blob: ec8450f034e6e589b657a0ce5ca24fa043051dab [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */
#include "ice_common.h"
#include "ice_ptp_hw.h"
#include "ice_ptp_consts.h"
#include "ice_cgu_regs.h"
/* Low level functions for interacting with and managing the device clock used
* for the Precision Time Protocol.
*
* The ice hardware represents the current time using three registers:
*
* GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
* +---------------+ +---------------+ +---------------+
* | 32 bits | | 32 bits | | 32 bits |
* +---------------+ +---------------+ +---------------+
*
* The registers are incremented every clock tick using a 40bit increment
* value defined over two registers:
*
* GLTSYN_INCVAL_H GLTSYN_INCVAL_L
* +---------------+ +---------------+
* | 8 bit s | | 32 bits |
* +---------------+ +---------------+
*
* The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
* registers every clock source tick. Depending on the specific device
* configuration, the clock source frequency could be one of a number of
* values.
*
* For E810 devices, the increment frequency is 812.5 MHz
*
* For E822 devices the clock can be derived from different sources, and the
* increment has an effective frequency of one of the following:
* - 823.4375 MHz
* - 783.36 MHz
* - 796.875 MHz
* - 816 MHz
* - 830.078125 MHz
* - 783.36 MHz
*
* The hardware captures timestamps in the PHY for incoming packets, and for
* outgoing packets on request. To support this, the PHY maintains a timer
* that matches the lower 64 bits of the global source timer.
*
* In order to ensure that the PHY timers and the source timer are equivalent,
* shadow registers are used to prepare the desired initial values. A special
* sync command is issued to trigger copying from the shadow registers into
* the appropriate source and PHY registers simultaneously.
*
* The driver supports devices which have different PHYs with subtly different
* mechanisms to program and control the timers. We divide the devices into
* families named after the first major device, E810 and similar devices, and
* E822 and similar devices.
*
* - E822 based devices have additional support for fine grained Vernier
* calibration which requires significant setup
* - The layout of timestamp data in the PHY register blocks is different
* - The way timer synchronization commands are issued is different.
*
* To support this, very low level functions have an e810 or e822 suffix
* indicating what type of device they work on. Higher level abstractions for
* tasks that can be done on both devices do not have the suffix and will
* correctly look up the appropriate low level function when running.
*
* Functions which only make sense on a single device family may not have
* a suitable generic implementation
*/
/**
* ice_get_ptp_src_clock_index - determine source clock index
* @hw: pointer to HW struct
*
* Determine the source clock index currently in use, based on device
* capabilities reported during initialization.
*/
u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
{
return hw->func_caps.ts_func_info.tmr_index_assoc;
}
/**
* ice_ptp_read_src_incval - Read source timer increment value
* @hw: pointer to HW struct
*
* Read the increment value of the source timer and return it.
*/
static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
{
u32 lo, hi;
u8 tmr_idx;
tmr_idx = ice_get_ptp_src_clock_index(hw);
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
}
/**
* ice_ptp_src_cmd - Prepare source timer for a timer command
* @hw: pointer to HW structure
* @cmd: Timer command
*
* Prepare the source timer for an upcoming timer sync command.
*/
static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val;
u8 tmr_idx;
tmr_idx = ice_get_ptp_src_clock_index(hw);
cmd_val = tmr_idx << SEL_CPK_SRC;
switch (cmd) {
case INIT_TIME:
cmd_val |= GLTSYN_CMD_INIT_TIME;
break;
case INIT_INCVAL:
cmd_val |= GLTSYN_CMD_INIT_INCVAL;
break;
case ADJ_TIME:
cmd_val |= GLTSYN_CMD_ADJ_TIME;
break;
case ADJ_TIME_AT_TIME:
cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
break;
case READ_TIME:
cmd_val |= GLTSYN_CMD_READ_TIME;
break;
}
wr32(hw, GLTSYN_CMD, cmd_val);
}
/**
* ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
* @hw: pointer to HW struct
*
* Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
* write immediately. This triggers the hardware to begin executing all of the
* source and PHY timer commands synchronously.
*/
static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
{
wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
ice_flush(hw);
}
/* E822 family functions
*
* The following functions operate on the E822 family of devices.
*/
/**
* ice_fill_phy_msg_e822 - Fill message data for a PHY register access
* @msg: the PHY message buffer to fill in
* @port: the port to access
* @offset: the register offset
*/
static void
ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
{
int phy_port, phy, quadtype;
phy_port = port % ICE_PORTS_PER_PHY;
phy = port / ICE_PORTS_PER_PHY;
quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE;
if (quadtype == 0) {
msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
} else {
msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
}
if (phy == 0)
msg->dest_dev = rmn_0;
else if (phy == 1)
msg->dest_dev = rmn_1;
else
msg->dest_dev = rmn_2;
}
/**
* ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 64bit register
*
* Checks if the provided low address is one of the known 64bit PHY values
* represented as two 32bit registers. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_PAR_PCS_TX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
return true;
case P_REG_PAR_PCS_RX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
return true;
case P_REG_PAR_TX_TIME_L:
*high_addr = P_REG_PAR_TX_TIME_U;
return true;
case P_REG_PAR_RX_TIME_L:
*high_addr = P_REG_PAR_RX_TIME_U;
return true;
case P_REG_TOTAL_TX_OFFSET_L:
*high_addr = P_REG_TOTAL_TX_OFFSET_U;
return true;
case P_REG_TOTAL_RX_OFFSET_L:
*high_addr = P_REG_TOTAL_RX_OFFSET_U;
return true;
case P_REG_UIX66_10G_40G_L:
*high_addr = P_REG_UIX66_10G_40G_U;
return true;
case P_REG_UIX66_25G_100G_L:
*high_addr = P_REG_UIX66_25G_100G_U;
return true;
case P_REG_TX_CAPTURE_L:
*high_addr = P_REG_TX_CAPTURE_U;
return true;
case P_REG_RX_CAPTURE_L:
*high_addr = P_REG_RX_CAPTURE_U;
return true;
case P_REG_TX_TIMER_INC_PRE_L:
*high_addr = P_REG_TX_TIMER_INC_PRE_U;
return true;
case P_REG_RX_TIMER_INC_PRE_L:
*high_addr = P_REG_RX_TIMER_INC_PRE_U;
return true;
default:
return false;
}
}
/**
* ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 40bit value
*
* Checks if the provided low address is one of the known 40bit PHY values
* split into two registers with the lower 8 bits in the low register and the
* upper 32 bits in the high register. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_TIMETUS_L:
*high_addr = P_REG_TIMETUS_U;
return true;
case P_REG_PAR_RX_TUS_L:
*high_addr = P_REG_PAR_RX_TUS_U;
return true;
case P_REG_PAR_TX_TUS_L:
*high_addr = P_REG_PAR_TX_TUS_U;
return true;
case P_REG_PCS_RX_TUS_L:
*high_addr = P_REG_PCS_RX_TUS_U;
return true;
case P_REG_PCS_TX_TUS_L:
*high_addr = P_REG_PCS_TX_TUS_U;
return true;
case P_REG_DESK_PAR_RX_TUS_L:
*high_addr = P_REG_DESK_PAR_RX_TUS_U;
return true;
case P_REG_DESK_PAR_TX_TUS_L:
*high_addr = P_REG_DESK_PAR_TX_TUS_U;
return true;
case P_REG_DESK_PCS_RX_TUS_L:
*high_addr = P_REG_DESK_PCS_RX_TUS_U;
return true;
case P_REG_DESK_PCS_TX_TUS_L:
*high_addr = P_REG_DESK_PCS_TX_TUS_U;
return true;
default:
return false;
}
}
/**
* ice_read_phy_reg_e822 - Read a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @offset: PHY register offset to read
* @val: on return, the contents read from the PHY
*
* Read a PHY register for the given port over the device sideband queue.
