| /* SPDX-License-Identifier: GPL-2.0 OR MIT */ |
| /************************************************************************** |
| * |
| * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| /* |
| * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| */ |
| |
| #define pr_fmt(fmt) "[TTM] " fmt |
| |
| #include <drm/ttm/ttm_module.h> |
| #include <drm/ttm/ttm_bo_driver.h> |
| #include <drm/ttm/ttm_placement.h> |
| #include <linux/jiffies.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/file.h> |
| #include <linux/module.h> |
| #include <linux/atomic.h> |
| #include <linux/dma-resv.h> |
| |
| static void ttm_bo_global_kobj_release(struct kobject *kobj); |
| |
| /** |
| * ttm_global_mutex - protecting the global BO state |
| */ |
| DEFINE_MUTEX(ttm_global_mutex); |
| unsigned ttm_bo_glob_use_count; |
| struct ttm_bo_global ttm_bo_glob; |
| EXPORT_SYMBOL(ttm_bo_glob); |
| |
| static struct attribute ttm_bo_count = { |
| .name = "bo_count", |
| .mode = S_IRUGO |
| }; |
| |
| /* default destructor */ |
| static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) |
| { |
| kfree(bo); |
| } |
| |
| static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement) |
| { |
| struct drm_printer p = drm_debug_printer(TTM_PFX); |
| struct ttm_resource_manager *man; |
| int i, mem_type; |
| |
| drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", |
| bo, bo->mem.num_pages, bo->mem.size >> 10, |
| bo->mem.size >> 20); |
| for (i = 0; i < placement->num_placement; i++) { |
| mem_type = placement->placement[i].mem_type; |
| drm_printf(&p, " placement[%d]=0x%08X (%d)\n", |
| i, placement->placement[i].flags, mem_type); |
| man = ttm_manager_type(bo->bdev, mem_type); |
| ttm_resource_manager_debug(man, &p); |
| } |
| } |
| |
| static ssize_t ttm_bo_global_show(struct kobject *kobj, |
| struct attribute *attr, |
| char *buffer) |
| { |
| struct ttm_bo_global *glob = |
| container_of(kobj, struct ttm_bo_global, kobj); |
| |
| return snprintf(buffer, PAGE_SIZE, "%d\n", |
| atomic_read(&glob->bo_count)); |
| } |
| |
| static struct attribute *ttm_bo_global_attrs[] = { |
| &ttm_bo_count, |
| NULL |
| }; |
| |
| static const struct sysfs_ops ttm_bo_global_ops = { |
| .show = &ttm_bo_global_show |
| }; |
| |
| static struct kobj_type ttm_bo_glob_kobj_type = { |
| .release = &ttm_bo_global_kobj_release, |
| .sysfs_ops = &ttm_bo_global_ops, |
| .default_attrs = ttm_bo_global_attrs |
| }; |
| |
| static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, |
| struct ttm_resource *mem) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_resource_manager *man; |
| |
| if (!list_empty(&bo->lru)) |
| return; |
| |
| if (mem->placement & TTM_PL_FLAG_NO_EVICT) |
| return; |
| |
| man = ttm_manager_type(bdev, mem->mem_type); |
| list_add_tail(&bo->lru, &man->lru[bo->priority]); |
| |
| if (man->use_tt && bo->ttm && |
| !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | |
| TTM_PAGE_FLAG_SWAPPED))) { |
| list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]); |
| } |
| } |
| |
| static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| bool notify = false; |
| |
| if (!list_empty(&bo->swap)) { |
| list_del_init(&bo->swap); |
| notify = true; |
| } |
| if (!list_empty(&bo->lru)) { |
| list_del_init(&bo->lru); |
| notify = true; |
| } |
| |
| if (notify && bdev->driver->del_from_lru_notify) |
| bdev->driver->del_from_lru_notify(bo); |
| } |
| |
| static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, |
| struct ttm_buffer_object *bo) |
| { |
| if (!pos->first) |
| pos->first = bo; |
| pos->last = bo; |
| } |
| |
| void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, |
| struct ttm_lru_bulk_move *bulk) |
| { |
| dma_resv_assert_held(bo->base.resv); |
| |
| ttm_bo_del_from_lru(bo); |
| ttm_bo_add_mem_to_lru(bo, &bo->mem); |
| |
| if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { |
| switch (bo->mem.mem_type) { |
| case TTM_PL_TT: |
| ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); |
| break; |
| |
| case TTM_PL_VRAM: |
| ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); |
| break; |
| } |
| if (bo->ttm && !(bo->ttm->page_flags & |
| (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) |
| ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); |
| } |
| } |
| EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); |
| |
| void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) |
| { |
| unsigned i; |
| |
| for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; |
| struct ttm_resource_manager *man; |
| |
| if (!pos->first) |
| continue; |
| |
| dma_resv_assert_held(pos->first->base.resv); |
| dma_resv_assert_held(pos->last->base.resv); |
| |
| man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); |
| list_bulk_move_tail(&man->lru[i], &pos->first->lru, |
| &pos->last->lru); |
| } |
| |
| for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; |
| struct ttm_resource_manager *man; |
| |
| if (!pos->first) |
| continue; |
| |
| dma_resv_assert_held(pos->first->base.resv); |
| dma_resv_assert_held(pos->last->base.resv); |
| |
| man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); |
| list_bulk_move_tail(&man->lru[i], &pos->first->lru, |
| &pos->last->lru); |
| } |
| |
