| /* |
| * Core routines and tables shareable across OS platforms. |
| * |
| * Copyright (c) 1994-2002 Justin T. Gibbs. |
| * Copyright (c) 2000-2003 Adaptec Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| * |
| * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $ |
| */ |
| |
| #include "aic79xx_osm.h" |
| #include "aic79xx_inline.h" |
| #include "aicasm/aicasm_insformat.h" |
| |
| /***************************** Lookup Tables **********************************/ |
| static const char *const ahd_chip_names[] = |
| { |
| "NONE", |
| "aic7901", |
| "aic7902", |
| "aic7901A" |
| }; |
| |
| /* |
| * Hardware error codes. |
| */ |
| struct ahd_hard_error_entry { |
| uint8_t errno; |
| const char *errmesg; |
| }; |
| |
| static const struct ahd_hard_error_entry ahd_hard_errors[] = { |
| { DSCTMOUT, "Discard Timer has timed out" }, |
| { ILLOPCODE, "Illegal Opcode in sequencer program" }, |
| { SQPARERR, "Sequencer Parity Error" }, |
| { DPARERR, "Data-path Parity Error" }, |
| { MPARERR, "Scratch or SCB Memory Parity Error" }, |
| { CIOPARERR, "CIOBUS Parity Error" }, |
| }; |
| static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors); |
| |
| static const struct ahd_phase_table_entry ahd_phase_table[] = |
| { |
| { P_DATAOUT, MSG_NOOP, "in Data-out phase" }, |
| { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" }, |
| { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" }, |
| { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" }, |
| { P_COMMAND, MSG_NOOP, "in Command phase" }, |
| { P_MESGOUT, MSG_NOOP, "in Message-out phase" }, |
| { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" }, |
| { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" }, |
| { P_BUSFREE, MSG_NOOP, "while idle" }, |
| { 0, MSG_NOOP, "in unknown phase" } |
| }; |
| |
| /* |
| * In most cases we only wish to itterate over real phases, so |
| * exclude the last element from the count. |
| */ |
| static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1; |
| |
| /* Our Sequencer Program */ |
| #include "aic79xx_seq.h" |
| |
| /**************************** Function Declarations ***************************/ |
| static void ahd_handle_transmission_error(struct ahd_softc *ahd); |
| static void ahd_handle_lqiphase_error(struct ahd_softc *ahd, |
| u_int lqistat1); |
| static int ahd_handle_pkt_busfree(struct ahd_softc *ahd, |
| u_int busfreetime); |
| static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd); |
| static void ahd_handle_proto_violation(struct ahd_softc *ahd); |
| static void ahd_force_renegotiation(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo); |
| |
| static struct ahd_tmode_tstate* |
| ahd_alloc_tstate(struct ahd_softc *ahd, |
| u_int scsi_id, char channel); |
| #ifdef AHD_TARGET_MODE |
| static void ahd_free_tstate(struct ahd_softc *ahd, |
| u_int scsi_id, char channel, int force); |
| #endif |
| static void ahd_devlimited_syncrate(struct ahd_softc *ahd, |
| struct ahd_initiator_tinfo *, |
| u_int *period, |
| u_int *ppr_options, |
| role_t role); |
| static void ahd_update_neg_table(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| struct ahd_transinfo *tinfo); |
| static void ahd_update_pending_scbs(struct ahd_softc *ahd); |
| static void ahd_fetch_devinfo(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo); |
| static void ahd_scb_devinfo(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| struct scb *scb); |
| static void ahd_setup_initiator_msgout(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| struct scb *scb); |
| static void ahd_build_transfer_msg(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo); |
| static void ahd_construct_sdtr(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| u_int period, u_int offset); |
| static void ahd_construct_wdtr(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| u_int bus_width); |
| static void ahd_construct_ppr(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| u_int period, u_int offset, |
| u_int bus_width, u_int ppr_options); |
| static void ahd_clear_msg_state(struct ahd_softc *ahd); |
| static void ahd_handle_message_phase(struct ahd_softc *ahd); |
| typedef enum { |
| AHDMSG_1B, |
| AHDMSG_2B, |
| AHDMSG_EXT |
| } ahd_msgtype; |
| static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, |
| u_int msgval, int full); |
| static int ahd_parse_msg(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo); |
| static int ahd_handle_msg_reject(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo); |
| static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo); |
| static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd); |
| static void ahd_handle_devreset(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| u_int lun, cam_status status, |
| char *message, int verbose_level); |
| #ifdef AHD_TARGET_MODE |
| static void ahd_setup_target_msgin(struct ahd_softc *ahd, |
| struct ahd_devinfo *devinfo, |
| struct scb *scb); |
| #endif |
| |
| static u_int ahd_sglist_size(struct ahd_softc *ahd); |
| static u_int ahd_sglist_allocsize(struct ahd_softc *ahd); |
| static bus_dmamap_callback_t |
| ahd_dmamap_cb; |
| static void ahd_initialize_hscbs(struct ahd_softc *ahd); |
| static int ahd_init_scbdata(struct ahd_softc *ahd); |
| static void ahd_fini_scbdata(struct ahd_softc *ahd); |
| static void ahd_setup_iocell_workaround(struct ahd_softc *ahd); |
| static void ahd_iocell_first_selection(struct ahd_softc *ahd); |
| static void ahd_add_col_list(struct ahd_softc *ahd, |
| struct scb *scb, u_int col_idx); |
| static void ahd_rem_col_list(struct ahd_softc *ahd, |
| struct scb *scb); |
| static void ahd_chip_init(struct ahd_softc *ahd); |
| static void ahd_qinfifo_requeue(struct ahd_softc *ahd, |
| struct scb *prev_scb, |
| struct scb *scb); |
| static int ahd_qinfifo_count(struct ahd_softc *ahd); |
| static int ahd_search_scb_list(struct ahd_softc *ahd, int target, |
| char channel, int lun, u_int tag, |
| role_t role, uint32_t status, |
| ahd_search_action action, |
| u_int *list_head, u_int *list_tail, |
| u_int tid); |
| static void ahd_stitch_tid_list(struct ahd_softc *ahd, |
| u_int tid_prev, u_int tid_cur, |
| u_int tid_next); |
| static void ahd_add_scb_to_free_list(struct ahd_softc *ahd, |
| u_int scbid); |
| static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid, |
| u_int prev, u_int next, u_int tid); |
| static void ahd_reset_current_bus(struct ahd_softc *ahd); |
| static void ahd_stat_timer(struct timer_list *t); |
| #ifdef AHD_DUMP_SEQ |
| static void ahd_dumpseq(struct ahd_softc *ahd); |
| #endif |
| static void ahd_loadseq(struct ahd_softc *ahd); |
| static int ahd_check_patch(struct ahd_softc *ahd, |
| const struct patch **start_patch, |
| u_int start_instr, u_int *skip_addr); |
| static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd, |
| u_int address); |
| static void ahd_download_instr(struct ahd_softc *ahd, |
| u_int instrptr, uint8_t *dconsts); |
| static int ahd_probe_stack_size(struct ahd_softc *ahd); |
| static int ahd_scb_active_in_fifo(struct ahd_softc *ahd, |
| struct scb *scb); |
| static void ahd_run_data_fifo(struct ahd_softc *ahd, |
| struct scb *scb); |
| |
| #ifdef AHD_TARGET_MODE |
| static void ahd_queue_lstate_event(struct ahd_softc *ahd, |
| struct ahd_tmode_lstate *lstate, |
| u_int initiator_id, |
| u_int event_type, |
| u_int event_arg); |
| static void ahd_update_scsiid(struct ahd_softc *ahd, |
| u_int targid_mask); |
| static int ahd_handle_target_cmd(struct ahd_softc *ahd, |
| struct target_cmd *cmd); |
| #endif |
| |
| static int ahd_abort_scbs(struct ahd_softc *ahd, int target, |
| char channel, int lun, u_int tag, |
| role_t role, uint32_t status); |
| static void ahd_alloc_scbs(struct ahd_softc *ahd); |
| static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, |
| u_int scbid); |
| static void ahd_calc_residual(struct ahd_softc *ahd, |
| struct scb *scb); |
| static void ahd_clear_critical_section(struct ahd_softc *ahd); |
| static void ahd_clear_intstat(struct ahd_softc *ahd); |
| static void ahd_enable_coalescing(struct ahd_softc *ahd, |
| int enable); |
| static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl); |
| static void ahd_freeze_devq(struct ahd_softc *ahd, |
| struct scb *scb); |
| static void ahd_handle_scb_status(struct ahd_softc *ahd, |
| struct scb *scb); |
| static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase); |
| static void ahd_shutdown(void *arg); |
| static void ahd_update_coalescing_values(struct ahd_softc *ahd, |
| u_int timer, |
| u_int maxcmds, |
| u_int mincmds); |
| static int ahd_verify_vpd_cksum(struct vpd_config *vpd); |
| static int ahd_wait_seeprom(struct ahd_softc *ahd); |
| static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, |
| int target, char channel, int lun, |
| u_int tag, role_t role); |
| |
| static void ahd_reset_cmds_pending(struct ahd_softc *ahd); |
| |
| /*************************** Interrupt Services *******************************/ |
| static void ahd_run_qoutfifo(struct ahd_softc *ahd); |
| #ifdef AHD_TARGET_MODE |
| static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused); |
| #endif |
| static void ahd_handle_hwerrint(struct ahd_softc *ahd); |
| static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat); |
| static void ahd_handle_scsiint(struct ahd_softc *ahd, |
| u_int intstat); |
| |
| /************************ Sequencer Execution Control *************************/ |
| void |
| ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst) |
| { |
| if (ahd->src_mode == src && ahd->dst_mode == dst) |
| return; |
| #ifdef AHD_DEBUG |
| if (ahd->src_mode == AHD_MODE_UNKNOWN |
| || ahd->dst_mode == AHD_MODE_UNKNOWN) |
| panic("Setting mode prior to saving it.\n"); |
| if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) |
| printk("%s: Setting mode 0x%x\n", ahd_name(ahd), |
| ahd_build_mode_state(ahd, src, dst)); |
| #endif |
| ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst)); |
| ahd->src_mode = src; |
| ahd->dst_mode = dst; |
| } |
| |
| static void |
| ahd_update_modes(struct ahd_softc *ahd) |
| { |
| ahd_mode_state mode_ptr; |
| ahd_mode src; |
| ahd_mode dst; |
| |
| mode_ptr = ahd_inb(ahd, MODE_PTR); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) |
| printk("Reading mode 0x%x\n", mode_ptr); |
| #endif |
| ahd_extract_mode_state(ahd, mode_ptr, &src, &dst); |
| ahd_known_modes(ahd, src, dst); |
| } |
| |
| static void |
| ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode, |
| ahd_mode dstmode, const char *file, int line) |
| { |
| #ifdef AHD_DEBUG |
| if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0 |
| || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) { |
| panic("%s:%s:%d: Mode assertion failed.\n", |
| ahd_name(ahd), file, line); |
| } |
| #endif |
| } |
| |
| #define AHD_ASSERT_MODES(ahd, source, dest) \ |
| ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__); |
| |
| ahd_mode_state |
| ahd_save_modes(struct ahd_softc *ahd) |
| { |
| if (ahd->src_mode == AHD_MODE_UNKNOWN |
| || ahd->dst_mode == AHD_MODE_UNKNOWN) |
| ahd_update_modes(ahd); |
| |
| return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode)); |
| } |
| |
| void |
| ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state) |
| { |
| ahd_mode src; |
| ahd_mode dst; |
| |
| ahd_extract_mode_state(ahd, state, &src, &dst); |
| ahd_set_modes(ahd, src, dst); |
| } |
| |
| /* |
| * Determine whether the sequencer has halted code execution. |
| * Returns non-zero status if the sequencer is stopped. |
| */ |
| int |
| ahd_is_paused(struct ahd_softc *ahd) |
| { |
| return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0); |
| } |
| |
| /* |
| * Request that the sequencer stop and wait, indefinitely, for it |
| * to stop. The sequencer will only acknowledge that it is paused |
| * once it has reached an instruction boundary and PAUSEDIS is |
| * cleared in the SEQCTL register. The sequencer may use PAUSEDIS |
| * for critical sections. |
| */ |
| void |
| ahd_pause(struct ahd_softc *ahd) |
| { |
| ahd_outb(ahd, HCNTRL, ahd->pause); |
| |
| /* |
| * Since the sequencer can disable pausing in a critical section, we |
| * must loop until it actually stops. |
| */ |
| while (ahd_is_paused(ahd) == 0) |
| ; |
| } |
| |
| /* |
| * Allow the sequencer to continue program execution. |
| * We check here to ensure that no additional interrupt |
| * sources that would cause the sequencer to halt have been |
| * asserted. If, for example, a SCSI bus reset is detected |
| * while we are fielding a different, pausing, interrupt type, |
| * we don't want to release the sequencer before going back |
| * into our interrupt handler and dealing with this new |
| * condition. |
| */ |
| void |
| ahd_unpause(struct ahd_softc *ahd) |
| { |
| /* |
| * Automatically restore our modes to those saved |
| * prior to the first change of the mode. |
| */ |
| if (ahd->saved_src_mode != AHD_MODE_UNKNOWN |
| && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) { |
| if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0) |
| ahd_reset_cmds_pending(ahd); |
| ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); |
| } |
| |
| if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0) |
| ahd_outb(ahd, HCNTRL, ahd->unpause); |
| |
| ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN); |
| } |
| |
| /*********************** Scatter Gather List Handling *************************/ |
| void * |
| ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb, |
| void *sgptr, dma_addr_t addr, bus_size_t len, int last) |
| { |
| scb->sg_count++; |
| if (sizeof(dma_addr_t) > 4 |
| && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) { |
| struct ahd_dma64_seg *sg; |
| |
| sg = (struct ahd_dma64_seg *)sgptr; |
| sg->addr = ahd_htole64(addr); |
| sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0)); |
| return (sg + 1); |
| } else { |
| struct ahd_dma_seg *sg; |
| |
| sg = (struct ahd_dma_seg *)sgptr; |
| sg->addr = ahd_htole32(addr & 0xFFFFFFFF); |
| sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000) |
| | (last ? AHD_DMA_LAST_SEG : 0)); |
| return (sg + 1); |
| } |
| } |
| |
| static void |
| ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb) |