*/
int
ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e822(&msg, port, offset);
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
*
* Reads the two registers associated with a 64bit value and returns it in the
* val pointer. The offset always specifies the lower register offset to use.
* The high offset is looked up. This function only operates on registers
* known to be two parts of a 64bit value.
*/
static int
ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
*val = (u64)high << 32 | low;
return 0;
}
/**
* ice_write_phy_reg_e822 - Write a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to write to
* @offset: PHY register offset to write
* @val: The value to write to the register
*
* Write a PHY register for the given port over the device sideband queue.
*/
int
ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e822(&msg, port, offset);
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
*
* Write the provided 40b value to the two associated registers by splitting
* it up into two chunks, the lower 8 bits and the upper 32 bits.
*/
static int
ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into a lower 8 bit
* register and an upper 32 bit register.
*/
if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = (u32)(val & P_REG_40B_LOW_M);
high = (u32)(val >> P_REG_40B_HIGH_S);
err = ice_write_phy_reg_e822(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e822(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
*
* Write the 64bit value to the two associated 32bit PHY registers. The offset
* is always specified as the lower register, and the high address is looked
* up. This function only operates on registers known to be two parts of
* a 64bit value.
*/
static int
ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = lower_32_bits(val);
high = upper_32_bits(val);
err = ice_write_phy_reg_e822(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e822(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_fill_quad_msg_e822 - Fill message data for quad register access
* @msg: the PHY message buffer to fill in
* @quad: the quad to access
* @offset: the register offset
*
* Fill a message buffer for accessing a register in a quad shared between
* multiple PHYs.
*/
static void
ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
{
u32 addr;
msg->dest_dev = rmn_0;
if ((quad % ICE_NUM_QUAD_TYPE) == 0)
addr = Q_0_BASE + offset;
else
addr = Q_1_BASE + offset;
msg->msg_addr_low = lower_16_bits(addr);
msg->msg_addr_high = upper_16_bits(addr);
}
/**
* ice_read_quad_reg_e822 - Read a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to read from
* @offset: quad register offset to read
* @val: on return, the contents read from the quad
*
* Read a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
if (quad >= ICE_MAX_QUAD)
return -EINVAL;
ice_fill_quad_msg_e822(&msg, quad, offset);
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_quad_reg_e822 - Write a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to write to
* @offset: quad register offset to write
* @val: The value to write to the register
*
* Write a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
if (quad >= ICE_MAX_QUAD)
return -EINVAL;
ice_fill_quad_msg_e822(&msg, quad, offset);
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the two associated registers in the
* quad memory block that is shared between the internal PHYs of the E822
* family of devices.
*/
static int
ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
{
u16 lo_addr, hi_addr;
u32 lo, hi;
int err;
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For E822 based internal PHYs, the timestamp is reported with the
* lower 8 bits in the low register, and the upper 32 bits in the high
* register.
*/
*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
return 0;
}
/**
* ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp, resetting its valid bit, from the PHY quad block that is
* shared between the internal PHYs on the E822 devices.
*/
static int
ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
{
u16 lo_addr, hi_addr;
int err;
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_cgu_reg_e822 - Read a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to read
* @val: storage for register value read
*
* Read the contents of a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*/
static int
ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input cgu_msg;
int err;
cgu_msg.opcode = ice_sbq_msg_rd;
cgu_msg.dest_dev = cgu;
cgu_msg.msg_addr_low = addr;
cgu_msg.msg_addr_high = 0x0;
err = ice_sbq_rw_reg(hw, &cgu_msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
*val = cgu_msg.data;
return err;
}
/**
* ice_write_cgu_reg_e822 - Write a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to write
* @val: value to write into the register
*
* Write the specified value to a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*/
static int
ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input cgu_msg;
int err;
cgu_msg.opcode = ice_sbq_msg_wr;
cgu_msg.dest_dev = cgu;
cgu_msg.msg_addr_low = addr;
cgu_msg.msg_addr_high = 0x0;
cgu_msg.data = val;
err = ice_sbq_rw_reg(hw, &cgu_msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
return err;
}
/**
* ice_clk_freq_str - Convert time_ref_freq to string
* @clk_freq: Clock frequency
*
* Convert the specified TIME_REF clock frequency to a string.
*/
static const char *ice_clk_freq_str(u8 clk_freq)
{
switch ((enum ice_time_ref_freq)clk_freq) {
case ICE_TIME_REF_FREQ_25_000:
return "25 MHz";
case ICE_TIME_REF_FREQ_122_880:
return "122.88 MHz";
case ICE_TIME_REF_FREQ_125_000:
return "125 MHz";
case ICE_TIME_REF_FREQ_153_600:
return "153.6 MHz";
case ICE_TIME_REF_FREQ_156_250:
return "156.25 MHz";
case ICE_TIME_REF_FREQ_245_760:
return "245.76 MHz";
default:
return "Unknown";
}
}
/**
* ice_clk_src_str - Convert time_ref_src to string
* @clk_src: Clock source
*
* Convert the specified clock source to its string name.