| for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; |
| struct list_head *lru; |
| |
| if (!pos->first) |
| continue; |
| |
| dma_resv_assert_held(pos->first->base.resv); |
| dma_resv_assert_held(pos->last->base.resv); |
| |
| lru = &ttm_bo_glob.swap_lru[i]; |
| list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); |
| } |
| } |
| EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); |
| |
| static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, |
| struct ttm_resource *mem, bool evict, |
| struct ttm_operation_ctx *ctx) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); |
| struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); |
| int ret; |
| |
| ttm_bo_unmap_virtual(bo); |
| |
| /* |
| * Create and bind a ttm if required. |
| */ |
| |
| if (new_man->use_tt) { |
| /* Zero init the new TTM structure if the old location should |
| * have used one as well. |
| */ |
| ret = ttm_tt_create(bo, old_man->use_tt); |
| if (ret) |
| goto out_err; |
| |
| ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); |
| if (ret) |
| goto out_err; |
| |
| if (mem->mem_type != TTM_PL_SYSTEM) { |
| ret = ttm_tt_populate(bdev, bo->ttm, ctx); |
| if (ret) |
| goto out_err; |
| |
| ret = ttm_bo_tt_bind(bo, mem); |
| if (ret) |
| goto out_err; |
| } |
| |
| if (bo->mem.mem_type == TTM_PL_SYSTEM) { |
| if (bdev->driver->move_notify) |
| bdev->driver->move_notify(bo, evict, mem); |
| bo->mem = *mem; |
| goto moved; |
| } |
| } |
| |
| if (bdev->driver->move_notify) |
| bdev->driver->move_notify(bo, evict, mem); |
| |
| if (old_man->use_tt && new_man->use_tt) |
| ret = ttm_bo_move_ttm(bo, ctx, mem); |
| else if (bdev->driver->move) |
| ret = bdev->driver->move(bo, evict, ctx, mem); |
| else |
| ret = ttm_bo_move_memcpy(bo, ctx, mem); |
| |
| if (ret) { |
| if (bdev->driver->move_notify) { |
| swap(*mem, bo->mem); |
| bdev->driver->move_notify(bo, false, mem); |
| swap(*mem, bo->mem); |
| } |
| |
| goto out_err; |
| } |
| |
| moved: |
| ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; |
| return 0; |
| |
| out_err: |
| new_man = ttm_manager_type(bdev, bo->mem.mem_type); |
| if (!new_man->use_tt) |
| ttm_bo_tt_destroy(bo); |
| |
| return ret; |
| } |
| |
| /** |
| * Call bo::reserved. |
| * Will release GPU memory type usage on destruction. |
| * This is the place to put in driver specific hooks to release |
| * driver private resources. |
| * Will release the bo::reserved lock. |
| */ |
| |
| static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) |
| { |
| if (bo->bdev->driver->move_notify) |
| bo->bdev->driver->move_notify(bo, false, NULL); |
| |
| ttm_bo_tt_destroy(bo); |
| ttm_resource_free(bo, &bo->mem); |
| } |
| |
| static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) |
| { |
| int r; |
| |
| if (bo->base.resv == &bo->base._resv) |
| return 0; |
| |
| BUG_ON(!dma_resv_trylock(&bo->base._resv)); |
| |
| r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); |
| dma_resv_unlock(&bo->base._resv); |
| if (r) |
| return r; |
| |
| if (bo->type != ttm_bo_type_sg) { |
| /* This works because the BO is about to be destroyed and nobody |
| * reference it any more. The only tricky case is the trylock on |
| * the resv object while holding the lru_lock. |
| */ |
| spin_lock(&ttm_bo_glob.lru_lock); |
| bo->base.resv = &bo->base._resv; |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| } |
| |
| return r; |
| } |
| |
| static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) |
| { |
| struct dma_resv *resv = &bo->base._resv; |
| struct dma_resv_list *fobj; |
| struct dma_fence *fence; |
| int i; |
| |
| rcu_read_lock(); |
| fobj = rcu_dereference(resv->fence); |
| fence = rcu_dereference(resv->fence_excl); |
| if (fence && !fence->ops->signaled) |
| dma_fence_enable_sw_signaling(fence); |
| |
| for (i = 0; fobj && i < fobj->shared_count; ++i) { |
| fence = rcu_dereference(fobj->shared[i]); |
| |
| if (!fence->ops->signaled) |
| dma_fence_enable_sw_signaling(fence); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /** |
| * function ttm_bo_cleanup_refs |
| * If bo idle, remove from lru lists, and unref. |
| * If not idle, block if possible. |
| * |
| * Must be called with lru_lock and reservation held, this function |
| * will drop the lru lock and optionally the reservation lock before returning. |
| * |
| * @interruptible Any sleeps should occur interruptibly. |
| * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. |
| * @unlock_resv Unlock the reservation lock as well. |
| */ |
| |
| static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, |
| bool interruptible, bool no_wait_gpu, |
| bool unlock_resv) |
| { |
| struct dma_resv *resv = &bo->base._resv; |
| int ret; |
| |
| if (dma_resv_test_signaled_rcu(resv, true)) |
| ret = 0; |
| else |
| ret = -EBUSY; |
| |
| if (ret && !no_wait_gpu) { |
| long lret; |
| |
| if (unlock_resv) |
| dma_resv_unlock(bo->base.resv); |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| |
| lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, |
| 30 * HZ); |
| |
| if (lret < 0) |
| return lret; |
| else if (lret == 0) |
| return -EBUSY; |
| |
| spin_lock(&ttm_bo_glob.lru_lock); |
| if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { |
| /* |