| { |
| /* XXX Handle target mode SCBs. */ |
| scb->crc_retry_count = 0; |
| if ((scb->flags & SCB_PACKETIZED) != 0) { |
| /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */ |
| scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE; |
| } else { |
| if (ahd_get_transfer_length(scb) & 0x01) |
| scb->hscb->task_attribute = SCB_XFERLEN_ODD; |
| else |
| scb->hscb->task_attribute = 0; |
| } |
| |
| if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR |
| || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0) |
| scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr = |
| ahd_htole32(scb->sense_busaddr); |
| } |
| |
| static void |
| ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb) |
| { |
| /* |
| * Copy the first SG into the "current" data ponter area. |
| */ |
| if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { |
| struct ahd_dma64_seg *sg; |
| |
| sg = (struct ahd_dma64_seg *)scb->sg_list; |
| scb->hscb->dataptr = sg->addr; |
| scb->hscb->datacnt = sg->len; |
| } else { |
| struct ahd_dma_seg *sg; |
| uint32_t *dataptr_words; |
| |
| sg = (struct ahd_dma_seg *)scb->sg_list; |
| dataptr_words = (uint32_t*)&scb->hscb->dataptr; |
| dataptr_words[0] = sg->addr; |
| dataptr_words[1] = 0; |
| if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { |
| uint64_t high_addr; |
| |
| high_addr = ahd_le32toh(sg->len) & 0x7F000000; |
| scb->hscb->dataptr |= ahd_htole64(high_addr << 8); |
| } |
| scb->hscb->datacnt = sg->len; |
| } |
| /* |
| * Note where to find the SG entries in bus space. |
| * We also set the full residual flag which the |
| * sequencer will clear as soon as a data transfer |
| * occurs. |
| */ |
| scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID); |
| } |
| |
| static void |
| ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb) |
| { |
| scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL); |
| scb->hscb->dataptr = 0; |
| scb->hscb->datacnt = 0; |
| } |
| |
| /************************** Memory mapping routines ***************************/ |
| static void * |
| ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr) |
| { |
| dma_addr_t sg_offset; |
| |
| /* sg_list_phys points to entry 1, not 0 */ |
| sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd)); |
| return ((uint8_t *)scb->sg_list + sg_offset); |
| } |
| |
| static uint32_t |
| ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg) |
| { |
| dma_addr_t sg_offset; |
| |
| /* sg_list_phys points to entry 1, not 0 */ |
| sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list) |
| - ahd_sg_size(ahd); |
| |
| return (scb->sg_list_busaddr + sg_offset); |
| } |
| |
| static void |
| ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op) |
| { |
| ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat, |
| scb->hscb_map->dmamap, |
| /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr, |
| /*len*/sizeof(*scb->hscb), op); |
| } |
| |
| void |
| ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op) |
| { |
| if (scb->sg_count == 0) |
| return; |
| |
| ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat, |
| scb->sg_map->dmamap, |
| /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd), |
| /*len*/ahd_sg_size(ahd) * scb->sg_count, op); |
| } |
| |
| static void |
| ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op) |
| { |
| ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat, |
| scb->sense_map->dmamap, |
| /*offset*/scb->sense_busaddr, |
| /*len*/AHD_SENSE_BUFSIZE, op); |
| } |
| |
| #ifdef AHD_TARGET_MODE |
| static uint32_t |
| ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index) |
| { |
| return (((uint8_t *)&ahd->targetcmds[index]) |
| - (uint8_t *)ahd->qoutfifo); |
| } |
| #endif |
| |
| /*********************** Miscellaneous Support Functions ***********************/ |
| /* |
| * Return pointers to the transfer negotiation information |
| * for the specified our_id/remote_id pair. |
| */ |
| struct ahd_initiator_tinfo * |
| ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id, |
| u_int remote_id, struct ahd_tmode_tstate **tstate) |
| { |
| /* |
| * Transfer data structures are stored from the perspective |
| * of the target role. Since the parameters for a connection |
| * in the initiator role to a given target are the same as |
| * when the roles are reversed, we pretend we are the target. |
| */ |
| if (channel == 'B') |
| our_id += 8; |
| *tstate = ahd->enabled_targets[our_id]; |
| return (&(*tstate)->transinfo[remote_id]); |
| } |
| |
| uint16_t |
| ahd_inw(struct ahd_softc *ahd, u_int port) |
| { |
| /* |
| * Read high byte first as some registers increment |
| * or have other side effects when the low byte is |
| * read. |
| */ |
| uint16_t r = ahd_inb(ahd, port+1) << 8; |
| return r | ahd_inb(ahd, port); |
| } |
| |
| void |
| ahd_outw(struct ahd_softc *ahd, u_int port, u_int value) |
| { |
| /* |
| * Write low byte first to accommodate registers |
| * such as PRGMCNT where the order maters. |
| */ |
| ahd_outb(ahd, port, value & 0xFF); |
| ahd_outb(ahd, port+1, (value >> 8) & 0xFF); |
| } |
| |
| uint32_t |
| ahd_inl(struct ahd_softc *ahd, u_int port) |
| { |
| return ((ahd_inb(ahd, port)) |
| | (ahd_inb(ahd, port+1) << 8) |
| | (ahd_inb(ahd, port+2) << 16) |
| | (ahd_inb(ahd, port+3) << 24)); |
| } |
| |
| void |
| ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value) |
| { |
| ahd_outb(ahd, port, (value) & 0xFF); |
| ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF); |
| ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF); |
| ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF); |
| } |
| |
| uint64_t |
| ahd_inq(struct ahd_softc *ahd, u_int port) |
| { |
| return ((ahd_inb(ahd, port)) |
| | (ahd_inb(ahd, port+1) << 8) |
| | (ahd_inb(ahd, port+2) << 16) |
| | (ahd_inb(ahd, port+3) << 24) |
| | (((uint64_t)ahd_inb(ahd, port+4)) << 32) |
| | (((uint64_t)ahd_inb(ahd, port+5)) << 40) |
| | (((uint64_t)ahd_inb(ahd, port+6)) << 48) |
| | (((uint64_t)ahd_inb(ahd, port+7)) << 56)); |
| } |
| |
| void |
| ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value) |
| { |
| ahd_outb(ahd, port, value & 0xFF); |
| ahd_outb(ahd, port+1, (value >> 8) & 0xFF); |
| ahd_outb(ahd, port+2, (value >> 16) & 0xFF); |
| ahd_outb(ahd, port+3, (value >> 24) & 0xFF); |
| ahd_outb(ahd, port+4, (value >> 32) & 0xFF); |
| ahd_outb(ahd, port+5, (value >> 40) & 0xFF); |
| ahd_outb(ahd, port+6, (value >> 48) & 0xFF); |
| ahd_outb(ahd, port+7, (value >> 56) & 0xFF); |
| } |
| |
| u_int |
| ahd_get_scbptr(struct ahd_softc *ahd) |
| { |
| AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), |
| ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); |
| return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8)); |
| } |
| |
| void |
| ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr) |
| { |
| AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), |
| ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); |
| ahd_outb(ahd, SCBPTR, scbptr & 0xFF); |
| ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF); |
| } |
| |
| #if 0 /* unused */ |
| static u_int |
| ahd_get_hnscb_qoff(struct ahd_softc *ahd) |
| { |
| return (ahd_inw_atomic(ahd, HNSCB_QOFF)); |
| } |
| #endif |
| |
| static void |
| ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value) |
| { |
| ahd_outw_atomic(ahd, HNSCB_QOFF, value); |
| } |
| |
| #if 0 /* unused */ |
| static u_int |
| ahd_get_hescb_qoff(struct ahd_softc *ahd) |
| { |
| return (ahd_inb(ahd, HESCB_QOFF)); |
| } |
| #endif |
| |
| static void |
| ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value) |
| { |
| ahd_outb(ahd, HESCB_QOFF, value); |
| } |
| |
| static u_int |
| ahd_get_snscb_qoff(struct ahd_softc *ahd) |
| { |
| u_int oldvalue; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); |
| oldvalue = ahd_inw(ahd, SNSCB_QOFF); |
| ahd_outw(ahd, SNSCB_QOFF, oldvalue); |
| return (oldvalue); |
| } |
| |
| static void |
| ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value) |
| { |
| AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); |
| ahd_outw(ahd, SNSCB_QOFF, value); |
| } |
| |
| #if 0 /* unused */ |
| static u_int |
| ahd_get_sescb_qoff(struct ahd_softc *ahd) |
| { |
| AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); |
| return (ahd_inb(ahd, SESCB_QOFF)); |
| } |
| #endif |
| |
| static void |
| ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value) |
| { |
| AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); |
| ahd_outb(ahd, SESCB_QOFF, value); |
| } |
| |
| #if 0 /* unused */ |
| static u_int |
| ahd_get_sdscb_qoff(struct ahd_softc *ahd) |
| { |
| AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); |
| return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8)); |
| } |
| #endif |
| |
| static void |
| ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value) |
| { |
| AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); |
| ahd_outb(ahd, SDSCB_QOFF, value & 0xFF); |
| ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF); |
| } |
| |
| u_int |
| ahd_inb_scbram(struct ahd_softc *ahd, u_int offset) |
| { |
| u_int value; |
| |
| /* |
| * Workaround PCI-X Rev A. hardware bug. |
| * After a host read of SCB memory, the chip |
| * may become confused into thinking prefetch |
| * was required. This starts the discard timer |
| * running and can cause an unexpected discard |
| * timer interrupt. The work around is to read |
| * a normal register prior to the exhaustion of |
| * the discard timer. The mode pointer register |
| * has no side effects and so serves well for |
| * this purpose. |
| * |
| * Razor #528 |
| */ |
| value = ahd_inb(ahd, offset); |
| if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0) |
| ahd_inb(ahd, MODE_PTR); |
| return (value); |
| } |
| |
| u_int |
| ahd_inw_scbram(struct ahd_softc *ahd, u_int offset) |
| { |
| return (ahd_inb_scbram(ahd, offset) |
| | (ahd_inb_scbram(ahd, offset+1) << 8)); |
| } |
| |
| static uint32_t |
| ahd_inl_scbram(struct ahd_softc *ahd, u_int offset) |
| { |
| return (ahd_inw_scbram(ahd, offset) |
| | (ahd_inw_scbram(ahd, offset+2) << 16)); |
| } |
| |
| static uint64_t |
| ahd_inq_scbram(struct ahd_softc *ahd, u_int offset) |
| { |
| return (ahd_inl_scbram(ahd, offset) |
| | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32); |
| } |
| |
| struct scb * |
| ahd_lookup_scb(struct ahd_softc *ahd, u_int tag) |
| { |
| struct scb* scb; |
| |
| if (tag >= AHD_SCB_MAX) |
| return (NULL); |
| scb = ahd->scb_data.scbindex[tag]; |
| if (scb != NULL) |
| ahd_sync_scb(ahd, scb, |
| BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); |
| return (scb); |
| } |
| |
| static void |
| ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb) |
| { |
| struct hardware_scb *q_hscb; |
| struct map_node *q_hscb_map; |
| uint32_t saved_hscb_busaddr; |
| |
| /* |
| * Our queuing method is a bit tricky. The card |
| * knows in advance which HSCB (by address) to download, |
| * and we can't disappoint it. To achieve this, the next |
| * HSCB to download is saved off in ahd->next_queued_hscb. |
| * When we are called to queue "an arbitrary scb", |
| * we copy the contents of the incoming HSCB to the one |
| * the sequencer knows about, swap HSCB pointers and |
| * finally assign the SCB to the tag indexed location |
| * in the scb_array. This makes sure that we can still |
| * locate the correct SCB by SCB_TAG. |
| */ |
| q_hscb = ahd->next_queued_hscb; |
| q_hscb_map = ahd->next_queued_hscb_map; |
| saved_hscb_busaddr = q_hscb->hscb_busaddr; |
| memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); |
| q_hscb->hscb_busaddr = saved_hscb_busaddr; |
| q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr; |
| |
| /* Now swap HSCB pointers. */ |
| ahd->next_queued_hscb = scb->hscb; |
| ahd->next_queued_hscb_map = scb->hscb_map; |
| scb->hscb = q_hscb; |
| scb->hscb_map = q_hscb_map; |
| |
| /* Now define the mapping from tag to SCB in the scbindex */ |
| ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb; |
| } |
| |
| /* |
| * Tell the sequencer about a new transaction to execute. |
| */ |
| void |
| ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb) |
| { |
| ahd_swap_with_next_hscb(ahd, scb); |
| |
| if (SCBID_IS_NULL(SCB_GET_TAG(scb))) |
| panic("Attempt to queue invalid SCB tag %x\n", |
| SCB_GET_TAG(scb)); |
| |
| /* |
| * Keep a history of SCBs we've downloaded in the qinfifo. |
| */ |
| ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb); |
| ahd->qinfifonext++; |
| |
| if (scb->sg_count != 0) |
| ahd_setup_data_scb(ahd, scb); |
| else |
| ahd_setup_noxfer_scb(ahd, scb); |
| ahd_setup_scb_common(ahd, scb); |
| |
| /* |
| * Make sure our data is consistent from the |
| * perspective of the adapter. |
| */ |
| ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_QUEUE) != 0) { |
| uint64_t host_dataptr; |
| |
| host_dataptr = ahd_le64toh(scb->hscb->dataptr); |
| printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n", |
| ahd_name(ahd), |
| SCB_GET_TAG(scb), scb->hscb->scsiid, |
| ahd_le32toh(scb->hscb->hscb_busaddr), |
| (u_int)((host_dataptr >> 32) & 0xFFFFFFFF), |
| (u_int)(host_dataptr & 0xFFFFFFFF), |
| ahd_le32toh(scb->hscb->datacnt)); |
| } |
| #endif |
| /* Tell the adapter about the newly queued SCB */ |
| ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); |
| } |
| |
| /************************** Interrupt Processing ******************************/ |
| static void |
| ahd_sync_qoutfifo(struct ahd_softc *ahd, int op) |
| { |
| ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, |
| /*offset*/0, |
| /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op); |
| } |
| |
| static void |
| ahd_sync_tqinfifo(struct ahd_softc *ahd, int op) |
| { |
| #ifdef AHD_TARGET_MODE |
| if ((ahd->flags & AHD_TARGETROLE) != 0) { |
| ahd_dmamap_sync(ahd, ahd->shared_data_dmat, |
| ahd->shared_data_map.dmamap, |
| ahd_targetcmd_offset(ahd, 0), |
| sizeof(struct target_cmd) * AHD_TMODE_CMDS, |
| op); |
| } |
| #endif |
| } |
| |
| /* |
| * See if the firmware has posted any completed commands |
| * into our in-core command complete fifos. |
| */ |
| #define AHD_RUN_QOUTFIFO 0x1 |
| #define AHD_RUN_TQINFIFO 0x2 |
| static u_int |
| ahd_check_cmdcmpltqueues(struct ahd_softc *ahd) |