*/
static const char *ice_clk_src_str(u8 clk_src)
{
switch ((enum ice_clk_src)clk_src) {
case ICE_CLK_SRC_TCX0:
return "TCX0";
case ICE_CLK_SRC_TIME_REF:
return "TIME_REF";
default:
return "Unknown";
}
}
/**
* ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
* @hw: pointer to the HW struct
* @clk_freq: Clock frequency to program
* @clk_src: Clock source to select (TIME_REF, or TCX0)
*
* Configure the Clock Generation Unit with the desired clock frequency and
* time reference, enabling the PLL which drives the PTP hardware clock.
*/
static int
ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
enum ice_clk_src clk_src)
{
union tspll_ro_bwm_lf bwm_lf;
union nac_cgu_dword19 dw19;
union nac_cgu_dword22 dw22;
union nac_cgu_dword24 dw24;
union nac_cgu_dword9 dw9;
int err;
if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
clk_freq);
return -EINVAL;
}
if (clk_src >= NUM_ICE_CLK_SRC) {
dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
clk_src);
return -EINVAL;
}
if (clk_src == ICE_CLK_SRC_TCX0 &&
clk_freq != ICE_TIME_REF_FREQ_25_000) {
dev_warn(ice_hw_to_dev(hw),
"TCX0 only supports 25 MHz frequency\n");
return -EINVAL;
}
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
if (err)
return err;
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.field.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw24.field.time_ref_sel),
ice_clk_freq_str(dw9.field.time_ref_freq_sel),
bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
/* Disable the PLL before changing the clock source or frequency */
if (dw24.field.ts_pll_enable) {
dw24.field.ts_pll_enable = 0;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
}
/* Set the frequency */
dw9.field.time_ref_freq_sel = clk_freq;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
if (err)
return err;
/* Configure the TS PLL feedback divisor */
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
if (err)
return err;
dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
dw19.field.tspll_ndivratio = 1;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
if (err)
return err;
/* Configure the TS PLL post divisor */
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
if (err)
return err;
dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
dw22.field.time1588clk_sel_div2 = 0;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
if (err)
return err;
/* Configure the TS PLL pre divisor and clock source */
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
dw24.field.time_ref_sel = clk_src;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Finally, enable the PLL */
dw24.field.ts_pll_enable = 1;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Wait to verify if the PLL locks */
usleep_range(1000, 5000);
err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
if (!bwm_lf.field.plllock_true_lock_cri) {
dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
return -EBUSY;
}
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.field.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw24.field.time_ref_sel),
ice_clk_freq_str(dw9.field.time_ref_freq_sel),
bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
return 0;
}
/**
* ice_init_cgu_e822 - Initialize CGU with settings from firmware
* @hw: pointer to the HW structure
*
* Initialize the Clock Generation Unit of the E822 device.
*/
static int ice_init_cgu_e822(struct ice_hw *hw)
{
struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
union tspll_cntr_bist_settings cntr_bist;
int err;
err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
&cntr_bist.val);
if (err)
return err;
/* Disable sticky lock detection so lock err reported is accurate */
cntr_bist.field.i_plllock_sel_0 = 0;
cntr_bist.field.i_plllock_sel_1 = 0;
err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
cntr_bist.val);
if (err)
return err;
/* Configure the CGU PLL using the parameters from the function
* capabilities.
*/
err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
(enum ice_clk_src)ts_info->clk_src);
if (err)
return err;
return 0;
}
/**
* ice_ptp_set_vernier_wl - Set the window length for vernier calibration
* @hw: pointer to the HW struct
*
* Set the window length used for the vernier port calibration process.
*/
static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
{
u8 port;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
int err;
err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
PTP_VERNIER_WL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform PHC initialization steps specific to E822 devices.
*/
static int ice_ptp_init_phc_e822(struct ice_hw *hw)
{
int err;
u32 regval;
/* Enable reading switch and PHY registers over the sideband queue */
#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
regval = rd32(hw, PF_SB_REM_DEV_CTL);
regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
PF_SB_REM_DEV_CTL_PHY0);
wr32(hw, PF_SB_REM_DEV_CTL, regval);
/* Initialize the Clock Generation Unit */
err = ice_init_cgu_e822(hw);
if (err)
return err;
/* Set window length for all the ports */
return ice_ptp_set_vernier_wl(hw);
}
/**
* ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
* @hw: pointer to the HW struct
* @time: Time to initialize the PHY port clocks to
*
* Program the PHY port registers with a new initial time value. The port
* clock will be initialized once the driver issues an INIT_TIME sync
* command. The time value is the upper 32 bits of the PHY timer, usually in
* units of nominal nanoseconds.
*/
static int
ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
{
u64 phy_time;
u8 port;
int err;
/* The time represents the upper 32 bits of the PHY timer, so we need
* to shift to account for this when programming.
*/
phy_time = (u64)time << 32;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
/* Tx case */
err = ice_write_64b_phy_reg_e822(hw, port,
P_REG_TX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_64b_phy_reg_e822(hw, port,
P_REG_RX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
* @hw: pointer to HW struct
* @port: Port number to be programmed
* @time: time in cycles to adjust the port Tx and Rx clocks
*
* Program the port for an atomic adjustment by writing the Tx and Rx timer
* registers. The atomic adjustment won't be completed until the driver issues
* an ADJ_TIME command.
*
* Note that time is not in units of nanoseconds. It is in clock time
* including the lower sub-nanosecond portion of the port timer.
*
* Negative adjustments are supported using 2s complement arithmetic.
*/
int
ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
{
u32 l_time, u_time;
int err;
l_time = lower_32_bits(time);
u_time = upper_32_bits(time);
/* Tx case */
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment in nanoseconds
*
* Prepare the PHY ports for an atomic time adjustment by programming the PHY
* Tx and Rx port registers. The actual adjustment is completed by issuing an
* ADJ_TIME or ADJ_TIME_AT_TIME sync command.