| * We raced, and lost, someone else holds the reservation now, |
| * and is probably busy in ttm_bo_cleanup_memtype_use. |
| * |
| * Even if it's not the case, because we finished waiting any |
| * delayed destruction would succeed, so just return success |
| * here. |
| */ |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| return 0; |
| } |
| ret = 0; |
| } |
| |
| if (ret || unlikely(list_empty(&bo->ddestroy))) { |
| if (unlock_resv) |
| dma_resv_unlock(bo->base.resv); |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| return ret; |
| } |
| |
| ttm_bo_del_from_lru(bo); |
| list_del_init(&bo->ddestroy); |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| ttm_bo_cleanup_memtype_use(bo); |
| |
| if (unlock_resv) |
| dma_resv_unlock(bo->base.resv); |
| |
| ttm_bo_put(bo); |
| |
| return 0; |
| } |
| |
| /** |
| * Traverse the delayed list, and call ttm_bo_cleanup_refs on all |
| * encountered buffers. |
| */ |
| static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) |
| { |
| struct ttm_bo_global *glob = &ttm_bo_glob; |
| struct list_head removed; |
| bool empty; |
| |
| INIT_LIST_HEAD(&removed); |
| |
| spin_lock(&glob->lru_lock); |
| while (!list_empty(&bdev->ddestroy)) { |
| struct ttm_buffer_object *bo; |
| |
| bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, |
| ddestroy); |
| list_move_tail(&bo->ddestroy, &removed); |
| if (!ttm_bo_get_unless_zero(bo)) |
| continue; |
| |
| if (remove_all || bo->base.resv != &bo->base._resv) { |
| spin_unlock(&glob->lru_lock); |
| dma_resv_lock(bo->base.resv, NULL); |
| |
| spin_lock(&glob->lru_lock); |
| ttm_bo_cleanup_refs(bo, false, !remove_all, true); |
| |
| } else if (dma_resv_trylock(bo->base.resv)) { |
| ttm_bo_cleanup_refs(bo, false, !remove_all, true); |
| } else { |
| spin_unlock(&glob->lru_lock); |
| } |
| |
| ttm_bo_put(bo); |
| spin_lock(&glob->lru_lock); |
| } |
| list_splice_tail(&removed, &bdev->ddestroy); |
| empty = list_empty(&bdev->ddestroy); |
| spin_unlock(&glob->lru_lock); |
| |
| return empty; |
| } |
| |
| static void ttm_bo_delayed_workqueue(struct work_struct *work) |
| { |
| struct ttm_bo_device *bdev = |
| container_of(work, struct ttm_bo_device, wq.work); |
| |
| if (!ttm_bo_delayed_delete(bdev, false)) |
| schedule_delayed_work(&bdev->wq, |
| ((HZ / 100) < 1) ? 1 : HZ / 100); |
| } |
| |
| static void ttm_bo_release(struct kref *kref) |
| { |
| struct ttm_buffer_object *bo = |
| container_of(kref, struct ttm_buffer_object, kref); |
| struct ttm_bo_device *bdev = bo->bdev; |
| size_t acc_size = bo->acc_size; |
| int ret; |
| |
| if (!bo->deleted) { |
| ret = ttm_bo_individualize_resv(bo); |
| if (ret) { |
| /* Last resort, if we fail to allocate memory for the |
| * fences block for the BO to become idle |
| */ |
| dma_resv_wait_timeout_rcu(bo->base.resv, true, false, |
| 30 * HZ); |
| } |
| |
| if (bo->bdev->driver->release_notify) |
| bo->bdev->driver->release_notify(bo); |
| |
| drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); |
| ttm_mem_io_free(bdev, &bo->mem); |
| } |
| |
| if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || |
| !dma_resv_trylock(bo->base.resv)) { |
| /* The BO is not idle, resurrect it for delayed destroy */ |
| ttm_bo_flush_all_fences(bo); |
| bo->deleted = true; |
| |
| spin_lock(&ttm_bo_glob.lru_lock); |
| |
| /* |
| * Make NO_EVICT bos immediately available to |
| * shrinkers, now that they are queued for |
| * destruction. |
| */ |
| if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { |
| bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; |
| ttm_bo_del_from_lru(bo); |
| ttm_bo_add_mem_to_lru(bo, &bo->mem); |
| } |
| |
| kref_init(&bo->kref); |
| list_add_tail(&bo->ddestroy, &bdev->ddestroy); |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| |
| schedule_delayed_work(&bdev->wq, |
| ((HZ / 100) < 1) ? 1 : HZ / 100); |
| return; |
| } |
| |
| spin_lock(&ttm_bo_glob.lru_lock); |
| ttm_bo_del_from_lru(bo); |
| list_del(&bo->ddestroy); |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| |
| ttm_bo_cleanup_memtype_use(bo); |
| dma_resv_unlock(bo->base.resv); |
| |
| atomic_dec(&ttm_bo_glob.bo_count); |
| dma_fence_put(bo->moving); |
| if (!ttm_bo_uses_embedded_gem_object(bo)) |
| dma_resv_fini(&bo->base._resv); |
| bo->destroy(bo); |
| ttm_mem_global_free(&ttm_mem_glob, acc_size); |
| } |
| |
| void ttm_bo_put(struct ttm_buffer_object *bo) |
| { |
| kref_put(&bo->kref, ttm_bo_release); |
| } |
| EXPORT_SYMBOL(ttm_bo_put); |
| |
| int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) |
| { |
| return cancel_delayed_work_sync(&bdev->wq); |
| } |
| EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); |
| |
| void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) |
| { |
| if (resched) |
| schedule_delayed_work(&bdev->wq, |
| ((HZ / 100) < 1) ? 1 : HZ / 100); |
| } |
| EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); |
| |
| static int ttm_bo_evict(struct ttm_buffer_object *bo, |
| struct ttm_operation_ctx *ctx) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_resource evict_mem; |
| struct ttm_placement placement; |
| int ret = 0; |
| |
| dma_resv_assert_held(bo->base.resv); |
| |
| placement.num_placement = 0; |
| placement.num_busy_placement = 0; |