| { |
| u_int retval; |
| |
| retval = 0; |
| ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, |
| /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo), |
| /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD); |
| if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag |
| == ahd->qoutfifonext_valid_tag) |
| retval |= AHD_RUN_QOUTFIFO; |
| #ifdef AHD_TARGET_MODE |
| if ((ahd->flags & AHD_TARGETROLE) != 0 |
| && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) { |
| ahd_dmamap_sync(ahd, ahd->shared_data_dmat, |
| ahd->shared_data_map.dmamap, |
| ahd_targetcmd_offset(ahd, ahd->tqinfifofnext), |
| /*len*/sizeof(struct target_cmd), |
| BUS_DMASYNC_POSTREAD); |
| if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0) |
| retval |= AHD_RUN_TQINFIFO; |
| } |
| #endif |
| return (retval); |
| } |
| |
| /* |
| * Catch an interrupt from the adapter |
| */ |
| int |
| ahd_intr(struct ahd_softc *ahd) |
| { |
| u_int intstat; |
| |
| if ((ahd->pause & INTEN) == 0) { |
| /* |
| * Our interrupt is not enabled on the chip |
| * and may be disabled for re-entrancy reasons, |
| * so just return. This is likely just a shared |
| * interrupt. |
| */ |
| return (0); |
| } |
| |
| /* |
| * Instead of directly reading the interrupt status register, |
| * infer the cause of the interrupt by checking our in-core |
| * completion queues. This avoids a costly PCI bus read in |
| * most cases. |
| */ |
| if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0 |
| && (ahd_check_cmdcmpltqueues(ahd) != 0)) |
| intstat = CMDCMPLT; |
| else |
| intstat = ahd_inb(ahd, INTSTAT); |
| |
| if ((intstat & INT_PEND) == 0) |
| return (0); |
| |
| if (intstat & CMDCMPLT) { |
| ahd_outb(ahd, CLRINT, CLRCMDINT); |
| |
| /* |
| * Ensure that the chip sees that we've cleared |
| * this interrupt before we walk the output fifo. |
| * Otherwise, we may, due to posted bus writes, |
| * clear the interrupt after we finish the scan, |
| * and after the sequencer has added new entries |
| * and asserted the interrupt again. |
| */ |
| if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { |
| if (ahd_is_paused(ahd)) { |
| /* |
| * Potentially lost SEQINT. |
| * If SEQINTCODE is non-zero, |
| * simulate the SEQINT. |
| */ |
| if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT) |
| intstat |= SEQINT; |
| } |
| } else { |
| ahd_flush_device_writes(ahd); |
| } |
| ahd_run_qoutfifo(ahd); |
| ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++; |
| ahd->cmdcmplt_total++; |
| #ifdef AHD_TARGET_MODE |
| if ((ahd->flags & AHD_TARGETROLE) != 0) |
| ahd_run_tqinfifo(ahd, /*paused*/FALSE); |
| #endif |
| } |
| |
| /* |
| * Handle statuses that may invalidate our cached |
| * copy of INTSTAT separately. |
| */ |
| if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) { |
| /* Hot eject. Do nothing */ |
| } else if (intstat & HWERRINT) { |
| ahd_handle_hwerrint(ahd); |
| } else if ((intstat & (PCIINT|SPLTINT)) != 0) { |
| ahd->bus_intr(ahd); |
| } else { |
| |
| if ((intstat & SEQINT) != 0) |
| ahd_handle_seqint(ahd, intstat); |
| |
| if ((intstat & SCSIINT) != 0) |
| ahd_handle_scsiint(ahd, intstat); |
| } |
| return (1); |
| } |
| |
| /******************************** Private Inlines *****************************/ |
| static inline void |
| ahd_assert_atn(struct ahd_softc *ahd) |
| { |
| ahd_outb(ahd, SCSISIGO, ATNO); |
| } |
| |
| /* |
| * Determine if the current connection has a packetized |
| * agreement. This does not necessarily mean that we |
| * are currently in a packetized transfer. We could |
| * just as easily be sending or receiving a message. |
| */ |
| static int |
| ahd_currently_packetized(struct ahd_softc *ahd) |
| { |
| ahd_mode_state saved_modes; |
| int packetized; |
| |
| saved_modes = ahd_save_modes(ahd); |
| if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) { |
| /* |
| * The packetized bit refers to the last |
| * connection, not the current one. Check |
| * for non-zero LQISTATE instead. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| packetized = ahd_inb(ahd, LQISTATE) != 0; |
| } else { |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED; |
| } |
| ahd_restore_modes(ahd, saved_modes); |
| return (packetized); |
| } |
| |
| static inline int |
| ahd_set_active_fifo(struct ahd_softc *ahd) |
| { |
| u_int active_fifo; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO; |
| switch (active_fifo) { |
| case 0: |
| case 1: |
| ahd_set_modes(ahd, active_fifo, active_fifo); |
| return (1); |
| default: |
| return (0); |
| } |
| } |
| |
| static inline void |
| ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl) |
| { |
| ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL); |
| } |
| |
| /* |
| * Determine whether the sequencer reported a residual |
| * for this SCB/transaction. |
| */ |
| static inline void |
| ahd_update_residual(struct ahd_softc *ahd, struct scb *scb) |
| { |
| uint32_t sgptr; |
| |
| sgptr = ahd_le32toh(scb->hscb->sgptr); |
| if ((sgptr & SG_STATUS_VALID) != 0) |
| ahd_calc_residual(ahd, scb); |
| } |
| |
| static inline void |
| ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb) |
| { |
| uint32_t sgptr; |
| |
| sgptr = ahd_le32toh(scb->hscb->sgptr); |
| if ((sgptr & SG_STATUS_VALID) != 0) |
| ahd_handle_scb_status(ahd, scb); |
| else |
| ahd_done(ahd, scb); |
| } |
| |
| |
| /************************* Sequencer Execution Control ************************/ |
| /* |
| * Restart the sequencer program from address zero |
| */ |
| static void |
| ahd_restart(struct ahd_softc *ahd) |
| { |
| |
| ahd_pause(ahd); |
| |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| |
| /* No more pending messages */ |
| ahd_clear_msg_state(ahd); |
| ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */ |
| ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */ |
| ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET); |
| ahd_outb(ahd, SEQINTCTL, 0); |
| ahd_outb(ahd, LASTPHASE, P_BUSFREE); |
| ahd_outb(ahd, SEQ_FLAGS, 0); |
| ahd_outb(ahd, SAVED_SCSIID, 0xFF); |
| ahd_outb(ahd, SAVED_LUN, 0xFF); |
| |
| /* |
| * Ensure that the sequencer's idea of TQINPOS |
| * matches our own. The sequencer increments TQINPOS |
| * only after it sees a DMA complete and a reset could |
| * occur before the increment leaving the kernel to believe |
| * the command arrived but the sequencer to not. |
| */ |
| ahd_outb(ahd, TQINPOS, ahd->tqinfifonext); |
| |
| /* Always allow reselection */ |
| ahd_outb(ahd, SCSISEQ1, |
| ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP)); |
| ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); |
| |
| /* |
| * Clear any pending sequencer interrupt. It is no |
| * longer relevant since we're resetting the Program |
| * Counter. |
| */ |
| ahd_outb(ahd, CLRINT, CLRSEQINT); |
| |
| ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET); |
| ahd_unpause(ahd); |
| } |
| |
| static void |
| ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo) |
| { |
| ahd_mode_state saved_modes; |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_FIFOS) != 0) |
| printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo); |
| #endif |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, fifo, fifo); |
| ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT); |
| if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) |
| ahd_outb(ahd, CCSGCTL, CCSGRESET); |
| ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); |
| ahd_outb(ahd, SG_STATE, 0); |
| ahd_restore_modes(ahd, saved_modes); |
| } |
| |
| /************************* Input/Output Queues ********************************/ |
| /* |
| * Flush and completed commands that are sitting in the command |
| * complete queues down on the chip but have yet to be dma'ed back up. |
| */ |
| static void |
| ahd_flush_qoutfifo(struct ahd_softc *ahd) |
| { |
| struct scb *scb; |
| ahd_mode_state saved_modes; |
| u_int saved_scbptr; |
| u_int ccscbctl; |
| u_int scbid; |
| u_int next_scbid; |
| |
| saved_modes = ahd_save_modes(ahd); |
| |
| /* |
| * Flush the good status FIFO for completed packetized commands. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| saved_scbptr = ahd_get_scbptr(ahd); |
| while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) { |
| u_int fifo_mode; |
| u_int i; |
| |
| scbid = ahd_inw(ahd, GSFIFO); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: Warning - GSFIFO SCB %d invalid\n", |
| ahd_name(ahd), scbid); |
| continue; |
| } |
| /* |
| * Determine if this transaction is still active in |
| * any FIFO. If it is, we must flush that FIFO to |
| * the host before completing the command. |
| */ |
| fifo_mode = 0; |
| rescan_fifos: |
| for (i = 0; i < 2; i++) { |
| /* Toggle to the other mode. */ |
| fifo_mode ^= 1; |
| ahd_set_modes(ahd, fifo_mode, fifo_mode); |
| |
| if (ahd_scb_active_in_fifo(ahd, scb) == 0) |
| continue; |
| |
| ahd_run_data_fifo(ahd, scb); |
| |
| /* |
| * Running this FIFO may cause a CFG4DATA for |
| * this same transaction to assert in the other |
| * FIFO or a new snapshot SAVEPTRS interrupt |
| * in this FIFO. Even running a FIFO may not |
| * clear the transaction if we are still waiting |
| * for data to drain to the host. We must loop |
| * until the transaction is not active in either |
| * FIFO just to be sure. Reset our loop counter |
| * so we will visit both FIFOs again before |
| * declaring this transaction finished. We |
| * also delay a bit so that status has a chance |
| * to change before we look at this FIFO again. |
| */ |
| ahd_delay(200); |
| goto rescan_fifos; |
| } |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd_set_scbptr(ahd, scbid); |
| if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0 |
| && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0 |
| || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR) |
| & SG_LIST_NULL) != 0)) { |
| u_int comp_head; |
| |
| /* |
| * The transfer completed with a residual. |
| * Place this SCB on the complete DMA list |
| * so that we update our in-core copy of the |
| * SCB before completing the command. |
| */ |
| ahd_outb(ahd, SCB_SCSI_STATUS, 0); |
| ahd_outb(ahd, SCB_SGPTR, |
| ahd_inb_scbram(ahd, SCB_SGPTR) |
| | SG_STATUS_VALID); |
| ahd_outw(ahd, SCB_TAG, scbid); |
| ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL); |
| comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); |
| if (SCBID_IS_NULL(comp_head)) { |
| ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid); |
| ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid); |
| } else { |
| u_int tail; |
| |
| tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL); |
| ahd_set_scbptr(ahd, tail); |
| ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid); |
| ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid); |
| ahd_set_scbptr(ahd, scbid); |
| } |
| } else |
| ahd_complete_scb(ahd, scb); |
| } |
| ahd_set_scbptr(ahd, saved_scbptr); |
| |
| /* |
| * Setup for command channel portion of flush. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); |
| |
| /* |
| * Wait for any inprogress DMA to complete and clear DMA state |
| * if this is for an SCB in the qinfifo. |
| */ |
| while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) { |
| |
| if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) { |
| if ((ccscbctl & ARRDONE) != 0) |
| break; |
| } else if ((ccscbctl & CCSCBDONE) != 0) |
| break; |
| ahd_delay(200); |
| } |
| /* |
| * We leave the sequencer to cleanup in the case of DMA's to |
| * update the qoutfifo. In all other cases (DMA's to the |
| * chip or a push of an SCB from the COMPLETE_DMA_SCB list), |
| * we disable the DMA engine so that the sequencer will not |
| * attempt to handle the DMA completion. |
| */ |
| if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0) |
| ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN)); |
| |
| /* |
| * Complete any SCBs that just finished |
| * being DMA'ed into the qoutfifo. |
| */ |
| ahd_run_qoutfifo(ahd); |
| |
| saved_scbptr = ahd_get_scbptr(ahd); |
| /* |
| * Manually update/complete any completed SCBs that are waiting to be |
| * DMA'ed back up to the host. |
| */ |
| scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); |
| while (!SCBID_IS_NULL(scbid)) { |
| uint8_t *hscb_ptr; |
| u_int i; |
| |
| ahd_set_scbptr(ahd, scbid); |
| next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: Warning - DMA-up and complete " |
| "SCB %d invalid\n", ahd_name(ahd), scbid); |
| continue; |
| } |
| hscb_ptr = (uint8_t *)scb->hscb; |
| for (i = 0; i < sizeof(struct hardware_scb); i++) |
| *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i); |
| |
| ahd_complete_scb(ahd, scb); |
| scbid = next_scbid; |
| } |
| ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL); |
| ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL); |
| |
| scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD); |
| while (!SCBID_IS_NULL(scbid)) { |
| |
| ahd_set_scbptr(ahd, scbid); |
| next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: Warning - Complete Qfrz SCB %d invalid\n", |
| ahd_name(ahd), scbid); |
| continue; |
| } |
| |
| ahd_complete_scb(ahd, scb); |
| scbid = next_scbid; |
| } |
| ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL); |
| |
| scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD); |
| while (!SCBID_IS_NULL(scbid)) { |
| |
| ahd_set_scbptr(ahd, scbid); |
| next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: Warning - Complete SCB %d invalid\n", |
| ahd_name(ahd), scbid); |
| continue; |
| } |
| |
| ahd_complete_scb(ahd, scb); |
| scbid = next_scbid; |
| } |
| ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL); |
| |
| /* |
| * Restore state. |
| */ |
| ahd_set_scbptr(ahd, saved_scbptr); |
| ahd_restore_modes(ahd, saved_modes); |
| ahd->flags |= AHD_UPDATE_PEND_CMDS; |
| } |
| |
| /* |
| * Determine if an SCB for a packetized transaction |
| * is active in a FIFO. |
| */ |
| static int |
| ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb) |
| { |
| |
| /* |
| * The FIFO is only active for our transaction if |
| * the SCBPTR matches the SCB's ID and the firmware |
| * has installed a handler for the FIFO or we have |
| * a pending SAVEPTRS or CFG4DATA interrupt. |