*/
static int
ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
{
s64 cycles;
u8 port;
/* The port clock supports adjustment of the sub-nanosecond portion of
* the clock. We shift the provided adjustment in nanoseconds to
* calculate the appropriate adjustment to program into the PHY ports.
*/
if (adj > 0)
cycles = (s64)adj << 32;
else
cycles = -(((s64)-adj) << 32);
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
int err;
err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
* @hw: pointer to HW struct
* @incval: new increment value to prepare
*
* Prepare each of the PHY ports for a new increment value by programming the
* port's TIMETUS registers. The new increment value will be updated after
* issuing an INIT_INCVAL command.
*/
static int
ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
{
int err;
u8 port;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
incval);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_read_port_capture - Read a port's local time capture
* @hw: pointer to HW struct
* @port: Port number to read
* @tx_ts: on return, the Tx port time capture
* @rx_ts: on return, the Rx port time capture
*
* Read the port's Tx and Rx local time capture values.
*
* Note this has no equivalent for the E810 devices.
*/
static int
ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
{
int err;
/* Tx case */
err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
(unsigned long long)*tx_ts);
/* Rx case */
err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
(unsigned long long)*rx_ts);
return 0;
}
/**
* ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare the requested port for an upcoming timer sync command.
*
* Note there is no equivalent of this operation on E810, as that device
* always handles all external PHYs internally.
*/
static int
ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, val;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
cmd_val = tmr_idx << SEL_PHY_SRC;
switch (cmd) {
case INIT_TIME:
cmd_val |= PHY_CMD_INIT_TIME;
break;
case INIT_INCVAL:
cmd_val |= PHY_CMD_INIT_INCVAL;
break;
case ADJ_TIME:
cmd_val |= PHY_CMD_ADJ_TIME;
break;
case READ_TIME:
cmd_val |= PHY_CMD_READ_TIME;
break;
case ADJ_TIME_AT_TIME:
cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
break;
}
/* Tx case */
/* Read, modify, write */
err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Modify necessary bits only and perform write */
val &= ~TS_CMD_MASK;
val |= cmd_val;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Rx case */
/* Read, modify, write */
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
err);
return err;
}
/* Modify necessary bits only and perform write */
val &= ~TS_CMD_MASK;
val |= cmd_val;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
* @hw: pointer to the HW struct
* @cmd: timer command to prepare
*
* Prepare all ports connected to this device for an upcoming timer sync
* command.
*/
static int
ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u8 port;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
int err;
err = ice_ptp_one_port_cmd(hw, port, cmd);
if (err)
return err;
}
return 0;
}
/* E822 Vernier calibration functions
*
* The following functions are used as part of the vernier calibration of
* a port. This calibration increases the precision of the timestamps on the
* port.
*/
/**
* ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
* @hw: pointer to HW struct
* @port: the port to read from
* @link_out: if non-NULL, holds link speed on success
* @fec_out: if non-NULL, holds FEC algorithm on success
*
* Read the serdes data for the PHY port and extract the link speed and FEC
* algorithm.
*/
static int
ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd *link_out,
enum ice_ptp_fec_mode *fec_out)
{
enum ice_ptp_link_spd link;
enum ice_ptp_fec_mode fec;
u32 serdes;
int err;
err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
return err;
}
/* Determine the FEC algorithm */
fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
serdes &= P_REG_LINK_SPEED_SERDES_M;
/* Determine the link speed */
if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
switch (serdes) {
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G_RS;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G_RS;
break;
case ICE_PTP_SERDES_100G:
link = ICE_PTP_LNK_SPD_100G_RS;
break;
default:
return -EIO;
}
} else {
switch (serdes) {
case ICE_PTP_SERDES_1G:
link = ICE_PTP_LNK_SPD_1G;
break;
case ICE_PTP_SERDES_10G:
link = ICE_PTP_LNK_SPD_10G;
break;
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G;
break;
case ICE_PTP_SERDES_40G:
link = ICE_PTP_LNK_SPD_40G;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G;
break;
default:
return -EIO;
}
}
if (link_out)
*link_out = link;
if (fec_out)
*fec_out = fec;
return 0;
}
/**
* ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
* @hw: pointer to HW struct
* @port: to configure the quad for
*/
static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
int err;
u32 val;
u8 quad;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
err);
return;
}
quad = port / ICE_PORTS_PER_QUAD;
err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
err);
return;
}
if (link_spd >= ICE_PTP_LNK_SPD_40G)
val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
else
val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
err);
return;
}
}
/**
* ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
* @hw: pointer to the HW structure
* @port: the port to configure
*
* Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
* hardware clock time units (TUs). That is, determine the number of TUs per
* serdes unit interval, and program the UIX registers with this conversion.
*
* This conversion is used as part of the calibration process when determining
* the additional error of a timestamp vs the real time of transmission or
* receipt of the packet.
*
* Hardware uses the number of TUs per 66 UIs, written to the UIX registers
* for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
*
* To calculate the conversion ratio, we use the following facts:
*
* a) the clock frequency in Hz (cycles per second)
* b) the number of TUs per cycle (the increment value of the clock)
* c) 1 second per 1 billion nanoseconds
* d) the duration of 66 UIs in nanoseconds
*
* Given these facts, we can use the following table to work out what ratios
* to multiply in order to get the number of TUs per 66 UIs:
*
* cycles | 1 second | incval (TUs) | nanoseconds
* -------+--------------+--------------+-------------
* second | 1 billion ns | cycle | 66 UIs
*
* To perform the multiplication using integers without too much loss of
* precision, we can take use the following equation:
*
* (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
*
* We scale up to using 6600 UI instead of 66 in order to avoid fractional
* nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
*
* The increment value has a maximum expected range of about 34 bits, while
* the frequency value is about 29 bits. Multiplying these values shouldn't
* overflow the 64 bits. However, we must then further multiply them again by
* the Serdes unit interval duration. To avoid overflow here, we split the
* overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
* a divide by 390,625,000. This does lose some precision, but avoids
* miscalculation due to arithmetic overflow.
*/
static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, uix;
int err;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second divided by 256 */
tu_per_sec = (cur_freq * clk_incval) >> 8;
#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
/* Program the 10Gb/40Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
err);
return err;
}
/* Program the 25Gb/100Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
* @hw: pointer to the HW struct
* @port: port to configure
*
* Configure the number of TUs for the PAR and PCS clocks used as part of the
* timestamp calibration process. This depends on the link speed, as the PHY
* uses different markers depending on the speed.