| bdev->driver->evict_flags(bo, &placement); |
| |
| if (!placement.num_placement && !placement.num_busy_placement) { |
| ttm_bo_wait(bo, false, false); |
| |
| ttm_bo_cleanup_memtype_use(bo); |
| return ttm_tt_create(bo, false); |
| } |
| |
| evict_mem = bo->mem; |
| evict_mem.mm_node = NULL; |
| evict_mem.bus.offset = 0; |
| evict_mem.bus.addr = NULL; |
| |
| ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); |
| if (ret) { |
| if (ret != -ERESTARTSYS) { |
| pr_err("Failed to find memory space for buffer 0x%p eviction\n", |
| bo); |
| ttm_bo_mem_space_debug(bo, &placement); |
| } |
| goto out; |
| } |
| |
| ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); |
| if (unlikely(ret)) { |
| if (ret != -ERESTARTSYS) |
| pr_err("Buffer eviction failed\n"); |
| ttm_resource_free(bo, &evict_mem); |
| } |
| out: |
| return ret; |
| } |
| |
| bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, |
| const struct ttm_place *place) |
| { |
| /* Don't evict this BO if it's outside of the |
| * requested placement range |
| */ |
| if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) || |
| (place->lpfn && place->lpfn <= bo->mem.start)) |
| return false; |
| |
| return true; |
| } |
| EXPORT_SYMBOL(ttm_bo_eviction_valuable); |
| |
| /** |
| * Check the target bo is allowable to be evicted or swapout, including cases: |
| * |
| * a. if share same reservation object with ctx->resv, have assumption |
| * reservation objects should already be locked, so not lock again and |
| * return true directly when either the opreation allow_reserved_eviction |
| * or the target bo already is in delayed free list; |
| * |
| * b. Otherwise, trylock it. |
| */ |
| static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, |
| struct ttm_operation_ctx *ctx, bool *locked, bool *busy) |
| { |
| bool ret = false; |
| |
| if (bo->base.resv == ctx->resv) { |
| dma_resv_assert_held(bo->base.resv); |
| if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT) |
| ret = true; |
| *locked = false; |
| if (busy) |
| *busy = false; |
| } else { |
| ret = dma_resv_trylock(bo->base.resv); |
| *locked = ret; |
| if (busy) |
| *busy = !ret; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ttm_mem_evict_wait_busy - wait for a busy BO to become available |
| * |
| * @busy_bo: BO which couldn't be locked with trylock |
| * @ctx: operation context |
| * @ticket: acquire ticket |
| * |
| * Try to lock a busy buffer object to avoid failing eviction. |
| */ |
| static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, |
| struct ttm_operation_ctx *ctx, |
| struct ww_acquire_ctx *ticket) |
| { |
| int r; |
| |
| if (!busy_bo || !ticket) |
| return -EBUSY; |
| |
| if (ctx->interruptible) |
| r = dma_resv_lock_interruptible(busy_bo->base.resv, |
| ticket); |
| else |
| r = dma_resv_lock(busy_bo->base.resv, ticket); |
| |
| /* |
| * TODO: It would be better to keep the BO locked until allocation is at |
| * least tried one more time, but that would mean a much larger rework |
| * of TTM. |
| */ |
| if (!r) |
| dma_resv_unlock(busy_bo->base.resv); |
| |
| return r == -EDEADLK ? -EBUSY : r; |
| } |
| |
| int ttm_mem_evict_first(struct ttm_bo_device *bdev, |
| struct ttm_resource_manager *man, |
| const struct ttm_place *place, |
| struct ttm_operation_ctx *ctx, |
| struct ww_acquire_ctx *ticket) |
| { |
| struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; |
| bool locked = false; |
| unsigned i; |
| int ret; |
| |
| spin_lock(&ttm_bo_glob.lru_lock); |
| for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| list_for_each_entry(bo, &man->lru[i], lru) { |
| bool busy; |
| |
| if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, |
| &busy)) { |
| if (busy && !busy_bo && ticket != |
| dma_resv_locking_ctx(bo->base.resv)) |
| busy_bo = bo; |
| continue; |
| } |
| |
| if (place && !bdev->driver->eviction_valuable(bo, |
| place)) { |
| if (locked) |
| dma_resv_unlock(bo->base.resv); |
| continue; |
| } |
| if (!ttm_bo_get_unless_zero(bo)) { |
| if (locked) |
| dma_resv_unlock(bo->base.resv); |
| continue; |
| } |
| break; |
| } |
| |
| /* If the inner loop terminated early, we have our candidate */ |
| if (&bo->lru != &man->lru[i]) |
| break; |
| |
| bo = NULL; |
| } |
| |
| if (!bo) { |
| if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) |
| busy_bo = NULL; |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); |
| if (busy_bo) |
| ttm_bo_put(busy_bo); |
| return ret; |
| } |
| |
| if (bo->deleted) { |
| ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, |
| ctx->no_wait_gpu, locked); |
| ttm_bo_put(bo); |
| return ret; |
| } |
| |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| |
| ret = ttm_bo_evict(bo, ctx); |
| if (locked) |
| ttm_bo_unreserve(bo); |
| |
| ttm_bo_put(bo); |
| return ret; |
| } |
| |
| /** |
| * Add the last move fence to the BO and reserve a new shared slot. |
| */ |
| static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, |
| struct ttm_resource_manager *man, |
| struct ttm_resource *mem, |
| bool no_wait_gpu) |
| { |
| struct dma_fence *fence; |
| int ret; |
| |
| spin_lock(&man->move_lock); |
| fence = dma_fence_get(man->move); |
| spin_unlock(&man->move_lock); |
| |
| if (!fence) |
| return 0; |
| |