| */ |
| if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb) |
| || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0 |
| && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0)) |
| return (0); |
| |
| return (1); |
| } |
| |
| /* |
| * Run a data fifo to completion for a transaction we know |
| * has completed across the SCSI bus (good status has been |
| * received). We are already set to the correct FIFO mode |
| * on entry to this routine. |
| * |
| * This function attempts to operate exactly as the firmware |
| * would when running this FIFO. Care must be taken to update |
| * this routine any time the firmware's FIFO algorithm is |
| * changed. |
| */ |
| static void |
| ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb) |
| { |
| u_int seqintsrc; |
| |
| seqintsrc = ahd_inb(ahd, SEQINTSRC); |
| if ((seqintsrc & CFG4DATA) != 0) { |
| uint32_t datacnt; |
| uint32_t sgptr; |
| |
| /* |
| * Clear full residual flag. |
| */ |
| sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID; |
| ahd_outb(ahd, SCB_SGPTR, sgptr); |
| |
| /* |
| * Load datacnt and address. |
| */ |
| datacnt = ahd_inl_scbram(ahd, SCB_DATACNT); |
| if ((datacnt & AHD_DMA_LAST_SEG) != 0) { |
| sgptr |= LAST_SEG; |
| ahd_outb(ahd, SG_STATE, 0); |
| } else |
| ahd_outb(ahd, SG_STATE, LOADING_NEEDED); |
| ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR)); |
| ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK); |
| ahd_outb(ahd, SG_CACHE_PRE, sgptr); |
| ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN); |
| |
| /* |
| * Initialize Residual Fields. |
| */ |
| ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24); |
| ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK); |
| |
| /* |
| * Mark the SCB as having a FIFO in use. |
| */ |
| ahd_outb(ahd, SCB_FIFO_USE_COUNT, |
| ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1); |
| |
| /* |
| * Install a "fake" handler for this FIFO. |
| */ |
| ahd_outw(ahd, LONGJMP_ADDR, 0); |
| |
| /* |
| * Notify the hardware that we have satisfied |
| * this sequencer interrupt. |
| */ |
| ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA); |
| } else if ((seqintsrc & SAVEPTRS) != 0) { |
| uint32_t sgptr; |
| uint32_t resid; |
| |
| if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) { |
| /* |
| * Snapshot Save Pointers. All that |
| * is necessary to clear the snapshot |
| * is a CLRCHN. |
| */ |
| goto clrchn; |
| } |
| |
| /* |
| * Disable S/G fetch so the DMA engine |
| * is available to future users. |
| */ |
| if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) |
| ahd_outb(ahd, CCSGCTL, 0); |
| ahd_outb(ahd, SG_STATE, 0); |
| |
| /* |
| * Flush the data FIFO. Strickly only |
| * necessary for Rev A parts. |
| */ |
| ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH); |
| |
| /* |
| * Calculate residual. |
| */ |
| sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); |
| resid = ahd_inl(ahd, SHCNT); |
| resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24; |
| ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid); |
| if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) { |
| /* |
| * Must back up to the correct S/G element. |
| * Typically this just means resetting our |
| * low byte to the offset in the SG_CACHE, |
| * but if we wrapped, we have to correct |
| * the other bytes of the sgptr too. |
| */ |
| if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0 |
| && (sgptr & 0x80) == 0) |
| sgptr -= 0x100; |
| sgptr &= ~0xFF; |
| sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW) |
| & SG_ADDR_MASK; |
| ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); |
| ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0); |
| } else if ((resid & AHD_SG_LEN_MASK) == 0) { |
| ahd_outb(ahd, SCB_RESIDUAL_SGPTR, |
| sgptr | SG_LIST_NULL); |
| } |
| /* |
| * Save Pointers. |
| */ |
| ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR)); |
| ahd_outl(ahd, SCB_DATACNT, resid); |
| ahd_outl(ahd, SCB_SGPTR, sgptr); |
| ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS); |
| ahd_outb(ahd, SEQIMODE, |
| ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS); |
| /* |
| * If the data is to the SCSI bus, we are |
| * done, otherwise wait for FIFOEMP. |
| */ |
| if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0) |
| goto clrchn; |
| } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) { |
| uint32_t sgptr; |
| uint64_t data_addr; |
| uint32_t data_len; |
| u_int dfcntrl; |
| |
| /* |
| * Disable S/G fetch so the DMA engine |
| * is available to future users. We won't |
| * be using the DMA engine to load segments. |
| */ |
| if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) { |
| ahd_outb(ahd, CCSGCTL, 0); |
| ahd_outb(ahd, SG_STATE, LOADING_NEEDED); |
| } |
| |
| /* |
| * Wait for the DMA engine to notice that the |
| * host transfer is enabled and that there is |
| * space in the S/G FIFO for new segments before |
| * loading more segments. |
| */ |
| if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0 |
| && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) { |
| |
| /* |
| * Determine the offset of the next S/G |
| * element to load. |
| */ |
| sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); |
| sgptr &= SG_PTR_MASK; |
| if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { |
| struct ahd_dma64_seg *sg; |
| |
| sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); |
| data_addr = sg->addr; |
| data_len = sg->len; |
| sgptr += sizeof(*sg); |
| } else { |
| struct ahd_dma_seg *sg; |
| |
| sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); |
| data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK; |
| data_addr <<= 8; |
| data_addr |= sg->addr; |
| data_len = sg->len; |
| sgptr += sizeof(*sg); |
| } |
| |
| /* |
| * Update residual information. |
| */ |
| ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24); |
| ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); |
| |
| /* |
| * Load the S/G. |
| */ |
| if (data_len & AHD_DMA_LAST_SEG) { |
| sgptr |= LAST_SEG; |
| ahd_outb(ahd, SG_STATE, 0); |
| } |
| ahd_outq(ahd, HADDR, data_addr); |
| ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK); |
| ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF); |
| |
| /* |
| * Advertise the segment to the hardware. |
| */ |
| dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN; |
| if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { |
| /* |
| * Use SCSIENWRDIS so that SCSIEN |
| * is never modified by this |
| * operation. |
| */ |
| dfcntrl |= SCSIENWRDIS; |
| } |
| ahd_outb(ahd, DFCNTRL, dfcntrl); |
| } |
| } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) { |
| |
| /* |
| * Transfer completed to the end of SG list |
| * and has flushed to the host. |
| */ |
| ahd_outb(ahd, SCB_SGPTR, |
| ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL); |
| goto clrchn; |
| } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) { |
| clrchn: |
| /* |
| * Clear any handler for this FIFO, decrement |
| * the FIFO use count for the SCB, and release |
| * the FIFO. |
| */ |
| ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); |
| ahd_outb(ahd, SCB_FIFO_USE_COUNT, |
| ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1); |
| ahd_outb(ahd, DFFSXFRCTL, CLRCHN); |
| } |
| } |
| |
| /* |
| * Look for entries in the QoutFIFO that have completed. |
| * The valid_tag completion field indicates the validity |
| * of the entry - the valid value toggles each time through |
| * the queue. We use the sg_status field in the completion |
| * entry to avoid referencing the hscb if the completion |
| * occurred with no errors and no residual. sg_status is |
| * a copy of the first byte (little endian) of the sgptr |
| * hscb field. |
| */ |
| static void |
| ahd_run_qoutfifo(struct ahd_softc *ahd) |
| { |
| struct ahd_completion *completion; |
| struct scb *scb; |
| u_int scb_index; |
| |
| if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0) |
| panic("ahd_run_qoutfifo recursion"); |
| ahd->flags |= AHD_RUNNING_QOUTFIFO; |
| ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD); |
| for (;;) { |
| completion = &ahd->qoutfifo[ahd->qoutfifonext]; |
| |
| if (completion->valid_tag != ahd->qoutfifonext_valid_tag) |
| break; |
| |
| scb_index = ahd_le16toh(completion->tag); |
| scb = ahd_lookup_scb(ahd, scb_index); |
| if (scb == NULL) { |
| printk("%s: WARNING no command for scb %d " |
| "(cmdcmplt)\nQOUTPOS = %d\n", |
| ahd_name(ahd), scb_index, |
| ahd->qoutfifonext); |
| ahd_dump_card_state(ahd); |
| } else if ((completion->sg_status & SG_STATUS_VALID) != 0) { |
| ahd_handle_scb_status(ahd, scb); |
| } else { |
| ahd_done(ahd, scb); |
| } |
| |
| ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1); |
| if (ahd->qoutfifonext == 0) |
| ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID; |
| } |
| ahd->flags &= ~AHD_RUNNING_QOUTFIFO; |
| } |
| |
| /************************* Interrupt Handling *********************************/ |
| static void |
| ahd_handle_hwerrint(struct ahd_softc *ahd) |
| { |
| /* |
| * Some catastrophic hardware error has occurred. |
| * Print it for the user and disable the controller. |
| */ |
| int i; |
| int error; |
| |
| error = ahd_inb(ahd, ERROR); |
| for (i = 0; i < num_errors; i++) { |
| if ((error & ahd_hard_errors[i].errno) != 0) |
| printk("%s: hwerrint, %s\n", |
| ahd_name(ahd), ahd_hard_errors[i].errmesg); |
| } |
| |
| ahd_dump_card_state(ahd); |
| panic("BRKADRINT"); |
| |
| /* Tell everyone that this HBA is no longer available */ |
| ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS, |
| CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN, |
| CAM_NO_HBA); |
| |
| /* Tell the system that this controller has gone away. */ |
| ahd_free(ahd); |
| } |
| |
| #ifdef AHD_DEBUG |
| static void |
| ahd_dump_sglist(struct scb *scb) |
| { |
| int i; |
| |
| if (scb->sg_count > 0) { |
| if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) { |
| struct ahd_dma64_seg *sg_list; |
| |
| sg_list = (struct ahd_dma64_seg*)scb->sg_list; |
| for (i = 0; i < scb->sg_count; i++) { |
| uint64_t addr; |
| |
| addr = ahd_le64toh(sg_list[i].addr); |
| printk("sg[%d] - Addr 0x%x%x : Length %d%s\n", |
| i, |
| (uint32_t)((addr >> 32) & 0xFFFFFFFF), |
| (uint32_t)(addr & 0xFFFFFFFF), |
| sg_list[i].len & AHD_SG_LEN_MASK, |
| (sg_list[i].len & AHD_DMA_LAST_SEG) |
| ? " Last" : ""); |
| } |
| } else { |
| struct ahd_dma_seg *sg_list; |
| |
| sg_list = (struct ahd_dma_seg*)scb->sg_list; |
| for (i = 0; i < scb->sg_count; i++) { |
| uint32_t len; |
| |
| len = ahd_le32toh(sg_list[i].len); |
| printk("sg[%d] - Addr 0x%x%x : Length %d%s\n", |
| i, |
| (len & AHD_SG_HIGH_ADDR_MASK) >> 24, |
| ahd_le32toh(sg_list[i].addr), |
| len & AHD_SG_LEN_MASK, |
| len & AHD_DMA_LAST_SEG ? " Last" : ""); |
| } |
| } |
| } |
| } |
| #endif /* AHD_DEBUG */ |
| |
| static void |
| ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat) |
| { |
| u_int seqintcode; |
| |
| /* |
| * Save the sequencer interrupt code and clear the SEQINT |
| * bit. We will unpause the sequencer, if appropriate, |
| * after servicing the request. |
| */ |
| seqintcode = ahd_inb(ahd, SEQINTCODE); |
| ahd_outb(ahd, CLRINT, CLRSEQINT); |
| if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { |
| /* |
| * Unpause the sequencer and let it clear |
| * SEQINT by writing NO_SEQINT to it. This |
| * will cause the sequencer to be paused again, |
| * which is the expected state of this routine. |
| */ |
| ahd_unpause(ahd); |
| while (!ahd_is_paused(ahd)) |
| ; |
| ahd_outb(ahd, CLRINT, CLRSEQINT); |
| } |
| ahd_update_modes(ahd); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("%s: Handle Seqint Called for code %d\n", |
| ahd_name(ahd), seqintcode); |
| #endif |
| switch (seqintcode) { |
| case ENTERING_NONPACK: |
| { |
| struct scb *scb; |
| u_int scbid; |
| |
| AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), |
| ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| /* |
| * Somehow need to know if this |
| * is from a selection or reselection. |
| * From that, we can determine target |
| * ID so we at least have an I_T nexus. |
| */ |
| } else { |
| ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid); |
| ahd_outb(ahd, SAVED_LUN, scb->hscb->lun); |
| ahd_outb(ahd, SEQ_FLAGS, 0x0); |
| } |
| if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0 |
| && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) { |
| /* |
| * Phase change after read stream with |
| * CRC error with P0 asserted on last |
| * packet. |
| */ |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) |
| printk("%s: Assuming LQIPHASE_NLQ with " |
| "P0 assertion\n", ahd_name(ahd)); |
| #endif |
| } |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) |
| printk("%s: Entering NONPACK\n", ahd_name(ahd)); |
| #endif |
| break; |
| } |
| case INVALID_SEQINT: |
| printk("%s: Invalid Sequencer interrupt occurred, " |
| "resetting channel.\n", |
| ahd_name(ahd)); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) |
| ahd_dump_card_state(ahd); |
| #endif |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| break; |
| case STATUS_OVERRUN: |
| { |
| struct scb *scb; |
| u_int scbid; |
| |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb != NULL) |
| ahd_print_path(ahd, scb); |
| else |
| printk("%s: ", ahd_name(ahd)); |
| printk("SCB %d Packetized Status Overrun", scbid); |
| ahd_dump_card_state(ahd); |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| break; |
| } |
| case CFG4ISTAT_INTR: |
| { |
| struct scb *scb; |
| u_int scbid; |
| |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| ahd_dump_card_state(ahd); |
| printk("CFG4ISTAT: Free SCB %d referenced", scbid); |
| panic("For safety"); |
| } |
| ahd_outq(ahd, HADDR, scb->sense_busaddr); |
| ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE); |
| ahd_outb(ahd, HCNT + 2, 0); |
| ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG); |
| ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN); |
| break; |
| } |
| case ILLEGAL_PHASE: |
| { |
| u_int bus_phase; |
| |
| bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; |
| printk("%s: ILLEGAL_PHASE 0x%x\n", |
| ahd_name(ahd), bus_phase); |
| |