*
* 1Gb/10Gb/25Gb:
* - Tx/Rx PAR/PCS markers
*
* 25Gb RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
*
* 40Gb/50Gb:
* - Tx/Rx PAR/PCS markers
* - Rx Deskew PAR/PCS markers
*
* 50G RS and 100GB RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
* - Rx Deskew PAR/PCS markers
* - Tx PAR/PCS markers
*
* To calculate the conversion, we use the PHC clock frequency (cycles per
* second), the increment value (TUs per cycle), and the related PHY clock
* frequency to calculate the TUs per unit of the PHY link clock. The
* following table shows how the units convert:
*
* cycles | TUs | second
* -------+-------+--------
* second | cycle | cycles
*
* For each conversion register, look up the appropriate frequency from the
* e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
* this to the appropriate register, preparing hardware to perform timestamp
* calibration to calculate the total Tx or Rx offset to adjust the timestamp
* in order to calibrate for the internal PHY delays.
*
* Note that the increment value ranges up to ~34 bits, and the clock
* frequency is ~29 bits, so multiplying them together should fit within the
* 64 bit arithmetic.
*/
static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per cycle of the PHC clock */
tu_per_sec = cur_freq * clk_incval;
/* For each PHY conversion register, look up the appropriate link
* speed frequency and determine the TUs per that clock's cycle time.
* Split this into a high and low value and then program the
* appropriate register. If that link speed does not use the
* associated register, write zeros to clear it instead.
*/
/* P_REG_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_pcs);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_pcs);
else
phy_tus = 0;
return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
phy_tus);
}
/**
* ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
* @hw: pointer to the HW struct
* @link_spd: the Link speed to calculate for
*
* Calculate the fixed offset due to known static latency data.
*/
static u64
ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Tx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
* adjust Tx timestamps by. This is calculated by combining some known static
* latency along with the Vernier offset computations done by hardware.
*
* This function must be called only after the offset registers are valid,
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
* has measured the offset.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*/
static int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, val;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G ||
link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_PCS_TX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
}
/* For Tx, we only need to use the second Vernier offset for
* multi-lane link speeds with RS-FEC. The lanes will always be
* aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_TX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Tx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_phy_cfg_fixed_tx_offset_e822 - Configure Tx offset for bypass mode
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Calculate and program the fixed Tx offset, and indicate that the offset is
* ready. This can be used when operating in bypass mode.
*/
static int
ice_phy_cfg_fixed_tx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
/* Program the fixed Tx offset into the P_REG_TOTAL_TX_OFFSET_L
* register, then indicate that the Tx offset is ready. After this,
* timestamps will be enabled.
*
* Note that this skips including the more precise offsets generated
* by the Vernier calibration.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
* @hw: pointer to the HW struct
* @port: the PHY port to adjust for
* @link_spd: the current link speed of the PHY
* @fec_mode: the current FEC mode of the PHY
* @pmd_adj: on return, the amount to adjust the Rx total offset by
*
* Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
* This varies by link speed and FEC mode. The value calculated accounts for
* various delays caused when receiving a packet.
*/
static int
ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd link_spd,
enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
{
u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
u8 pmd_align;
u32 val;
int err;
err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
err);
return err;
}
pmd_align = (u8)val;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* The PMD alignment adjustment measurement depends on the link speed,
* and whether FEC is enabled. For each link speed, the alignment
* adjustment is calculated by dividing a value by the length of
* a Time Unit in nanoseconds.
*
* 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
* 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 10G w/FEC: align * 0.1 * 32/33
* 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 25G w/FEC: align * 0.4 * 32/33
* 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 40G w/FEC: align * 0.1 * 32/33
* 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 50G w/FEC: align * 0.8 * 32/33
*
* For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
*
* To allow for calculating this value using integer arithmetic, we
* instead start with the number of TUs per second, (inverse of the
* length of a Time Unit in nanoseconds), multiply by a value based
* on the PMD alignment register, and then divide by the right value
* calculated based on the table above. To avoid integer overflow this
* division is broken up into a step of dividing by 125 first.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G) {
if (pmd_align == 4)
mult = 10;
else
mult = (pmd_align + 6) % 10;
} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
/* If Clause 74 FEC, always calculate PMD adjust */
if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
mult = pmd_align;
else
mult = 0;
} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
if (pmd_align < 17)
mult = pmd_align + 40;
else
mult = pmd_align;
} else {
ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
link_spd);
mult = 0;
}
/* In some cases, there's no need to adjust for the PMD alignment */
if (!mult) {
*pmd_adj = 0;
return 0;
}
/* Calculate the adjustment by multiplying TUs per second by the
* appropriate multiplier and divisor. To avoid overflow, we first
* divide by 125, and then handle remaining divisor based on the link
* speed pmd_adj_divisor value.
*/
adj = div_u64(tu_per_sec, 125);
adj *= mult;
adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
* cycle count is necessary.
*/
if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = (4 - rx_cycle) * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = rx_cycle * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
}
/* Return the calculated adjustment */
*pmd_adj = adj;
return 0;
}
/**
* ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
* @hw: pointer to HW struct
* @link_spd: The Link speed to calculate for
*
* Determine the fixed Rx latency for a given link speed.
*/
static u64
ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Rx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
* adjust Rx timestamps by. This combines calculations from the Vernier offset
* measurements taken in hardware with some data about known fixed delay as
* well as adjusting for multi-lane alignment delay.
*
* This function must be called only after the offset registers are valid,
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
* has measured the offset.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*/
static int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, pmd, val;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_PCS_RX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
/* For Rx, all multi-lane link speeds include a second Vernier
* calibration, because the lanes might not be aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_RX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* In addition, Rx must account for the PMD alignment */
err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
if (err)
return err;
/* For RS-FEC, this adjustment adds delay, but for other modes, it
* subtracts delay.
*/
if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
total_offset += pmd;
else
total_offset -= pmd;
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Rx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_phy_cfg_fixed_rx_offset_e822 - Configure fixed Rx offset for bypass mode
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Calculate and program the fixed Rx offset, and indicate that the offset is
* ready. This can be used when operating in bypass mode.
