  | .real_ns_name	= "pid", | 
|  | .type		= CLONE_NEWPID, | 
|  | .get		= pidns_for_children_get, | 
|  | .put		= pidns_put, | 
|  | .install	= pidns_install, | 
|  | .owner		= pidns_owner, | 
|  | .get_parent	= pidns_get_parent, | 
|  | }; | 
|  |  | 
|  | static __init int pid_namespaces_init(void) | 
|  | { | 
|  | pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); | 
|  |  | 
|  | #ifdef CONFIG_CHECKPOINT_RESTORE | 
|  | register_sysctl_paths(kern_path, pid_ns_ctl_table); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(pid_namespaces_init); |