| switch (bus_phase) { |
| case P_DATAOUT: |
| case P_DATAIN: |
| case P_DATAOUT_DT: |
| case P_DATAIN_DT: |
| case P_MESGOUT: |
| case P_STATUS: |
| case P_MESGIN: |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| printk("%s: Issued Bus Reset.\n", ahd_name(ahd)); |
| break; |
| case P_COMMAND: |
| { |
| struct ahd_devinfo devinfo; |
| struct scb *scb; |
| u_int scbid; |
| |
| /* |
| * If a target takes us into the command phase |
| * assume that it has been externally reset and |
| * has thus lost our previous packetized negotiation |
| * agreement. Since we have not sent an identify |
| * message and may not have fully qualified the |
| * connection, we change our command to TUR, assert |
| * ATN and ABORT the task when we go to message in |
| * phase. The OSM will see the REQUEUE_REQUEST |
| * status and retry the command. |
| */ |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("Invalid phase with no valid SCB. " |
| "Resetting bus.\n"); |
| ahd_reset_channel(ahd, 'A', |
| /*Initiate Reset*/TRUE); |
| break; |
| } |
| ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb), |
| SCB_GET_TARGET(ahd, scb), |
| SCB_GET_LUN(scb), |
| SCB_GET_CHANNEL(ahd, scb), |
| ROLE_INITIATOR); |
| ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_ACTIVE, /*paused*/TRUE); |
| ahd_set_syncrate(ahd, &devinfo, /*period*/0, |
| /*offset*/0, /*ppr_options*/0, |
| AHD_TRANS_ACTIVE, /*paused*/TRUE); |
| /* Hand-craft TUR command */ |
| ahd_outb(ahd, SCB_CDB_STORE, 0); |
| ahd_outb(ahd, SCB_CDB_STORE+1, 0); |
| ahd_outb(ahd, SCB_CDB_STORE+2, 0); |
| ahd_outb(ahd, SCB_CDB_STORE+3, 0); |
| ahd_outb(ahd, SCB_CDB_STORE+4, 0); |
| ahd_outb(ahd, SCB_CDB_STORE+5, 0); |
| ahd_outb(ahd, SCB_CDB_LEN, 6); |
| scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE); |
| scb->hscb->control |= MK_MESSAGE; |
| ahd_outb(ahd, SCB_CONTROL, scb->hscb->control); |
| ahd_outb(ahd, MSG_OUT, HOST_MSG); |
| ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid); |
| /* |
| * The lun is 0, regardless of the SCB's lun |
| * as we have not sent an identify message. |
| */ |
| ahd_outb(ahd, SAVED_LUN, 0); |
| ahd_outb(ahd, SEQ_FLAGS, 0); |
| ahd_assert_atn(ahd); |
| scb->flags &= ~SCB_PACKETIZED; |
| scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET; |
| ahd_freeze_devq(ahd, scb); |
| ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); |
| ahd_freeze_scb(scb); |
| |
| /* Notify XPT */ |
| ahd_send_async(ahd, devinfo.channel, devinfo.target, |
| CAM_LUN_WILDCARD, AC_SENT_BDR); |
| |
| /* |
| * Allow the sequencer to continue with |
| * non-pack processing. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT); |
| if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) { |
| ahd_outb(ahd, CLRLQOINT1, 0); |
| } |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { |
| ahd_print_path(ahd, scb); |
| printk("Unexpected command phase from " |
| "packetized target\n"); |
| } |
| #endif |
| break; |
| } |
| } |
| break; |
| } |
| case CFG4OVERRUN: |
| { |
| struct scb *scb; |
| u_int scb_index; |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { |
| printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd), |
| ahd_inb(ahd, MODE_PTR)); |
| } |
| #endif |
| scb_index = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scb_index); |
| if (scb == NULL) { |
| /* |
| * Attempt to transfer to an SCB that is |
| * not outstanding. |
| */ |
| ahd_assert_atn(ahd); |
| ahd_outb(ahd, MSG_OUT, HOST_MSG); |
| ahd->msgout_buf[0] = MSG_ABORT_TASK; |
| ahd->msgout_len = 1; |
| ahd->msgout_index = 0; |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| /* |
| * Clear status received flag to prevent any |
| * attempt to complete this bogus SCB. |
| */ |
| ahd_outb(ahd, SCB_CONTROL, |
| ahd_inb_scbram(ahd, SCB_CONTROL) |
| & ~STATUS_RCVD); |
| } |
| break; |
| } |
| case DUMP_CARD_STATE: |
| { |
| ahd_dump_card_state(ahd); |
| break; |
| } |
| case PDATA_REINIT: |
| { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { |
| printk("%s: PDATA_REINIT - DFCNTRL = 0x%x " |
| "SG_CACHE_SHADOW = 0x%x\n", |
| ahd_name(ahd), ahd_inb(ahd, DFCNTRL), |
| ahd_inb(ahd, SG_CACHE_SHADOW)); |
| } |
| #endif |
| ahd_reinitialize_dataptrs(ahd); |
| break; |
| } |
| case HOST_MSG_LOOP: |
| { |
| struct ahd_devinfo devinfo; |
| |
| /* |
| * The sequencer has encountered a message phase |
| * that requires host assistance for completion. |
| * While handling the message phase(s), we will be |
| * notified by the sequencer after each byte is |
| * transferred so we can track bus phase changes. |
| * |
| * If this is the first time we've seen a HOST_MSG_LOOP |
| * interrupt, initialize the state of the host message |
| * loop. |
| */ |
| ahd_fetch_devinfo(ahd, &devinfo); |
| if (ahd->msg_type == MSG_TYPE_NONE) { |
| struct scb *scb; |
| u_int scb_index; |
| u_int bus_phase; |
| |
| bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; |
| if (bus_phase != P_MESGIN |
| && bus_phase != P_MESGOUT) { |
| printk("ahd_intr: HOST_MSG_LOOP bad " |
| "phase 0x%x\n", bus_phase); |
| /* |
| * Probably transitioned to bus free before |
| * we got here. Just punt the message. |
| */ |
| ahd_dump_card_state(ahd); |
| ahd_clear_intstat(ahd); |
| ahd_restart(ahd); |
| return; |
| } |
| |
| scb_index = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scb_index); |
| if (devinfo.role == ROLE_INITIATOR) { |
| if (bus_phase == P_MESGOUT) |
| ahd_setup_initiator_msgout(ahd, |
| &devinfo, |
| scb); |
| else { |
| ahd->msg_type = |
| MSG_TYPE_INITIATOR_MSGIN; |
| ahd->msgin_index = 0; |
| } |
| } |
| #ifdef AHD_TARGET_MODE |
| else { |
| if (bus_phase == P_MESGOUT) { |
| ahd->msg_type = |
| MSG_TYPE_TARGET_MSGOUT; |
| ahd->msgin_index = 0; |
| } |
| else |
| ahd_setup_target_msgin(ahd, |
| &devinfo, |
| scb); |
| } |
| #endif |
| } |
| |
| ahd_handle_message_phase(ahd); |
| break; |
| } |
| case NO_MATCH: |
| { |
| /* Ensure we don't leave the selection hardware on */ |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); |
| |
| printk("%s:%c:%d: no active SCB for reconnecting " |
| "target - issuing BUS DEVICE RESET\n", |
| ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4); |
| printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, " |
| "REG0 == 0x%x ACCUM = 0x%x\n", |
| ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN), |
| ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM)); |
| printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, " |
| "SINDEX == 0x%x\n", |
| ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd), |
| ahd_find_busy_tcl(ahd, |
| BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID), |
| ahd_inb(ahd, SAVED_LUN))), |
| ahd_inw(ahd, SINDEX)); |
| printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, " |
| "SCB_CONTROL == 0x%x\n", |
| ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID), |
| ahd_inb_scbram(ahd, SCB_LUN), |
| ahd_inb_scbram(ahd, SCB_CONTROL)); |
| printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n", |
| ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI)); |
| printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0)); |
| printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0)); |
| ahd_dump_card_state(ahd); |
| ahd->msgout_buf[0] = MSG_BUS_DEV_RESET; |
| ahd->msgout_len = 1; |
| ahd->msgout_index = 0; |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| ahd_outb(ahd, MSG_OUT, HOST_MSG); |
| ahd_assert_atn(ahd); |
| break; |
| } |
| case PROTO_VIOLATION: |
| { |
| ahd_handle_proto_violation(ahd); |
| break; |
| } |
| case IGN_WIDE_RES: |
| { |
| struct ahd_devinfo devinfo; |
| |
| ahd_fetch_devinfo(ahd, &devinfo); |
| ahd_handle_ign_wide_residue(ahd, &devinfo); |
| break; |
| } |
| case BAD_PHASE: |
| { |
| u_int lastphase; |
| |
| lastphase = ahd_inb(ahd, LASTPHASE); |
| printk("%s:%c:%d: unknown scsi bus phase %x, " |
| "lastphase = 0x%x. Attempting to continue\n", |
| ahd_name(ahd), 'A', |
| SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)), |
| lastphase, ahd_inb(ahd, SCSISIGI)); |
| break; |
| } |
| case MISSED_BUSFREE: |
| { |
| u_int lastphase; |
| |
| lastphase = ahd_inb(ahd, LASTPHASE); |
| printk("%s:%c:%d: Missed busfree. " |
| "Lastphase = 0x%x, Curphase = 0x%x\n", |
| ahd_name(ahd), 'A', |
| SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)), |
| lastphase, ahd_inb(ahd, SCSISIGI)); |
| ahd_restart(ahd); |
| return; |
| } |
| case DATA_OVERRUN: |
| { |
| /* |
| * When the sequencer detects an overrun, it |
| * places the controller in "BITBUCKET" mode |
| * and allows the target to complete its transfer. |
| * Unfortunately, none of the counters get updated |
| * when the controller is in this mode, so we have |
| * no way of knowing how large the overrun was. |
| */ |
| struct scb *scb; |
| u_int scbindex; |
| #ifdef AHD_DEBUG |
| u_int lastphase; |
| #endif |
| |
| scbindex = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbindex); |
| #ifdef AHD_DEBUG |
| lastphase = ahd_inb(ahd, LASTPHASE); |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { |
| ahd_print_path(ahd, scb); |
| printk("data overrun detected %s. Tag == 0x%x.\n", |
| ahd_lookup_phase_entry(lastphase)->phasemsg, |
| SCB_GET_TAG(scb)); |
| ahd_print_path(ahd, scb); |
| printk("%s seen Data Phase. Length = %ld. " |
| "NumSGs = %d.\n", |
| ahd_inb(ahd, SEQ_FLAGS) & DPHASE |
| ? "Have" : "Haven't", |
| ahd_get_transfer_length(scb), scb->sg_count); |
| ahd_dump_sglist(scb); |
| } |
| #endif |
| |
| /* |
| * Set this and it will take effect when the |
| * target does a command complete. |
| */ |
| ahd_freeze_devq(ahd, scb); |
| ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); |
| ahd_freeze_scb(scb); |
| break; |
| } |
| case MKMSG_FAILED: |
| { |
| struct ahd_devinfo devinfo; |
| struct scb *scb; |
| u_int scbid; |
| |
| ahd_fetch_devinfo(ahd, &devinfo); |
| printk("%s:%c:%d:%d: Attempt to issue message failed\n", |
| ahd_name(ahd), devinfo.channel, devinfo.target, |
| devinfo.lun); |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb != NULL |
| && (scb->flags & SCB_RECOVERY_SCB) != 0) |
| /* |
| * Ensure that we didn't put a second instance of this |
| * SCB into the QINFIFO. |
| */ |
| ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), |
| SCB_GET_CHANNEL(ahd, scb), |
| SCB_GET_LUN(scb), SCB_GET_TAG(scb), |
| ROLE_INITIATOR, /*status*/0, |
| SEARCH_REMOVE); |
| ahd_outb(ahd, SCB_CONTROL, |
| ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE); |
| break; |
| } |
| case TASKMGMT_FUNC_COMPLETE: |
| { |
| u_int scbid; |
| struct scb *scb; |
| |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb != NULL) { |
| u_int lun; |
| u_int tag; |
| cam_status error; |
| |
| ahd_print_path(ahd, scb); |
| printk("Task Management Func 0x%x Complete\n", |
| scb->hscb->task_management); |
| lun = CAM_LUN_WILDCARD; |
| tag = SCB_LIST_NULL; |
| |
| switch (scb->hscb->task_management) { |
| case SIU_TASKMGMT_ABORT_TASK: |
| tag = SCB_GET_TAG(scb); |
| fallthrough; |
| case SIU_TASKMGMT_ABORT_TASK_SET: |
| case SIU_TASKMGMT_CLEAR_TASK_SET: |
| lun = scb->hscb->lun; |
| error = CAM_REQ_ABORTED; |
| ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), |
| 'A', lun, tag, ROLE_INITIATOR, |
| error); |
| break; |
| case SIU_TASKMGMT_LUN_RESET: |
| lun = scb->hscb->lun; |
| fallthrough; |
| case SIU_TASKMGMT_TARGET_RESET: |
| { |
| struct ahd_devinfo devinfo; |
| |
| ahd_scb_devinfo(ahd, &devinfo, scb); |
| error = CAM_BDR_SENT; |
| ahd_handle_devreset(ahd, &devinfo, lun, |
| CAM_BDR_SENT, |
| lun != CAM_LUN_WILDCARD |
| ? "Lun Reset" |
| : "Target Reset", |
| /*verbose_level*/0); |
| break; |
| } |
| default: |
| panic("Unexpected TaskMgmt Func\n"); |
| break; |
| } |
| } |
| break; |
| } |
| case TASKMGMT_CMD_CMPLT_OKAY: |
| { |
| u_int scbid; |
| struct scb *scb; |
| |
| /* |
| * An ABORT TASK TMF failed to be delivered before |
| * the targeted command completed normally. |
| */ |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb != NULL) { |
| /* |
| * Remove the second instance of this SCB from |
| * the QINFIFO if it is still there. |
| */ |
| ahd_print_path(ahd, scb); |
| printk("SCB completes before TMF\n"); |
| /* |
| * Handle losing the race. Wait until any |
| * current selection completes. We will then |
| * set the TMF back to zero in this SCB so that |
| * the sequencer doesn't bother to issue another |
| * sequencer interrupt for its completion. |
| */ |
| while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0 |
| && (ahd_inb(ahd, SSTAT0) & SELDO) == 0 |
| && (ahd_inb(ahd, SSTAT1) & SELTO) == 0) |
| ; |
| ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0); |
| ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), |
| SCB_GET_CHANNEL(ahd, scb), |
| SCB_GET_LUN(scb), SCB_GET_TAG(scb), |
| ROLE_INITIATOR, /*status*/0, |
| SEARCH_REMOVE); |
| } |
| break; |
| } |
| case TRACEPOINT0: |
| case TRACEPOINT1: |
| case TRACEPOINT2: |
| case TRACEPOINT3: |
| printk("%s: Tracepoint %d\n", ahd_name(ahd), |
| seqintcode - TRACEPOINT0); |
| break; |
| case NO_SEQINT: |
| break; |
| case SAW_HWERR: |
| ahd_handle_hwerrint(ahd); |
| break; |
| default: |
| printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd), |
| seqintcode); |
| break; |
| } |
| /* |
| * The sequencer is paused immediately on |
| * a SEQINT, so we should restart it when |
| * we're done. |
| */ |
| ahd_unpause(ahd); |
| } |
| |
| static void |
| ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat) |
| { |
| struct scb *scb; |
| u_int status0; |
| u_int status3; |
| u_int status; |
| u_int lqistat1; |
| u_int lqostat0; |
| u_int scbid; |
| u_int busfreetime; |
| |
| ahd_update_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| |
| status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR); |
| status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO); |
| status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR); |
| lqistat1 = ahd_inb(ahd, LQISTAT1); |
| lqostat0 = ahd_inb(ahd, LQOSTAT0); |
| busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME; |
| |
| /* |
| * Ignore external resets after a bus reset. |
| */ |
| if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) { |
| ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); |
| return; |
| } |
| |
| /* |