*/
static int
ice_phy_cfg_fixed_rx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
/* Program the fixed Rx offset into the P_REG_TOTAL_RX_OFFSET_L
* register, then indicate that the Rx offset is ready. After this,
* timestamps will be enabled.
*
* Note that this skips including the more precise offsets generated
* by Vernier calibration.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @phy_time: on return, the 64bit PHY timer value
* @phc_time: on return, the lower 64bits of PHC time
*
* Issue a READ_TIME timer command to simultaneously capture the PHY and PHC
* timer values.
*/
static int
ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
u64 *phc_time)
{
u64 tx_time, rx_time;
u32 zo, lo;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
/* Prepare the PHC timer for a READ_TIME capture command */
ice_ptp_src_cmd(hw, READ_TIME);
/* Prepare the PHY timer for a READ_TIME capture command */
err = ice_ptp_one_port_cmd(hw, port, READ_TIME);
if (err)
return err;
/* Issue the sync to start the READ_TIME capture */
ice_ptp_exec_tmr_cmd(hw);
/* Read the captured PHC time from the shadow time registers */
zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
*phc_time = (u64)lo << 32 | zo;
/* Read the captured PHY time from the PHY shadow registers */
err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
if (err)
return err;
/* If the PHY Tx and Rx timers don't match, log a warning message.
* Note that this should not happen in normal circumstances since the
* driver always programs them together.
*/
if (tx_time != rx_time)
dev_warn(ice_hw_to_dev(hw),
"PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
port, (unsigned long long)tx_time,
(unsigned long long)rx_time);
*phy_time = tx_time;
return 0;
}
/**
* ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
* @hw: pointer to the HW struct
* @port: the PHY port to synchronize
*
* Perform an adjustment to ensure that the PHY and PHC timers are in sync.
* This is done by issuing a READ_TIME command which triggers a simultaneous
* read of the PHY timer and PHC timer. Then we use the difference to
* calculate an appropriate 2s complement addition to add to the PHY timer in
* order to ensure it reads the same value as the primary PHC timer.
*/
static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
{
u64 phc_time, phy_time, difference;
int err;
if (!ice_ptp_lock(hw)) {
ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
return -EBUSY;
}
err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
/* Calculate the amount required to add to the port time in order for
* it to match the PHC time.
*
* Note that the port adjustment is done using 2s complement
* arithmetic. This is convenient since it means that we can simply
* calculate the difference between the PHC time and the port time,
* and it will be interpreted correctly.
*/
difference = phc_time - phy_time;
err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
if (err)
goto err_unlock;
err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME);
if (err)
goto err_unlock;
/* Issue the sync to activate the time adjustment */
ice_ptp_exec_tmr_cmd(hw);
/* Re-capture the timer values to flush the command registers and
* verify that the time was properly adjusted.
*/
err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
dev_info(ice_hw_to_dev(hw),
"Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
port, (unsigned long long)phy_time,
(unsigned long long)phc_time);
ice_ptp_unlock(hw);
return 0;
err_unlock:
ice_ptp_unlock(hw);
return err;
}
/**
* ice_stop_phy_timer_e822 - Stop the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to stop
* @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
*
* Stop the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*/
int
ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
{
int err;
u32 val;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
if (err)
return err;
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
if (err)
return err;
val &= ~P_REG_PS_START_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
if (soft_reset) {
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
}
ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_start_phy_timer_e822 - Start the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to start
* @bypass: if true, start the PHY in bypass mode
*
* Start the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Bypass mode enables timestamps immediately without waiting for Vernier
* calibration to complete. Hardware will still continue taking Vernier
* measurements on Tx or Rx of packets, but they will not be applied to
* timestamps. Use ice_phy_exit_bypass_e822 to exit bypass mode once hardware
* has completed offset calculation.
*/
int
ice_start_phy_timer_e822(struct ice_hw *hw, u8 port, bool bypass)
{
u32 lo, hi, val;
u64 incval;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
err = ice_stop_phy_timer_e822(hw, port, false);
if (err)
return err;
ice_phy_cfg_lane_e822(hw, port);
err = ice_phy_cfg_uix_e822(hw, port);
if (err)
return err;
err = ice_phy_cfg_parpcs_e822(hw, port);
if (err)
return err;
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
incval = (u64)hi << 32 | lo;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
if (err)
return err;
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_START_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
val |= P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_LOAD_OFFSET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_sync_phy_timer_e822(hw, port);
if (err)
return err;
if (bypass) {
val |= P_REG_PS_BYPASS_MODE_M;
/* Enter BYPASS mode, enabling timestamps immediately. */
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
/* Program the fixed Tx offset */
err = ice_phy_cfg_fixed_tx_offset_e822(hw, port);
if (err)
return err;
/* Program the fixed Rx offset */
err = ice_phy_cfg_fixed_rx_offset_e822(hw, port);
if (err)
return err;
}
ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_phy_exit_bypass_e822 - Exit bypass mode, after vernier calculations
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* After hardware finishes vernier calculations for the Tx and Rx offset, this
* function can be used to exit bypass mode by updating the total Tx and Rx
* offsets, and then disabling bypass. This will enable hardware to include
* the more precise offset calibrations, increasing precision of the generated
* timestamps.
*
* This cannot be done until hardware has measured the offsets, which requires
* waiting until at least one packet has been sent and received by the device.
*/
int ice_phy_exit_bypass_e822(struct ice_hw *hw, u8 port)
{
int err;
u32 val;
err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(val & P_REG_TX_OV_STATUS_OV_M)) {
ice_debug(hw, ICE_DBG_PTP, "Tx offset is not yet valid for port %u\n",
port);
return -EBUSY;
}
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(val & P_REG_TX_OV_STATUS_OV_M)) {
ice_debug(hw, ICE_DBG_PTP, "Rx offset is not yet valid for port %u\n",
port);
return -EBUSY;
}
err = ice_phy_cfg_tx_offset_e822(hw, port);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to program total Tx offset for port %u, err %d\n",
port, err);
return err;
}
err = ice_phy_cfg_rx_offset_e822(hw, port);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to program total Rx offset for port %u, err %d\n",
port, err);
return err;
}
/* Exit bypass mode now that the offset has been updated */
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read P_REG_PS for port %u, err %d\n",
port, err);
return err;
}
if (!(val & P_REG_PS_BYPASS_MODE_M))
ice_debug(hw, ICE_DBG_PTP, "Port %u not in bypass mode\n",
port);
val &= ~P_REG_PS_BYPASS_MODE_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to disable bypass for port %u, err %d\n",
port, err);
return err;
}
dev_info(ice_hw_to_dev(hw), "Exiting bypass mode on PHY port %u\n",
port);
return 0;
}
/* E810 functions
*
* The following functions operate on the E810 series devices which use
* a separate external PHY.