| if (no_wait_gpu) { |
| dma_fence_put(fence); |
| return -EBUSY; |
| } |
| |
| dma_resv_add_shared_fence(bo->base.resv, fence); |
| |
| ret = dma_resv_reserve_shared(bo->base.resv, 1); |
| if (unlikely(ret)) { |
| dma_fence_put(fence); |
| return ret; |
| } |
| |
| dma_fence_put(bo->moving); |
| bo->moving = fence; |
| return 0; |
| } |
| |
| /** |
| * Repeatedly evict memory from the LRU for @mem_type until we create enough |
| * space, or we've evicted everything and there isn't enough space. |
| */ |
| static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, |
| const struct ttm_place *place, |
| struct ttm_resource *mem, |
| struct ttm_operation_ctx *ctx) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); |
| struct ww_acquire_ctx *ticket; |
| int ret; |
| |
| ticket = dma_resv_locking_ctx(bo->base.resv); |
| do { |
| ret = ttm_resource_alloc(bo, place, mem); |
| if (likely(!ret)) |
| break; |
| if (unlikely(ret != -ENOSPC)) |
| return ret; |
| ret = ttm_mem_evict_first(bdev, man, place, ctx, |
| ticket); |
| if (unlikely(ret != 0)) |
| return ret; |
| } while (1); |
| |
| return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); |
| } |
| |
| static uint32_t ttm_bo_select_caching(struct ttm_resource_manager *man, |
| uint32_t cur_placement, |
| uint32_t proposed_placement) |
| { |
| uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; |
| uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; |
| |
| /** |
| * Keep current caching if possible. |
| */ |
| |
| if ((cur_placement & caching) != 0) |
| result |= (cur_placement & caching); |
| else if ((TTM_PL_FLAG_CACHED & caching) != 0) |
| result |= TTM_PL_FLAG_CACHED; |
| else if ((TTM_PL_FLAG_WC & caching) != 0) |
| result |= TTM_PL_FLAG_WC; |
| else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) |
| result |= TTM_PL_FLAG_UNCACHED; |
| |
| return result; |
| } |
| |
| /** |
| * ttm_bo_mem_placement - check if placement is compatible |
| * @bo: BO to find memory for |
| * @place: where to search |
| * @mem: the memory object to fill in |
| * @ctx: operation context |
| * |
| * Check if placement is compatible and fill in mem structure. |
| * Returns -EBUSY if placement won't work or negative error code. |
| * 0 when placement can be used. |
| */ |
| static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, |
| const struct ttm_place *place, |
| struct ttm_resource *mem, |
| struct ttm_operation_ctx *ctx) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_resource_manager *man; |
| uint32_t cur_flags = 0; |
| |
| man = ttm_manager_type(bdev, place->mem_type); |
| if (!man || !ttm_resource_manager_used(man)) |
| return -EBUSY; |
| |
| cur_flags = ttm_bo_select_caching(man, bo->mem.placement, |
| place->flags); |
| cur_flags |= place->flags & ~TTM_PL_MASK_CACHING; |
| |
| mem->mem_type = place->mem_type; |
| mem->placement = cur_flags; |
| |
| spin_lock(&ttm_bo_glob.lru_lock); |
| ttm_bo_del_from_lru(bo); |
| ttm_bo_add_mem_to_lru(bo, mem); |
| spin_unlock(&ttm_bo_glob.lru_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * Creates space for memory region @mem according to its type. |
| * |
| * This function first searches for free space in compatible memory types in |
| * the priority order defined by the driver. If free space isn't found, then |
| * ttm_bo_mem_force_space is attempted in priority order to evict and find |
| * space. |
| */ |
| int ttm_bo_mem_space(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| struct ttm_resource *mem, |
| struct ttm_operation_ctx *ctx) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| bool type_found = false; |
| int i, ret; |
| |
| ret = dma_resv_reserve_shared(bo->base.resv, 1); |
| if (unlikely(ret)) |
| return ret; |
| |
| for (i = 0; i < placement->num_placement; ++i) { |
| const struct ttm_place *place = &placement->placement[i]; |
| struct ttm_resource_manager *man; |
| |
| ret = ttm_bo_mem_placement(bo, place, mem, ctx); |
| if (ret) |
| continue; |
| |
| type_found = true; |
| ret = ttm_resource_alloc(bo, place, mem); |
| if (ret == -ENOSPC) |
| continue; |
| if (unlikely(ret)) |
| goto error; |
| |
| man = ttm_manager_type(bdev, mem->mem_type); |
| ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); |
| if (unlikely(ret)) { |
| ttm_resource_free(bo, mem); |
| if (ret == -EBUSY) |
| continue; |
| |
| goto error; |
| } |
| return 0; |
| } |
| |
| for (i = 0; i < placement->num_busy_placement; ++i) { |
| const struct ttm_place *place = &placement->busy_placement[i]; |
| |
| ret = ttm_bo_mem_placement(bo, place, mem, ctx); |
| if (ret) |
| continue; |
| |
| type_found = true; |
| ret = ttm_bo_mem_force_space(bo, place, mem, ctx); |
| if (likely(!ret)) |
| return 0; |
| |
| if (ret && ret != -EBUSY) |
| goto error; |
| } |
| |
| ret = -ENOMEM; |
| if (!type_found) { |
| pr_err(TTM_PFX "No compatible memory type found\n"); |
| ret = -EINVAL; |
| } |
| |
| error: |
| if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { |
| ttm_bo_move_to_lru_tail_unlocked(bo); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_mem_space); |
| |
| static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| struct ttm_operation_ctx *ctx) |
| { |
| int ret = 0; |
| struct ttm_resource mem; |
| |