| * Clear bus reset flag |
| */ |
| ahd->flags &= ~AHD_BUS_RESET_ACTIVE; |
| |
| if ((status0 & (SELDI|SELDO)) != 0) { |
| u_int simode0; |
| |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| simode0 = ahd_inb(ahd, SIMODE0); |
| status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| } |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb != NULL |
| && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) |
| scb = NULL; |
| |
| if ((status0 & IOERR) != 0) { |
| u_int now_lvd; |
| |
| now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40; |
| printk("%s: Transceiver State Has Changed to %s mode\n", |
| ahd_name(ahd), now_lvd ? "LVD" : "SE"); |
| ahd_outb(ahd, CLRSINT0, CLRIOERR); |
| /* |
| * A change in I/O mode is equivalent to a bus reset. |
| */ |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| ahd_pause(ahd); |
| ahd_setup_iocell_workaround(ahd); |
| ahd_unpause(ahd); |
| } else if ((status0 & OVERRUN) != 0) { |
| |
| printk("%s: SCSI offset overrun detected. Resetting bus.\n", |
| ahd_name(ahd)); |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| } else if ((status & SCSIRSTI) != 0) { |
| |
| printk("%s: Someone reset channel A\n", ahd_name(ahd)); |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE); |
| } else if ((status & SCSIPERR) != 0) { |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahd_clear_critical_section(ahd); |
| |
| ahd_handle_transmission_error(ahd); |
| } else if (lqostat0 != 0) { |
| |
| printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0); |
| ahd_outb(ahd, CLRLQOINT0, lqostat0); |
| if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) |
| ahd_outb(ahd, CLRLQOINT1, 0); |
| } else if ((status & SELTO) != 0) { |
| /* Stop the selection */ |
| ahd_outb(ahd, SCSISEQ0, 0); |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahd_clear_critical_section(ahd); |
| |
| /* No more pending messages */ |
| ahd_clear_msg_state(ahd); |
| |
| /* Clear interrupt state */ |
| ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR); |
| |
| /* |
| * Although the driver does not care about the |
| * 'Selection in Progress' status bit, the busy |
| * LED does. SELINGO is only cleared by a successful |
| * selection, so we must manually clear it to insure |
| * the LED turns off just incase no future successful |
| * selections occur (e.g. no devices on the bus). |
| */ |
| ahd_outb(ahd, CLRSINT0, CLRSELINGO); |
| |
| scbid = ahd_inw(ahd, WAITING_TID_HEAD); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: ahd_intr - referenced scb not " |
| "valid during SELTO scb(0x%x)\n", |
| ahd_name(ahd), scbid); |
| ahd_dump_card_state(ahd); |
| } else { |
| struct ahd_devinfo devinfo; |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_SELTO) != 0) { |
| ahd_print_path(ahd, scb); |
| printk("Saw Selection Timeout for SCB 0x%x\n", |
| scbid); |
| } |
| #endif |
| ahd_scb_devinfo(ahd, &devinfo, scb); |
| ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT); |
| ahd_freeze_devq(ahd, scb); |
| |
| /* |
| * Cancel any pending transactions on the device |
| * now that it seems to be missing. This will |
| * also revert us to async/narrow transfers until |
| * we can renegotiate with the device. |
| */ |
| ahd_handle_devreset(ahd, &devinfo, |
| CAM_LUN_WILDCARD, |
| CAM_SEL_TIMEOUT, |
| "Selection Timeout", |
| /*verbose_level*/1); |
| } |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| ahd_iocell_first_selection(ahd); |
| ahd_unpause(ahd); |
| } else if ((status0 & (SELDI|SELDO)) != 0) { |
| |
| ahd_iocell_first_selection(ahd); |
| ahd_unpause(ahd); |
| } else if (status3 != 0) { |
| printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n", |
| ahd_name(ahd), status3); |
| ahd_outb(ahd, CLRSINT3, status3); |
| } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) { |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahd_clear_critical_section(ahd); |
| |
| ahd_handle_lqiphase_error(ahd, lqistat1); |
| } else if ((lqistat1 & LQICRCI_NLQ) != 0) { |
| /* |
| * This status can be delayed during some |
| * streaming operations. The SCSIPHASE |
| * handler has already dealt with this case |
| * so just clear the error. |
| */ |
| ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ); |
| } else if ((status & BUSFREE) != 0 |
| || (lqistat1 & LQOBUSFREE) != 0) { |
| u_int lqostat1; |
| int restart; |
| int clear_fifo; |
| int packetized; |
| u_int mode; |
| |
| /* |
| * Clear our selection hardware as soon as possible. |
| * We may have an entry in the waiting Q for this target, |
| * that is affected by this busfree and we don't want to |
| * go about selecting the target while we handle the event. |
| */ |
| ahd_outb(ahd, SCSISEQ0, 0); |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahd_clear_critical_section(ahd); |
| |
| /* |
| * Determine what we were up to at the time of |
| * the busfree. |
| */ |
| mode = AHD_MODE_SCSI; |
| busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME; |
| lqostat1 = ahd_inb(ahd, LQOSTAT1); |
| switch (busfreetime) { |
| case BUSFREE_DFF0: |
| case BUSFREE_DFF1: |
| { |
| mode = busfreetime == BUSFREE_DFF0 |
| ? AHD_MODE_DFF0 : AHD_MODE_DFF1; |
| ahd_set_modes(ahd, mode, mode); |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: Invalid SCB %d in DFF%d " |
| "during unexpected busfree\n", |
| ahd_name(ahd), scbid, mode); |
| packetized = 0; |
| } else |
| packetized = (scb->flags & SCB_PACKETIZED) != 0; |
| clear_fifo = 1; |
| break; |
| } |
| case BUSFREE_LQO: |
| clear_fifo = 0; |
| packetized = 1; |
| break; |
| default: |
| clear_fifo = 0; |
| packetized = (lqostat1 & LQOBUSFREE) != 0; |
| if (!packetized |
| && ahd_inb(ahd, LASTPHASE) == P_BUSFREE |
| && (ahd_inb(ahd, SSTAT0) & SELDI) == 0 |
| && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0 |
| || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0)) |
| /* |
| * Assume packetized if we are not |
| * on the bus in a non-packetized |
| * capacity and any pending selection |
| * was a packetized selection. |
| */ |
| packetized = 1; |
| break; |
| } |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("Saw Busfree. Busfreetime = 0x%x.\n", |
| busfreetime); |
| #endif |
| /* |
| * Busfrees that occur in non-packetized phases are |
| * handled by the nonpkt_busfree handler. |
| */ |
| if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) { |
| restart = ahd_handle_pkt_busfree(ahd, busfreetime); |
| } else { |
| packetized = 0; |
| restart = ahd_handle_nonpkt_busfree(ahd); |
| } |
| /* |
| * Clear the busfree interrupt status. The setting of |
| * the interrupt is a pulse, so in a perfect world, we |
| * would not need to muck with the ENBUSFREE logic. This |
| * would ensure that if the bus moves on to another |
| * connection, busfree protection is still in force. If |
| * BUSFREEREV is broken, however, we must manually clear |
| * the ENBUSFREE if the busfree occurred during a non-pack |
| * connection so that we don't get false positives during |
| * future, packetized, connections. |
| */ |
| ahd_outb(ahd, CLRSINT1, CLRBUSFREE); |
| if (packetized == 0 |
| && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0) |
| ahd_outb(ahd, SIMODE1, |
| ahd_inb(ahd, SIMODE1) & ~ENBUSFREE); |
| |
| if (clear_fifo) |
| ahd_clear_fifo(ahd, mode); |
| |
| ahd_clear_msg_state(ahd); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| if (restart) { |
| ahd_restart(ahd); |
| } else { |
| ahd_unpause(ahd); |
| } |
| } else { |
| printk("%s: Missing case in ahd_handle_scsiint. status = %x\n", |
| ahd_name(ahd), status); |
| ahd_dump_card_state(ahd); |
| ahd_clear_intstat(ahd); |
| ahd_unpause(ahd); |
| } |
| } |
| |
| static void |
| ahd_handle_transmission_error(struct ahd_softc *ahd) |
| { |
| struct scb *scb; |
| u_int scbid; |
| u_int lqistat1; |
| u_int msg_out; |
| u_int curphase; |
| u_int lastphase; |
| u_int perrdiag; |
| u_int cur_col; |
| int silent; |
| |
| scb = NULL; |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ); |
| ahd_inb(ahd, LQISTAT2); |
| if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0 |
| && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) { |
| u_int lqistate; |
| |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| lqistate = ahd_inb(ahd, LQISTATE); |
| if ((lqistate >= 0x1E && lqistate <= 0x24) |
| || (lqistate == 0x29)) { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { |
| printk("%s: NLQCRC found via LQISTATE\n", |
| ahd_name(ahd)); |
| } |
| #endif |
| lqistat1 |= LQICRCI_NLQ; |
| } |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| } |
| |
| ahd_outb(ahd, CLRLQIINT1, lqistat1); |
| lastphase = ahd_inb(ahd, LASTPHASE); |
| curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; |
| perrdiag = ahd_inb(ahd, PERRDIAG); |
| msg_out = MSG_INITIATOR_DET_ERR; |
| ahd_outb(ahd, CLRSINT1, CLRSCSIPERR); |
| |
| /* |
| * Try to find the SCB associated with this error. |
| */ |
| silent = FALSE; |
| if (lqistat1 == 0 |
| || (lqistat1 & LQICRCI_NLQ) != 0) { |
| if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0) |
| ahd_set_active_fifo(ahd); |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb != NULL && SCB_IS_SILENT(scb)) |
| silent = TRUE; |
| } |
| |
| cur_col = 0; |
| if (silent == FALSE) { |
| printk("%s: Transmission error detected\n", ahd_name(ahd)); |
| ahd_lqistat1_print(lqistat1, &cur_col, 50); |
| ahd_lastphase_print(lastphase, &cur_col, 50); |
| ahd_scsisigi_print(curphase, &cur_col, 50); |
| ahd_perrdiag_print(perrdiag, &cur_col, 50); |
| printk("\n"); |
| ahd_dump_card_state(ahd); |
| } |
| |
| if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) { |
| if (silent == FALSE) { |
| printk("%s: Gross protocol error during incoming " |
| "packet. lqistat1 == 0x%x. Resetting bus.\n", |
| ahd_name(ahd), lqistat1); |
| } |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| return; |
| } else if ((lqistat1 & LQICRCI_LQ) != 0) { |
| /* |
| * A CRC error has been detected on an incoming LQ. |
| * The bus is currently hung on the last ACK. |
| * Hit LQIRETRY to release the last ack, and |
| * wait for the sequencer to determine that ATNO |
| * is asserted while in message out to take us |
| * to our host message loop. No NONPACKREQ or |
| * LQIPHASE type errors will occur in this |
| * scenario. After this first LQIRETRY, the LQI |
| * manager will be in ISELO where it will |
| * happily sit until another packet phase begins. |
| * Unexpected bus free detection is enabled |
| * through any phases that occur after we release |
| * this last ack until the LQI manager sees a |
| * packet phase. This implies we may have to |
| * ignore a perfectly valid "unexected busfree" |
| * after our "initiator detected error" message is |
| * sent. A busfree is the expected response after |
| * we tell the target that it's L_Q was corrupted. |
| * (SPI4R09 10.7.3.3.3) |
| */ |
| ahd_outb(ahd, LQCTL2, LQIRETRY); |
| printk("LQIRetry for LQICRCI_LQ to release ACK\n"); |
| } else if ((lqistat1 & LQICRCI_NLQ) != 0) { |
| /* |
| * We detected a CRC error in a NON-LQ packet. |
| * The hardware has varying behavior in this situation |
| * depending on whether this packet was part of a |
| * stream or not. |
| * |
| * PKT by PKT mode: |
| * The hardware has already acked the complete packet. |
| * If the target honors our outstanding ATN condition, |
| * we should be (or soon will be) in MSGOUT phase. |
| * This will trigger the LQIPHASE_LQ status bit as the |
| * hardware was expecting another LQ. Unexpected |
| * busfree detection is enabled. Once LQIPHASE_LQ is |
| * true (first entry into host message loop is much |
| * the same), we must clear LQIPHASE_LQ and hit |
| * LQIRETRY so the hardware is ready to handle |
| * a future LQ. NONPACKREQ will not be asserted again |
| * once we hit LQIRETRY until another packet is |
| * processed. The target may either go busfree |
| * or start another packet in response to our message. |
| * |
| * Read Streaming P0 asserted: |
| * If we raise ATN and the target completes the entire |
| * stream (P0 asserted during the last packet), the |
| * hardware will ack all data and return to the ISTART |
| * state. When the target reponds to our ATN condition, |
| * LQIPHASE_LQ will be asserted. We should respond to |
| * this with an LQIRETRY to prepare for any future |
| * packets. NONPACKREQ will not be asserted again |
| * once we hit LQIRETRY until another packet is |
| * processed. The target may either go busfree or |
| * start another packet in response to our message. |
| * Busfree detection is enabled. |
| * |
| * Read Streaming P0 not asserted: |
| * If we raise ATN and the target transitions to |
| * MSGOUT in or after a packet where P0 is not |
| * asserted, the hardware will assert LQIPHASE_NLQ. |
| * We should respond to the LQIPHASE_NLQ with an |
| * LQIRETRY. Should the target stay in a non-pkt |
| * phase after we send our message, the hardware |
| * will assert LQIPHASE_LQ. Recovery is then just as |
| * listed above for the read streaming with P0 asserted. |
| * Busfree detection is enabled. |
| */ |
| if (silent == FALSE) |
| printk("LQICRC_NLQ\n"); |
| if (scb == NULL) { |
| printk("%s: No SCB valid for LQICRC_NLQ. " |
| "Resetting bus\n", ahd_name(ahd)); |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| return; |
| } |
| } else if ((lqistat1 & LQIBADLQI) != 0) { |
| printk("Need to handle BADLQI!\n"); |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| return; |
| } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) { |
| if ((curphase & ~P_DATAIN_DT) != 0) { |
| /* Ack the byte. So we can continue. */ |
| if (silent == FALSE) |
| printk("Acking %s to clear perror\n", |
| ahd_lookup_phase_entry(curphase)->phasemsg); |
| ahd_inb(ahd, SCSIDAT); |
| } |
| |
| if (curphase == P_MESGIN) |
| msg_out = MSG_PARITY_ERROR; |
| } |
| |
| /* |
| * We've set the hardware to assert ATN if we |
| * get a parity error on "in" phases, so all we |
| * need to do is stuff the message buffer with |
| * the appropriate message. "In" phases have set |
| * mesg_out to something other than MSG_NOP. |
| */ |
| ahd->send_msg_perror = msg_out; |
| if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR) |
| scb->flags |= SCB_TRANSMISSION_ERROR; |