*/
/**
* ice_read_phy_reg_e810 - Read register from external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to read from
* @val: On return, the value read from the PHY
*
* Read a register from the external PHY on the E810 device.
*/
static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_rd;
msg.dest_dev = rmn_0;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_phy_reg_e810 - Write register on external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to writem to
* @val: the value to write to the PHY
*
* Write a value to a register of the external PHY on the E810 device.
*/
static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_wr;
msg.dest_dev = rmn_0;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block of the external PHY
* on the E810 device.
*/
static int
ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
{
u32 lo_addr, hi_addr, lo, hi;
int err;
lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
err = ice_read_phy_reg_e810(hw, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_phy_reg_e810(hw, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For E810 devices, the timestamp is reported with the lower 32 bits
* in the low register, and the upper 8 bits in the high register.
*/
*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
return 0;
}
/**
* ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp, resetting its valid bit, from the timestamp block of the
* external PHY on the E810 device.
*/
static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
{
u32 lo_addr, hi_addr;
int err;
lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
err = ice_write_phy_reg_e810(hw, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, hi_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
* @hw: pointer to HW struct
*
* Enable the timesync PTP functionality for the external PHY connected to
* this function.
*/
int ice_ptp_init_phy_e810(struct ice_hw *hw)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
GLTSYN_ENA_TSYN_ENA_M);
if (err)
ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
err);
return err;
}
/**
* ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform E810-specific PTP hardware clock initialization steps.
*/
static int ice_ptp_init_phc_e810(struct ice_hw *hw)
{
/* Ensure synchronization delay is zero */
wr32(hw, GLTSYN_SYNC_DLAY, 0);
/* Initialize the PHY */
return ice_ptp_init_phy_e810(hw);
}
/**
* ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
* @hw: Board private structure
* @time: Time to initialize the PHY port clock to
*
* Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
* initial clock time. The time will not actually be programmed until the
* driver issues an INIT_TIME command.
*
* The time value is the upper 32 bits of the PHY timer, usually in units of
* nominal nanoseconds.
*/
static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment value to program
*
* Prepare the PHY port for an atomic adjustment by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
* is completed by issuing an ADJ_TIME sync command.
*
* The adjustment value only contains the portion used for the upper 32bits of
* the PHY timer, usually in units of nominal nanoseconds. Negative
* adjustments are supported using 2s complement arithmetic.
*/
static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Adjustments are represented as signed 2's complement values in
* nanoseconds. Sub-nanosecond adjustment is not supported.
*/
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
* @hw: pointer to HW struct
* @incval: The new 40bit increment value to prepare
*
* Prepare the PHY port for a new increment value by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
* completed by issuing an INIT_INCVAL command.
*/
static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
{
u32 high, low;
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
low = lower_32_bits(incval);
high = upper_32_bits(incval);
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
* @hw: pointer to HW struct
* @cmd: Command to be sent to the port
*
* Prepare the external PHYs connected to this device for a timer sync
* command.
*/
static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, val;
int err;
switch (cmd) {
case INIT_TIME:
cmd_val = GLTSYN_CMD_INIT_TIME;
break;
case INIT_INCVAL:
cmd_val = GLTSYN_CMD_INIT_INCVAL;
break;
case ADJ_TIME:
cmd_val = GLTSYN_CMD_ADJ_TIME;
break;
case READ_TIME:
cmd_val = GLTSYN_CMD_READ_TIME;
break;
case ADJ_TIME_AT_TIME:
cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
break;
}
/* Read, modify, write */
err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
return err;
}
/* Modify necessary bits only and perform write */
val &= ~TS_CMD_MASK_E810;
val |= cmd_val;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
return err;
}
return 0;
}
/* Device agnostic functions
*
* The following functions implement shared behavior common to both E822 and
* E810 devices, possibly calling a device specific implementation where
* necessary.
*/
/**
* ice_ptp_lock - Acquire PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Acquire the global PTP hardware semaphore lock. Returns true if the lock
* was acquired, false otherwise.
*
* The PFTSYN_SEM register sets the busy bit on read, returning the previous
* value. If software sees the busy bit cleared, this means that this function
* acquired the lock (and the busy bit is now set). If software sees the busy
* bit set, it means that another function acquired the lock.
*
* Software must clear the busy bit with a write to release the lock for other
* functions when done.
*/
bool ice_ptp_lock(struct ice_hw *hw)
{
u32 hw_lock;
int i;
#define MAX_TRIES 5
for (i = 0; i < MAX_TRIES; i++) {
hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
if (!hw_lock)
break;
/* Somebody is holding the lock */
usleep_range(10000, 20000);
}
return !hw_lock;
}
/**
* ice_ptp_unlock - Release PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Release the global PTP hardware semaphore lock. This is done by writing to
* the PFTSYN_SEM register.
*/
void ice_ptp_unlock(struct ice_hw *hw)
{
wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
}
/**
* ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
* @hw: pointer to HW struct
* @cmd: the command to issue
*
* Prepare the source timer and PHY timers and then trigger the requested
* command. This causes the shadow registers previously written in preparation
* for the command to be synchronously applied to both the source and PHY
* timers.
*/
static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
int err;
/* First, prepare the source timer */
ice_ptp_src_cmd(hw, cmd);
/* Next, prepare the ports */
if (ice_is_e810(hw))
err = ice_ptp_port_cmd_e810(hw, cmd);
else
err = ice_ptp_port_cmd_e822(hw, cmd);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
cmd, err);
return err;
}
/* Write the sync command register to drive both source and PHY timer
* commands synchronously
*/
ice_ptp_exec_tmr_cmd(hw);
return 0;
}
/**
* ice_ptp_init_time - Initialize device time to provided value
* @hw: pointer to HW struct
* @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
*
* Initialize the device to the specified time provided. This requires a three
* step process:
*
* 1) write the new init time to the source timer shadow registers
* 2) write the new init time to the PHY timer shadow registers
* 3) issue an init_time timer command to synchronously switch both the source
* and port timers to the new init time value at the next clock cycle.