| dma_resv_assert_held(bo->base.resv); |
| |
| mem.num_pages = bo->num_pages; |
| mem.size = mem.num_pages << PAGE_SHIFT; |
| mem.page_alignment = bo->mem.page_alignment; |
| mem.bus.offset = 0; |
| mem.bus.addr = NULL; |
| mem.mm_node = NULL; |
| |
| /* |
| * Determine where to move the buffer. |
| */ |
| ret = ttm_bo_mem_space(bo, placement, &mem, ctx); |
| if (ret) |
| goto out_unlock; |
| ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); |
| out_unlock: |
| if (ret) |
| ttm_resource_free(bo, &mem); |
| return ret; |
| } |
| |
| static bool ttm_bo_places_compat(const struct ttm_place *places, |
| unsigned num_placement, |
| struct ttm_resource *mem, |
| uint32_t *new_flags) |
| { |
| unsigned i; |
| |
| for (i = 0; i < num_placement; i++) { |
| const struct ttm_place *heap = &places[i]; |
| |
| if ((mem->start < heap->fpfn || |
| (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) |
| continue; |
| |
| *new_flags = heap->flags; |
| if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && |
| (mem->mem_type == heap->mem_type) && |
| (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || |
| (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) |
| return true; |
| } |
| return false; |
| } |
| |
| bool ttm_bo_mem_compat(struct ttm_placement *placement, |
| struct ttm_resource *mem, |
| uint32_t *new_flags) |
| { |
| if (ttm_bo_places_compat(placement->placement, placement->num_placement, |
| mem, new_flags)) |
| return true; |
| |
| if ((placement->busy_placement != placement->placement || |
| placement->num_busy_placement > placement->num_placement) && |
| ttm_bo_places_compat(placement->busy_placement, |
| placement->num_busy_placement, |
| mem, new_flags)) |
| return true; |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ttm_bo_mem_compat); |
| |
| int ttm_bo_validate(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| struct ttm_operation_ctx *ctx) |
| { |
| int ret; |
| uint32_t new_flags; |
| |
| dma_resv_assert_held(bo->base.resv); |
| |
| /* |
| * Remove the backing store if no placement is given. |
| */ |
| if (!placement->num_placement && !placement->num_busy_placement) { |
| ret = ttm_bo_pipeline_gutting(bo); |
| if (ret) |
| return ret; |
| |
| return ttm_tt_create(bo, false); |
| } |
| |
| /* |
| * Check whether we need to move buffer. |
| */ |
| if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { |
| ret = ttm_bo_move_buffer(bo, placement, ctx); |
| if (ret) |
| return ret; |
| } else { |
| bo->mem.placement &= TTM_PL_MASK_CACHING; |
| bo->mem.placement |= new_flags & ~TTM_PL_MASK_CACHING; |
| } |
| /* |
| * We might need to add a TTM. |
| */ |
| if (bo->mem.mem_type == TTM_PL_SYSTEM) { |
| ret = ttm_tt_create(bo, true); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_validate); |
| |
| int ttm_bo_init_reserved(struct ttm_bo_device *bdev, |
| struct ttm_buffer_object *bo, |
| unsigned long size, |
| enum ttm_bo_type type, |
| struct ttm_placement *placement, |
| uint32_t page_alignment, |
| struct ttm_operation_ctx *ctx, |
| size_t acc_size, |
| struct sg_table *sg, |
| struct dma_resv *resv, |
| void (*destroy) (struct ttm_buffer_object *)) |
| { |
| struct ttm_mem_global *mem_glob = &ttm_mem_glob; |
| int ret = 0; |
| unsigned long num_pages; |
| bool locked; |
| |
| ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); |
| if (ret) { |
| pr_err("Out of kernel memory\n"); |
| if (destroy) |
| (*destroy)(bo); |
| else |
| kfree(bo); |
| return -ENOMEM; |
| } |
| |
| num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| if (num_pages == 0) { |
| pr_err("Illegal buffer object size\n"); |
| if (destroy) |
| (*destroy)(bo); |
| else |
| kfree(bo); |
| ttm_mem_global_free(mem_glob, acc_size); |
| return -EINVAL; |
| } |
| bo->destroy = destroy ? destroy : ttm_bo_default_destroy; |
| |
| kref_init(&bo->kref); |
| INIT_LIST_HEAD(&bo->lru); |
| INIT_LIST_HEAD(&bo->ddestroy); |
| INIT_LIST_HEAD(&bo->swap); |
| bo->bdev = bdev; |
| bo->type = type; |
| bo->num_pages = num_pages; |
| bo->mem.size = num_pages << PAGE_SHIFT; |
| bo->mem.mem_type = TTM_PL_SYSTEM; |
| bo->mem.num_pages = bo->num_pages; |
| bo->mem.mm_node = NULL; |
| bo->mem.page_alignment = page_alignment; |
| bo->mem.bus.offset = 0; |
| bo->mem.bus.addr = NULL; |
| bo->moving = NULL; |
| bo->mem.placement = TTM_PL_FLAG_CACHED; |
| bo->acc_size = acc_size; |
| bo->sg = sg; |
| if (resv) { |
| bo->base.resv = resv; |
| dma_resv_assert_held(bo->base.resv); |
| } else { |
| bo->base.resv = &bo->base._resv; |
| } |
| if (!ttm_bo_uses_embedded_gem_object(bo)) { |
| /* |
| * bo.gem is not initialized, so we have to setup the |
| * struct elements we want use regardless. |
| */ |
| dma_resv_init(&bo->base._resv); |
| drm_vma_node_reset(&bo->base.vma_node); |
| } |
| atomic_inc(&ttm_bo_glob.bo_count); |
| |
| /* |
| * For ttm_bo_type_device buffers, allocate |
| * address space from the device. |
| */ |
| if (bo->type == ttm_bo_type_device || |
| bo->type == ttm_bo_type_sg) |
| ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, |
| bo->mem.num_pages); |
| |
| /* passed reservation objects should already be locked, |
| * since otherwise lockdep will be angered in radeon. |
| */ |
| if (!resv) { |
| locked = dma_resv_trylock(bo->base.resv); |