| ahd_outb(ahd, MSG_OUT, HOST_MSG); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| ahd_unpause(ahd); |
| } |
| |
| static void |
| ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1) |
| { |
| /* |
| * Clear the sources of the interrupts. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd_outb(ahd, CLRLQIINT1, lqistat1); |
| |
| /* |
| * If the "illegal" phase changes were in response |
| * to our ATN to flag a CRC error, AND we ended up |
| * on packet boundaries, clear the error, restart the |
| * LQI manager as appropriate, and go on our merry |
| * way toward sending the message. Otherwise, reset |
| * the bus to clear the error. |
| */ |
| ahd_set_active_fifo(ahd); |
| if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0 |
| && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) { |
| if ((lqistat1 & LQIPHASE_LQ) != 0) { |
| printk("LQIRETRY for LQIPHASE_LQ\n"); |
| ahd_outb(ahd, LQCTL2, LQIRETRY); |
| } else if ((lqistat1 & LQIPHASE_NLQ) != 0) { |
| printk("LQIRETRY for LQIPHASE_NLQ\n"); |
| ahd_outb(ahd, LQCTL2, LQIRETRY); |
| } else |
| panic("ahd_handle_lqiphase_error: No phase errors\n"); |
| ahd_dump_card_state(ahd); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| ahd_unpause(ahd); |
| } else { |
| printk("Resetting Channel for LQI Phase error\n"); |
| ahd_dump_card_state(ahd); |
| ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); |
| } |
| } |
| |
| /* |
| * Packetized unexpected or expected busfree. |
| * Entered in mode based on busfreetime. |
| */ |
| static int |
| ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime) |
| { |
| u_int lqostat1; |
| |
| AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), |
| ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); |
| lqostat1 = ahd_inb(ahd, LQOSTAT1); |
| if ((lqostat1 & LQOBUSFREE) != 0) { |
| struct scb *scb; |
| u_int scbid; |
| u_int saved_scbptr; |
| u_int waiting_h; |
| u_int waiting_t; |
| u_int next; |
| |
| /* |
| * The LQO manager detected an unexpected busfree |
| * either: |
| * |
| * 1) During an outgoing LQ. |
| * 2) After an outgoing LQ but before the first |
| * REQ of the command packet. |
| * 3) During an outgoing command packet. |
| * |
| * In all cases, CURRSCB is pointing to the |
| * SCB that encountered the failure. Clean |
| * up the queue, clear SELDO and LQOBUSFREE, |
| * and allow the sequencer to restart the select |
| * out at its lesure. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| scbid = ahd_inw(ahd, CURRSCB); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) |
| panic("SCB not valid during LQOBUSFREE"); |
| /* |
| * Clear the status. |
| */ |
| ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE); |
| if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) |
| ahd_outb(ahd, CLRLQOINT1, 0); |
| ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); |
| ahd_flush_device_writes(ahd); |
| ahd_outb(ahd, CLRSINT0, CLRSELDO); |
| |
| /* |
| * Return the LQO manager to its idle loop. It will |
| * not do this automatically if the busfree occurs |
| * after the first REQ of either the LQ or command |
| * packet or between the LQ and command packet. |
| */ |
| ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE); |
| |
| /* |
| * Update the waiting for selection queue so |
| * we restart on the correct SCB. |
| */ |
| waiting_h = ahd_inw(ahd, WAITING_TID_HEAD); |
| saved_scbptr = ahd_get_scbptr(ahd); |
| if (waiting_h != scbid) { |
| |
| ahd_outw(ahd, WAITING_TID_HEAD, scbid); |
| waiting_t = ahd_inw(ahd, WAITING_TID_TAIL); |
| if (waiting_t == waiting_h) { |
| ahd_outw(ahd, WAITING_TID_TAIL, scbid); |
| next = SCB_LIST_NULL; |
| } else { |
| ahd_set_scbptr(ahd, waiting_h); |
| next = ahd_inw_scbram(ahd, SCB_NEXT2); |
| } |
| ahd_set_scbptr(ahd, scbid); |
| ahd_outw(ahd, SCB_NEXT2, next); |
| } |
| ahd_set_scbptr(ahd, saved_scbptr); |
| if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) { |
| if (SCB_IS_SILENT(scb) == FALSE) { |
| ahd_print_path(ahd, scb); |
| printk("Probable outgoing LQ CRC error. " |
| "Retrying command\n"); |
| } |
| scb->crc_retry_count++; |
| } else { |
| ahd_set_transaction_status(scb, CAM_UNCOR_PARITY); |
| ahd_freeze_scb(scb); |
| ahd_freeze_devq(ahd, scb); |
| } |
| /* Return unpausing the sequencer. */ |
| return (0); |
| } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) { |
| /* |
| * Ignore what are really parity errors that |
| * occur on the last REQ of a free running |
| * clock prior to going busfree. Some drives |
| * do not properly active negate just before |
| * going busfree resulting in a parity glitch. |
| */ |
| ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0) |
| printk("%s: Parity on last REQ detected " |
| "during busfree phase.\n", |
| ahd_name(ahd)); |
| #endif |
| /* Return unpausing the sequencer. */ |
| return (0); |
| } |
| if (ahd->src_mode != AHD_MODE_SCSI) { |
| u_int scbid; |
| struct scb *scb; |
| |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| ahd_print_path(ahd, scb); |
| printk("Unexpected PKT busfree condition\n"); |
| ahd_dump_card_state(ahd); |
| ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A', |
| SCB_GET_LUN(scb), SCB_GET_TAG(scb), |
| ROLE_INITIATOR, CAM_UNEXP_BUSFREE); |
| |
| /* Return restarting the sequencer. */ |
| return (1); |
| } |
| printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd)); |
| ahd_dump_card_state(ahd); |
| /* Restart the sequencer. */ |
| return (1); |
| } |
| |
| /* |
| * Non-packetized unexpected or expected busfree. |
| */ |
| static int |
| ahd_handle_nonpkt_busfree(struct ahd_softc *ahd) |
| { |
| struct ahd_devinfo devinfo; |
| struct scb *scb; |
| u_int lastphase; |
| u_int saved_scsiid; |
| u_int saved_lun; |
| u_int target; |
| u_int initiator_role_id; |
| u_int scbid; |
| u_int ppr_busfree; |
| int printerror; |
| |
| /* |
| * Look at what phase we were last in. If its message out, |
| * chances are pretty good that the busfree was in response |
| * to one of our abort requests. |
| */ |
| lastphase = ahd_inb(ahd, LASTPHASE); |
| saved_scsiid = ahd_inb(ahd, SAVED_SCSIID); |
| saved_lun = ahd_inb(ahd, SAVED_LUN); |
| target = SCSIID_TARGET(ahd, saved_scsiid); |
| initiator_role_id = SCSIID_OUR_ID(saved_scsiid); |
| ahd_compile_devinfo(&devinfo, initiator_role_id, |
| target, saved_lun, 'A', ROLE_INITIATOR); |
| printerror = 1; |
| |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb != NULL |
| && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) |
| scb = NULL; |
| |
| ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0; |
| if (lastphase == P_MESGOUT) { |
| u_int tag; |
| |
| tag = SCB_LIST_NULL; |
| if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE) |
| || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) { |
| int found; |
| int sent_msg; |
| |
| if (scb == NULL) { |
| ahd_print_devinfo(ahd, &devinfo); |
| printk("Abort for unidentified " |
| "connection completed.\n"); |
| /* restart the sequencer. */ |
| return (1); |
| } |
| sent_msg = ahd->msgout_buf[ahd->msgout_index - 1]; |
| ahd_print_path(ahd, scb); |
| printk("SCB %d - Abort%s Completed.\n", |
| SCB_GET_TAG(scb), |
| sent_msg == MSG_ABORT_TAG ? "" : " Tag"); |
| |
| if (sent_msg == MSG_ABORT_TAG) |
| tag = SCB_GET_TAG(scb); |
| |
| if ((scb->flags & SCB_EXTERNAL_RESET) != 0) { |
| /* |
| * This abort is in response to an |
| * unexpected switch to command phase |
| * for a packetized connection. Since |
| * the identify message was never sent, |
| * "saved lun" is 0. We really want to |
| * abort only the SCB that encountered |
| * this error, which could have a different |
| * lun. The SCB will be retried so the OS |
| * will see the UA after renegotiating to |
| * packetized. |
| */ |
| tag = SCB_GET_TAG(scb); |
| saved_lun = scb->hscb->lun; |
| } |
| found = ahd_abort_scbs(ahd, target, 'A', saved_lun, |
| tag, ROLE_INITIATOR, |
| CAM_REQ_ABORTED); |
| printk("found == 0x%x\n", found); |
| printerror = 0; |
| } else if (ahd_sent_msg(ahd, AHDMSG_1B, |
| MSG_BUS_DEV_RESET, TRUE)) { |
| ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD, |
| CAM_BDR_SENT, "Bus Device Reset", |
| /*verbose_level*/0); |
| printerror = 0; |
| } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE) |
| && ppr_busfree == 0) { |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| |
| /* |
| * PPR Rejected. |
| * |
| * If the previous negotiation was packetized, |
| * this could be because the device has been |
| * reset without our knowledge. Force our |
| * current negotiation to async and retry the |
| * negotiation. Otherwise retry the command |
| * with non-ppr negotiation. |
| */ |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("PPR negotiation rejected busfree.\n"); |
| #endif |
| tinfo = ahd_fetch_transinfo(ahd, devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, &tstate); |
| if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) { |
| ahd_set_width(ahd, &devinfo, |
| MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_CUR, |
| /*paused*/TRUE); |
| ahd_set_syncrate(ahd, &devinfo, |
| /*period*/0, /*offset*/0, |
| /*ppr_options*/0, |
| AHD_TRANS_CUR, |
| /*paused*/TRUE); |
| /* |
| * The expect PPR busfree handler below |
| * will effect the retry and necessary |
| * abort. |
| */ |
| } else { |
| tinfo->curr.transport_version = 2; |
| tinfo->goal.transport_version = 2; |
| tinfo->goal.ppr_options = 0; |
| if (scb != NULL) { |
| /* |
| * Remove any SCBs in the waiting |
| * for selection queue that may |
| * also be for this target so that |
| * command ordering is preserved. |
| */ |
| ahd_freeze_devq(ahd, scb); |
| ahd_qinfifo_requeue_tail(ahd, scb); |
| } |
| printerror = 0; |
| } |
| } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE) |
| && ppr_busfree == 0) { |
| /* |
| * Negotiation Rejected. Go-narrow and |
| * retry command. |
| */ |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("WDTR negotiation rejected busfree.\n"); |
| #endif |
| ahd_set_width(ahd, &devinfo, |
| MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_CUR|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| if (scb != NULL) { |
| /* |
| * Remove any SCBs in the waiting for |
| * selection queue that may also be for |
| * this target so that command ordering |
| * is preserved. |
| */ |
| ahd_freeze_devq(ahd, scb); |
| ahd_qinfifo_requeue_tail(ahd, scb); |
| } |
| printerror = 0; |
| } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE) |
| && ppr_busfree == 0) { |
| /* |
| * Negotiation Rejected. Go-async and |
| * retry command. |
| */ |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("SDTR negotiation rejected busfree.\n"); |
| #endif |
| ahd_set_syncrate(ahd, &devinfo, |
| /*period*/0, /*offset*/0, |
| /*ppr_options*/0, |
| AHD_TRANS_CUR|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| if (scb != NULL) { |
| /* |
| * Remove any SCBs in the waiting for |
| * selection queue that may also be for |
| * this target so that command ordering |
| * is preserved. |
| */ |
| ahd_freeze_devq(ahd, scb); |
| ahd_qinfifo_requeue_tail(ahd, scb); |
| } |
| printerror = 0; |
| } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0 |
| && ahd_sent_msg(ahd, AHDMSG_1B, |
| MSG_INITIATOR_DET_ERR, TRUE)) { |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("Expected IDE Busfree\n"); |
| #endif |
| printerror = 0; |
| } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE) |
| && ahd_sent_msg(ahd, AHDMSG_1B, |
| MSG_MESSAGE_REJECT, TRUE)) { |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("Expected QAS Reject Busfree\n"); |
| #endif |
| printerror = 0; |
| } |
| } |
| |
| /* |
| * The busfree required flag is honored at the end of |
| * the message phases. We check it last in case we |
| * had to send some other message that caused a busfree. |
| */ |
| if (scb != NULL && printerror != 0 |
| && (lastphase == P_MESGIN || lastphase == P_MESGOUT) |
| && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) { |
| |
| ahd_freeze_devq(ahd, scb); |
| ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); |
| ahd_freeze_scb(scb); |
| if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) { |
| ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), |
| SCB_GET_CHANNEL(ahd, scb), |
| SCB_GET_LUN(scb), SCB_LIST_NULL, |
| ROLE_INITIATOR, CAM_REQ_ABORTED); |
| } else { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("PPR Negotiation Busfree.\n"); |
| #endif |
| ahd_done(ahd, scb); |
| } |
| printerror = 0; |
| } |
| if (printerror != 0) { |
| int aborted; |
| |
| aborted = 0; |
| if (scb != NULL) { |
| u_int tag; |
| |
| if ((scb->hscb->control & TAG_ENB) != 0) |
| tag = SCB_GET_TAG(scb); |
| else |
| tag = SCB_LIST_NULL; |
| ahd_print_path(ahd, scb); |
| aborted = ahd_abort_scbs(ahd, target, 'A', |
| SCB_GET_LUN(scb), tag, |
| ROLE_INITIATOR, |
| CAM_UNEXP_BUSFREE); |
| } else { |
| /* |
| * We had not fully identified this connection, |
| * so we cannot abort anything. |
| */ |
| printk("%s: ", ahd_name(ahd)); |
| } |
| printk("Unexpected busfree %s, %d SCBs aborted, " |
| "PRGMCNT == 0x%x\n", |
| ahd_lookup_phase_entry(lastphase)->phasemsg, |
| aborted, |
| ahd_inw(ahd, PRGMCNT)); |
| ahd_dump_card_state(ahd); |
| if (lastphase != P_BUSFREE) |
| ahd_force_renegotiation(ahd, &devinfo); |
| } |
| /* Always restart the sequencer. */ |
| return (1); |
| } |
| |
| static void |
| ahd_handle_proto_violation(struct ahd_softc *ahd) |
| { |
| struct ahd_devinfo devinfo; |
| struct scb *scb; |
| u_int scbid; |
| u_int seq_flags; |
| u_int curphase; |
| u_int lastphase; |
| int found; |
| |
| ahd_fetch_devinfo(ahd, &devinfo); |
| scbid = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scbid); |
| seq_flags = ahd_inb(ahd, SEQ_FLAGS); |
| curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; |
| lastphase = ahd_inb(ahd, LASTPHASE); |
| if ((seq_flags & NOT_IDENTIFIED) != 0) { |
| |
| /* |
| * The reconnecting target either did not send an |
| * identify message, or did, but we didn't find an SCB |
| * to match. |
| */ |
| ahd_print_devinfo(ahd, &devinfo); |
| printk("Target did not send an IDENTIFY message. " |
| "LASTPHASE = 0x%x.\n", lastphase); |
| scb = NULL; |
| } else if (scb == NULL) { |
| /* |
| * We don't seem to have an SCB active for this |