*/
int ice_ptp_init_time(struct ice_hw *hw, u64 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Source timers */
wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
/* PHY timers */
/* Fill Rx and Tx ports and send msg to PHY */
if (ice_is_e810(hw))
err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
else
err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
if (err)
return err;
return ice_ptp_tmr_cmd(hw, INIT_TIME);
}
/**
* ice_ptp_write_incval - Program PHC with new increment value
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program the PHC with a new increment value. This requires a three-step
* process:
*
* 1) Write the increment value to the source timer shadow registers
* 2) Write the increment value to the PHY timer shadow registers
* 3) Issue an INIT_INCVAL timer command to synchronously switch both the
* source and port timers to the new increment value at the next clock
* cycle.
*/
int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Shadow Adjust */
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
if (ice_is_e810(hw))
err = ice_ptp_prep_phy_incval_e810(hw, incval);
else
err = ice_ptp_prep_phy_incval_e822(hw, incval);
if (err)
return err;
return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
}
/**
* ice_ptp_write_incval_locked - Program new incval while holding semaphore
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program a new PHC incval while holding the PTP semaphore.
*/
int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
{
int err;
if (!ice_ptp_lock(hw))
return -EBUSY;
err = ice_ptp_write_incval(hw, incval);
ice_ptp_unlock(hw);
return err;
}
/**
* ice_ptp_adj_clock - Adjust PHC clock time atomically
* @hw: pointer to HW struct
* @adj: Adjustment in nanoseconds
*
* Perform an atomic adjustment of the PHC time by the specified number of
* nanoseconds. This requires a three-step process:
*
* 1) Write the adjustment to the source timer shadow registers
* 2) Write the adjustment to the PHY timer shadow registers
* 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
* both the source and port timers at the next clock cycle.
*/
int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
* For an ADJ_TIME command, this set of registers represents the value
* to add to the clock time. It supports subtraction by interpreting
* the value as a 2's complement integer.
*/
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
if (ice_is_e810(hw))
err = ice_ptp_prep_phy_adj_e810(hw, adj);
else
err = ice_ptp_prep_phy_adj_e822(hw, adj);
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ADJ_TIME);
}
/**
* ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block. For E822 devices,
* the block is the quad to read from. For E810 devices, the block is the
* logical port to read from.
*/
int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
{
if (ice_is_e810(hw))
return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
else
return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
}
/**
* ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp, resetting its valid bit, from the timestamp block. For
* E822 devices, the block is the quad to clear from. For E810 devices, the
* block is the logical port to clear from.
*/
int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
{
if (ice_is_e810(hw))
return ice_clear_phy_tstamp_e810(hw, block, idx);
else
return ice_clear_phy_tstamp_e822(hw, block, idx);
}
/* E810T SMA functions
*
* The following functions operate specifically on E810T hardware and are used
* to access the extended GPIOs available.
*/
/**
* ice_get_pca9575_handle
* @hw: pointer to the hw struct
* @pca9575_handle: GPIO controller's handle
*
* Find and return the GPIO controller's handle in the netlist.
* When found - the value will be cached in the hw structure and following calls
* will return cached value
*/
static int
ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
{
struct ice_aqc_get_link_topo *cmd;
struct ice_aq_desc desc;
int status;
u8 idx;
/* If handle was read previously return cached value */
if (hw->io_expander_handle) {
*pca9575_handle = hw->io_expander_handle;
return 0;
}
/* If handle was not detected read it from the netlist */
cmd = &desc.params.get_link_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
/* Set node type to GPIO controller */
cmd->addr.topo_params.node_type_ctx =
(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
#define SW_PCA9575_SFP_TOPO_IDX 2
#define SW_PCA9575_QSFP_TOPO_IDX 1
/* Check if the SW IO expander controlling SMA exists in the netlist. */
if (hw->device_id == ICE_DEV_ID_E810C_SFP)
idx = SW_PCA9575_SFP_TOPO_IDX;
else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
idx = SW_PCA9575_QSFP_TOPO_IDX;
else
return -EOPNOTSUPP;
cmd->addr.topo_params.index = idx;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (status)
return -EOPNOTSUPP;
/* Verify if we found the right IO expander type */
if (desc.params.get_link_topo.node_part_num !=
ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
return -EOPNOTSUPP;
/* If present save the handle and return it */
hw->io_expander_handle =
le16_to_cpu(desc.params.get_link_topo.addr.handle);
*pca9575_handle = hw->io_expander_handle;
return 0;
}
/**
* ice_read_sma_ctrl_e810t
* @hw: pointer to the hw struct
* @data: pointer to data to be read from the GPIO controller
*
* Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
* PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
*data = 0;
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
bool pin;
status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
&pin, NULL);
if (status)
break;
*data |= (u8)(!pin) << i;
}
return status;
}
/**
* ice_write_sma_ctrl_e810t
* @hw: pointer to the hw struct
* @data: data to be written to the GPIO controller
*
* Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
* of the PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
bool pin;
pin = !(data & (1 << i));
status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
pin, NULL);
if (status)
break;
}
return status;
}
/**
* ice_is_pca9575_present
* @hw: pointer to the hw struct
*
* Check if the SW IO expander is present in the netlist
*/
bool ice_is_pca9575_present(struct ice_hw *hw)
{
u16 handle = 0;
int status;
if (!ice_is_e810t(hw))
return false;
status = ice_get_pca9575_handle(hw, &handle);
return !status && handle;
}
/**
* ice_ptp_init_phc - Initialize PTP hardware clock
* @hw: pointer to the HW struct
*
* Perform the steps required to initialize the PTP hardware clock.
*/
int ice_ptp_init_phc(struct ice_hw *hw)
{
u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Enable source clocks */
wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
/* Clear event err indications for auxiliary pins */
(void)rd32(hw, GLTSYN_STAT(src_idx));
if (ice_is_e810(hw))
return ice_ptp_init_phc_e810(hw);
else
return ice_ptp_init_phc_e822(hw);
}