| WARN_ON(!locked); |
| } |
| |
| if (likely(!ret)) |
| ret = ttm_bo_validate(bo, placement, ctx); |
| |
| if (unlikely(ret)) { |
| if (!resv) |
| ttm_bo_unreserve(bo); |
| |
| ttm_bo_put(bo); |
| return ret; |
| } |
| |
| ttm_bo_move_to_lru_tail_unlocked(bo); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_init_reserved); |
| |
| int ttm_bo_init(struct ttm_bo_device *bdev, |
| struct ttm_buffer_object *bo, |
| unsigned long size, |
| enum ttm_bo_type type, |
| struct ttm_placement *placement, |
| uint32_t page_alignment, |
| bool interruptible, |
| size_t acc_size, |
| struct sg_table *sg, |
| struct dma_resv *resv, |
| void (*destroy) (struct ttm_buffer_object *)) |
| { |
| struct ttm_operation_ctx ctx = { interruptible, false }; |
| int ret; |
| |
| ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, |
| page_alignment, &ctx, acc_size, |
| sg, resv, destroy); |
| if (ret) |
| return ret; |
| |
| if (!resv) |
| ttm_bo_unreserve(bo); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_init); |
| |
| static size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, |
| unsigned long bo_size, |
| unsigned struct_size) |
| { |
| unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; |
| size_t size = 0; |
| |
| size += ttm_round_pot(struct_size); |
| size += ttm_round_pot(npages * sizeof(void *)); |
| size += ttm_round_pot(sizeof(struct ttm_tt)); |
| return size; |
| } |
| |
| size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, |
| unsigned long bo_size, |
| unsigned struct_size) |
| { |
| unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; |
| size_t size = 0; |
| |
| size += ttm_round_pot(struct_size); |
| size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); |
| size += ttm_round_pot(sizeof(struct ttm_dma_tt)); |
| return size; |
| } |
| EXPORT_SYMBOL(ttm_bo_dma_acc_size); |
| |
| int ttm_bo_create(struct ttm_bo_device *bdev, |
| unsigned long size, |
| enum ttm_bo_type type, |
| struct ttm_placement *placement, |
| uint32_t page_alignment, |
| bool interruptible, |
| struct ttm_buffer_object **p_bo) |
| { |
| struct ttm_buffer_object *bo; |
| size_t acc_size; |
| int ret; |
| |
| bo = kzalloc(sizeof(*bo), GFP_KERNEL); |
| if (unlikely(bo == NULL)) |
| return -ENOMEM; |
| |
| acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); |
| ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, |
| interruptible, acc_size, |
| NULL, NULL, NULL); |
| if (likely(ret == 0)) |
| *p_bo = bo; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_create); |
| |
| int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) |
| { |
| struct ttm_resource_manager *man = ttm_manager_type(bdev, mem_type); |
| |
| if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { |
| pr_err("Illegal memory manager memory type %u\n", mem_type); |
| return -EINVAL; |
| } |
| |
| if (!man) { |
| pr_err("Memory type %u has not been initialized\n", mem_type); |
| return 0; |
| } |
| |
| return ttm_resource_manager_force_list_clean(bdev, man); |
| } |
| EXPORT_SYMBOL(ttm_bo_evict_mm); |
| |
| static void ttm_bo_global_kobj_release(struct kobject *kobj) |
| { |
| struct ttm_bo_global *glob = |
| container_of(kobj, struct ttm_bo_global, kobj); |
| |
| __free_page(glob->dummy_read_page); |
| } |
| |
| static void ttm_bo_global_release(void) |
| { |
| struct ttm_bo_global *glob = &ttm_bo_glob; |
| |
| mutex_lock(&ttm_global_mutex); |
| if (--ttm_bo_glob_use_count > 0) |
| goto out; |
| |
| kobject_del(&glob->kobj); |
| kobject_put(&glob->kobj); |
| ttm_mem_global_release(&ttm_mem_glob); |
| memset(glob, 0, sizeof(*glob)); |
| out: |
| mutex_unlock(&ttm_global_mutex); |
| } |
| |
| static int ttm_bo_global_init(void) |
| { |
| struct ttm_bo_global *glob = &ttm_bo_glob; |
| int ret = 0; |
| unsigned i; |
| |
| mutex_lock(&ttm_global_mutex); |
| if (++ttm_bo_glob_use_count > 1) |
| goto out; |
| |
| ret = ttm_mem_global_init(&ttm_mem_glob); |
| if (ret) |
| goto out; |
| |
| spin_lock_init(&glob->lru_lock); |
| glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); |
| |
| if (unlikely(glob->dummy_read_page == NULL)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) |
| INIT_LIST_HEAD(&glob->swap_lru[i]); |
| INIT_LIST_HEAD(&glob->device_list); |
| atomic_set(&glob->bo_count, 0); |
| |
| ret = kobject_init_and_add( |
| &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); |
| if (unlikely(ret != 0)) |
| kobject_put(&glob->kobj); |
| out: |
| mutex_unlock(&ttm_global_mutex); |
| return ret; |
| } |
| |
| int ttm_bo_device_release(struct ttm_bo_device *bdev) |
| { |
| struct ttm_bo_global *glob = &ttm_bo_glob; |
| int ret = 0; |
| unsigned i; |
| struct ttm_resource_manager *man; |
| |
| man = ttm_manager_type(bdev, TTM_PL_SYSTEM); |
| ttm_resource_manager_set_used(man, false); |
| ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, NULL); |
| |
| mutex_lock(&ttm_global_mutex); |
| list_del(&bdev->device_list); |
| mutex_unlock(&ttm_global_mutex); |
| |
| cancel_delayed_work_sync(&bdev->wq); |
| |
| if (ttm_bo_delayed_delete(bdev, true)) |
| pr_debug("Delayed destroy list was clean\n"); |
| |
| spin_lock(&glob->lru_lock); |
| for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) |
| if (list_empty(&man->lru[0])) |
| pr_debug("Swap list %d was clean\n", i); |
| spin_unlock(&glob->lru_lock); |
| |
| if (!ret) |
| ttm_bo_global_release(); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_device_release); |
| |
| static void ttm_bo_init_sysman(struct ttm_bo_device *bdev) |
| { |
| struct ttm_resource_manager *man = &bdev->sysman; |
| |
| /* |
| * Initialize the system memory buffer type. |
| * Other types need to be driver / IOCTL initialized. |
| */ |
| man->use_tt = true; |
| |
| ttm_resource_manager_init(man, 0); |
| ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, man); |
| ttm_resource_manager_set_used(man, true); |
| } |
| |
| int ttm_bo_device_init(struct ttm_bo_device *bdev, |
| struct ttm_bo_driver *driver, |
| struct address_space *mapping, |
| struct drm_vma_offset_manager *vma_manager, |
| bool need_dma32) |
| { |
| struct ttm_bo_global *glob = &ttm_bo_glob; |
| int ret; |
| |
| if (WARN_ON(vma_manager == NULL)) |
| return -EINVAL; |
| |
| ret = ttm_bo_global_init(); |
| if (ret) |
| return ret; |
| |
| bdev->driver = driver; |
| |
| ttm_bo_init_sysman(bdev); |
| |
| bdev->vma_manager = vma_manager; |
| INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); |
| INIT_LIST_HEAD(&bdev->ddestroy); |
| bdev->dev_mapping = mapping; |
| bdev->need_dma32 = need_dma32; |
| mutex_lock(&ttm_global_mutex); |
| list_add_tail(&bdev->device_list, &glob->device_list); |
| mutex_unlock(&ttm_global_mutex); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_device_init); |
| |
| /* |
| * buffer object vm functions. |
| */ |
| |
| void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| |
| drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); |
| ttm_mem_io_free(bdev, &bo->mem); |
| } |
| EXPORT_SYMBOL(ttm_bo_unmap_virtual); |
| |
| int ttm_bo_wait(struct ttm_buffer_object *bo, |
| bool interruptible, bool no_wait) |
| { |
| long timeout = 15 * HZ; |
| |
| if (no_wait) { |
| if (dma_resv_test_signaled_rcu(bo->base.resv, true)) |
| return 0; |
| else |
| return -EBUSY; |
| } |
| |
| timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, |
| interruptible, timeout); |
| if (timeout < 0) |
| return timeout; |
| |
| if (timeout == 0) |
| return -EBUSY; |
| |
| dma_resv_add_excl_fence(bo->base.resv, NULL); |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_wait); |
| |
| /** |
| * A buffer object shrink method that tries to swap out the first |
| * buffer object on the bo_global::swap_lru list. |
| */ |
| int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) |
| { |
| struct ttm_buffer_object *bo; |
| int ret = -EBUSY; |
| bool locked; |
| unsigned i; |
| |
| spin_lock(&glob->lru_lock); |
| for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| list_for_each_entry(bo, &glob->swap_lru[i], swap) { |
| if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, |
| NULL)) |
| continue; |
| |
| if (!ttm_bo_get_unless_zero(bo)) { |
| if (locked) |
| dma_resv_unlock(bo->base.resv); |
| continue; |
| } |
| |
| ret = 0; |
| break; |
| } |
| if (!ret) |
| break; |
| } |
| |
| if (ret) { |
| spin_unlock(&glob->lru_lock); |
| return ret; |
| } |
| |
| if (bo->deleted) { |
| ret = ttm_bo_cleanup_refs(bo, false, false, locked); |
| ttm_bo_put(bo); |
| return ret; |
| } |
| |
| ttm_bo_del_from_lru(bo); |
| spin_unlock(&glob->lru_lock); |
| |
| /** |
| * Move to system cached |
| */ |
| |
| if (bo->mem.mem_type != TTM_PL_SYSTEM || |
| bo->ttm->caching_state != tt_cached) { |
| struct ttm_operation_ctx ctx = { false, false }; |
| struct ttm_resource evict_mem; |
| |
| evict_mem = bo->mem; |
| evict_mem.mm_node = NULL; |
| evict_mem.placement = TTM_PL_FLAG_CACHED; |
| evict_mem.mem_type = TTM_PL_SYSTEM; |
| |
| ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); |
| if (unlikely(ret != 0)) |
| goto out; |
| } |
| |
| /** |
| * Make sure BO is idle. |
| */ |
| |
| ret = ttm_bo_wait(bo, false, false); |
| if (unlikely(ret != 0)) |
| goto out; |
| |
| ttm_bo_unmap_virtual(bo); |
| |
| /** |
| * Swap out. Buffer will be swapped in again as soon as |
| * anyone tries to access a ttm page. |
| */ |
| |
| if (bo->bdev->driver->swap_notify) |
| bo->bdev->driver->swap_notify(bo); |
| |
| ret = ttm_tt_swapout(bo->bdev, bo->ttm, bo->persistent_swap_storage); |
| out: |
| |
| /** |
| * |
| * Unreserve without putting on LRU to avoid swapping out an |
| * already swapped buffer. |
| */ |
| if (locked) |
| dma_resv_unlock(bo->base.resv); |
| ttm_bo_put(bo); |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_swapout); |
| |
| void ttm_bo_swapout_all(void) |
| { |
| struct ttm_operation_ctx ctx = { |
| .interruptible = false, |
| .no_wait_gpu = false |
| }; |
| |
| while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0); |
| } |
| EXPORT_SYMBOL(ttm_bo_swapout_all); |
| |
| void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) |
| { |
| if (bo->ttm == NULL) |
| return; |
| |
| ttm_tt_destroy(bo->bdev, bo->ttm); |
| bo->ttm = NULL; |
| } |
| |
| int ttm_bo_tt_bind(struct ttm_buffer_object *bo, struct ttm_resource *mem) |
| { |
| return bo->bdev->driver->ttm_tt_bind(bo->bdev, bo->ttm, mem); |
| } |
| |
| void ttm_bo_tt_unbind(struct ttm_buffer_object *bo) |
| { |
| bo->bdev->driver->ttm_tt_unbind(bo->bdev, bo->ttm); |
| } |