| * transaction. Print an error and reset the bus. |
| */ |
| ahd_print_devinfo(ahd, &devinfo); |
| printk("No SCB found during protocol violation\n"); |
| goto proto_violation_reset; |
| } else { |
| ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL); |
| if ((seq_flags & NO_CDB_SENT) != 0) { |
| ahd_print_path(ahd, scb); |
| printk("No or incomplete CDB sent to device.\n"); |
| } else if ((ahd_inb_scbram(ahd, SCB_CONTROL) |
| & STATUS_RCVD) == 0) { |
| /* |
| * The target never bothered to provide status to |
| * us prior to completing the command. Since we don't |
| * know the disposition of this command, we must attempt |
| * to abort it. Assert ATN and prepare to send an abort |
| * message. |
| */ |
| ahd_print_path(ahd, scb); |
| printk("Completed command without status.\n"); |
| } else { |
| ahd_print_path(ahd, scb); |
| printk("Unknown protocol violation.\n"); |
| ahd_dump_card_state(ahd); |
| } |
| } |
| if ((lastphase & ~P_DATAIN_DT) == 0 |
| || lastphase == P_COMMAND) { |
| proto_violation_reset: |
| /* |
| * Target either went directly to data |
| * phase or didn't respond to our ATN. |
| * The only safe thing to do is to blow |
| * it away with a bus reset. |
| */ |
| found = ahd_reset_channel(ahd, 'A', TRUE); |
| printk("%s: Issued Channel %c Bus Reset. " |
| "%d SCBs aborted\n", ahd_name(ahd), 'A', found); |
| } else { |
| /* |
| * Leave the selection hardware off in case |
| * this abort attempt will affect yet to |
| * be sent commands. |
| */ |
| ahd_outb(ahd, SCSISEQ0, |
| ahd_inb(ahd, SCSISEQ0) & ~ENSELO); |
| ahd_assert_atn(ahd); |
| ahd_outb(ahd, MSG_OUT, HOST_MSG); |
| if (scb == NULL) { |
| ahd_print_devinfo(ahd, &devinfo); |
| ahd->msgout_buf[0] = MSG_ABORT_TASK; |
| ahd->msgout_len = 1; |
| ahd->msgout_index = 0; |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| } else { |
| ahd_print_path(ahd, scb); |
| scb->flags |= SCB_ABORT; |
| } |
| printk("Protocol violation %s. Attempting to abort.\n", |
| ahd_lookup_phase_entry(curphase)->phasemsg); |
| } |
| } |
| |
| /* |
| * Force renegotiation to occur the next time we initiate |
| * a command to the current device. |
| */ |
| static void |
| ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) |
| { |
| struct ahd_initiator_tinfo *targ_info; |
| struct ahd_tmode_tstate *tstate; |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { |
| ahd_print_devinfo(ahd, devinfo); |
| printk("Forcing renegotiation\n"); |
| } |
| #endif |
| targ_info = ahd_fetch_transinfo(ahd, |
| devinfo->channel, |
| devinfo->our_scsiid, |
| devinfo->target, |
| &tstate); |
| ahd_update_neg_request(ahd, devinfo, tstate, |
| targ_info, AHD_NEG_IF_NON_ASYNC); |
| } |
| |
| #define AHD_MAX_STEPS 2000 |
| static void |
| ahd_clear_critical_section(struct ahd_softc *ahd) |
| { |
| ahd_mode_state saved_modes; |
| int stepping; |
| int steps; |
| int first_instr; |
| u_int simode0; |
| u_int simode1; |
| u_int simode3; |
| u_int lqimode0; |
| u_int lqimode1; |
| u_int lqomode0; |
| u_int lqomode1; |
| |
| if (ahd->num_critical_sections == 0) |
| return; |
| |
| stepping = FALSE; |
| steps = 0; |
| first_instr = 0; |
| simode0 = 0; |
| simode1 = 0; |
| simode3 = 0; |
| lqimode0 = 0; |
| lqimode1 = 0; |
| lqomode0 = 0; |
| lqomode1 = 0; |
| saved_modes = ahd_save_modes(ahd); |
| for (;;) { |
| struct cs *cs; |
| u_int seqaddr; |
| u_int i; |
| |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| seqaddr = ahd_inw(ahd, CURADDR); |
| |
| cs = ahd->critical_sections; |
| for (i = 0; i < ahd->num_critical_sections; i++, cs++) { |
| |
| if (cs->begin < seqaddr && cs->end >= seqaddr) |
| break; |
| } |
| |
| if (i == ahd->num_critical_sections) |
| break; |
| |
| if (steps > AHD_MAX_STEPS) { |
| printk("%s: Infinite loop in critical section\n" |
| "%s: First Instruction 0x%x now 0x%x\n", |
| ahd_name(ahd), ahd_name(ahd), first_instr, |
| seqaddr); |
| ahd_dump_card_state(ahd); |
| panic("critical section loop"); |
| } |
| |
| steps++; |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("%s: Single stepping at 0x%x\n", ahd_name(ahd), |
| seqaddr); |
| #endif |
| if (stepping == FALSE) { |
| |
| first_instr = seqaddr; |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| simode0 = ahd_inb(ahd, SIMODE0); |
| simode3 = ahd_inb(ahd, SIMODE3); |
| lqimode0 = ahd_inb(ahd, LQIMODE0); |
| lqimode1 = ahd_inb(ahd, LQIMODE1); |
| lqomode0 = ahd_inb(ahd, LQOMODE0); |
| lqomode1 = ahd_inb(ahd, LQOMODE1); |
| ahd_outb(ahd, SIMODE0, 0); |
| ahd_outb(ahd, SIMODE3, 0); |
| ahd_outb(ahd, LQIMODE0, 0); |
| ahd_outb(ahd, LQIMODE1, 0); |
| ahd_outb(ahd, LQOMODE0, 0); |
| ahd_outb(ahd, LQOMODE1, 0); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| simode1 = ahd_inb(ahd, SIMODE1); |
| /* |
| * We don't clear ENBUSFREE. Unfortunately |
| * we cannot re-enable busfree detection within |
| * the current connection, so we must leave it |
| * on while single stepping. |
| */ |
| ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE); |
| ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP); |
| stepping = TRUE; |
| } |
| ahd_outb(ahd, CLRSINT1, CLRBUSFREE); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); |
| ahd_outb(ahd, HCNTRL, ahd->unpause); |
| while (!ahd_is_paused(ahd)) |
| ahd_delay(200); |
| ahd_update_modes(ahd); |
| } |
| if (stepping) { |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| ahd_outb(ahd, SIMODE0, simode0); |
| ahd_outb(ahd, SIMODE3, simode3); |
| ahd_outb(ahd, LQIMODE0, lqimode0); |
| ahd_outb(ahd, LQIMODE1, lqimode1); |
| ahd_outb(ahd, LQOMODE0, lqomode0); |
| ahd_outb(ahd, LQOMODE1, lqomode1); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP); |
| ahd_outb(ahd, SIMODE1, simode1); |
| /* |
| * SCSIINT seems to glitch occasionally when |
| * the interrupt masks are restored. Clear SCSIINT |
| * one more time so that only persistent errors |
| * are seen as a real interrupt. |
| */ |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| } |
| ahd_restore_modes(ahd, saved_modes); |
| } |
| |
| /* |
| * Clear any pending interrupt status. |
| */ |
| static void |
| ahd_clear_intstat(struct ahd_softc *ahd) |
| { |
| AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), |
| ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); |
| /* Clear any interrupt conditions this may have caused */ |
| ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2 |
| |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD); |
| ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT |
| |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI |
| |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ); |
| ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ |
| |CLRLQOATNPKT|CLRLQOTCRC); |
| ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS |
| |CLRLQOBUSFREE|CLRLQOPHACHGINPKT); |
| if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) { |
| ahd_outb(ahd, CLRLQOINT0, 0); |
| ahd_outb(ahd, CLRLQOINT1, 0); |
| } |
| ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR); |
| ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI |
| |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT); |
| ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO |
| |CLRIOERR|CLROVERRUN); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| } |
| |
| /**************************** Debugging Routines ******************************/ |
| #ifdef AHD_DEBUG |
| uint32_t ahd_debug = AHD_DEBUG_OPTS; |
| #endif |
| |
| #if 0 |
| void |
| ahd_print_scb(struct scb *scb) |
| { |
| struct hardware_scb *hscb; |
| int i; |
| |
| hscb = scb->hscb; |
| printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n", |
| (void *)scb, |
| hscb->control, |
| hscb->scsiid, |
| hscb->lun, |
| hscb->cdb_len); |
| printk("Shared Data: "); |
| for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++) |
| printk("%#02x", hscb->shared_data.idata.cdb[i]); |
| printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n", |
| (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF), |
| (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF), |
| ahd_le32toh(hscb->datacnt), |
| ahd_le32toh(hscb->sgptr), |
| SCB_GET_TAG(scb)); |
| ahd_dump_sglist(scb); |
| } |
| #endif /* 0 */ |
| |
| /************************* Transfer Negotiation *******************************/ |
| /* |
| * Allocate per target mode instance (ID we respond to as a target) |
| * transfer negotiation data structures. |
| */ |
| static struct ahd_tmode_tstate * |
| ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel) |
| { |
| struct ahd_tmode_tstate *master_tstate; |
| struct ahd_tmode_tstate *tstate; |
| int i; |
| |
| master_tstate = ahd->enabled_targets[ahd->our_id]; |
| if (ahd->enabled_targets[scsi_id] != NULL |
| && ahd->enabled_targets[scsi_id] != master_tstate) |
| panic("%s: ahd_alloc_tstate - Target already allocated", |
| ahd_name(ahd)); |
| tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC); |
| if (tstate == NULL) |
| return (NULL); |
| |
| /* |
| * If we have allocated a master tstate, copy user settings from |
| * the master tstate (taken from SRAM or the EEPROM) for this |
| * channel, but reset our current and goal settings to async/narrow |
| * until an initiator talks to us. |
| */ |
| if (master_tstate != NULL) { |
| memcpy(tstate, master_tstate, sizeof(*tstate)); |
| memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns)); |
| for (i = 0; i < 16; i++) { |
| memset(&tstate->transinfo[i].curr, 0, |
| sizeof(tstate->transinfo[i].curr)); |
| memset(&tstate->transinfo[i].goal, 0, |
| sizeof(tstate->transinfo[i].goal)); |
| } |
| } else |
| memset(tstate, 0, sizeof(*tstate)); |
| ahd->enabled_targets[scsi_id] = tstate; |
| return (tstate); |
| } |
| |
| #ifdef AHD_TARGET_MODE |
| /* |
| * Free per target mode instance (ID we respond to as a target) |
| * transfer negotiation data structures. |
| */ |
| static void |
| ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force) |
| { |
| struct ahd_tmode_tstate *tstate; |
| |
| /* |
| * Don't clean up our "master" tstate. |
| * It has our default user settings. |
| */ |
| if (scsi_id == ahd->our_id |
| && force == FALSE) |
| return; |
| |
| tstate = ahd->enabled_targets[scsi_id]; |
| kfree(tstate); |
| ahd->enabled_targets[scsi_id] = NULL; |
| } |
| #endif |
| |
| /* |
| * Called when we have an active connection to a target on the bus, |
| * this function finds the nearest period to the input period limited |
| * by the capabilities of the bus connectivity of and sync settings for |
| * the target. |
| */ |
| static void |
| ahd_devlimited_syncrate(struct ahd_softc *ahd, |
| struct ahd_initiator_tinfo *tinfo, |
| u_int *period, u_int *ppr_options, role_t role) |
| { |
| struct ahd_transinfo *transinfo; |
| u_int maxsync; |
| |
| if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0 |
| && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) { |
| maxsync = AHD_SYNCRATE_PACED; |
| } else { |
| maxsync = AHD_SYNCRATE_ULTRA; |
| /* Can't do DT related options on an SE bus */ |
| *ppr_options &= MSG_EXT_PPR_QAS_REQ; |
| } |
| /* |
| * Never allow a value higher than our current goal |
| * period otherwise we may allow a target initiated |
| * negotiation to go above the limit as set by the |
| * user. In the case of an initiator initiated |
| * sync negotiation, we limit based on the user |
| * setting. This allows the system to still accept |
| * incoming negotiations even if target initiated |
| * negotiation is not performed. |
| */ |
| if (role == ROLE_TARGET) |
| transinfo = &tinfo->user; |
| else |
| transinfo = &tinfo->goal; |
| *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN); |
| if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) { |
| maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2); |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| } |
| if (transinfo->period == 0) { |
| *period = 0; |
| *ppr_options = 0; |
| } else { |
| *period = max(*period, (u_int)transinfo->period); |
| ahd_find_syncrate(ahd, period, ppr_options, maxsync); |
| } |
| } |
| |
| /* |
| * Look up the valid period to SCSIRATE conversion in our table. |
| * Return the period and offset that should be sent to the target |
| * if this was the beginning of an SDTR. |
| */ |
| void |
| ahd_find_syncrate(struct ahd_softc *ahd, u_int *period, |
| u_int *ppr_options, u_int maxsync) |
| { |
| if (*period < maxsync) |
| *period = maxsync; |
| |
| if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0 |
| && *period > AHD_SYNCRATE_MIN_DT) |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| |
| if (*period > AHD_SYNCRATE_MIN) |
| *period = 0; |
| |
| /* Honor PPR option conformance rules. */ |
| if (*period > AHD_SYNCRATE_PACED) |
| *ppr_options &= ~MSG_EXT_PPR_RTI; |
| |
| if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0) |
| *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ); |
| |
| if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0) |
| *ppr_options &= MSG_EXT_PPR_QAS_REQ; |
| |
| /* Skip all PACED only entries if IU is not available */ |
| if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0 |
| && *period < AHD_SYNCRATE_DT) |
| *period = AHD_SYNCRATE_DT; |
| |
| /* Skip all DT only entries if DT is not available */ |
| if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0 |
| && *period < AHD_SYNCRATE_ULTRA2) |
| *period = AHD_SYNCRATE_ULTRA2; |
| } |
| |
| /* |
| * Truncate the given synchronous offset to a value the |
| * current adapter type and syncrate are capable of. |
| */ |
| static void |
| ahd_validate_offset(struct ahd_softc *ahd, |
| struct ahd_initiator_tinfo *tinfo, |
| u_int period, u_int *offset, int wide, |
| role_t role) |
| { |
| u_int maxoffset; |
| |
| /* Limit offset to what we can do */ |
| if (period == 0) |
| maxoffset = 0; |
| else if (period <= AHD_SYNCRATE_PACED) { |
| if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) |
| maxoffset = MAX_OFFSET_PACED_BUG; |
| else |
| maxoffset = MAX_OFFSET_PACED; |
| } else |
| maxoffset = MAX_OFFSET_NON_PACED; |
| *offset = min(*offset, maxoffset); |
| if (tinfo != NULL) { |
| if (role == ROLE_TARGET) |
| *offset = min(*offset, (u_int)tinfo->user.offset); |
| else |
| *offset = min(*offset, (u_int)tinfo->goal.offset); |
| } |
| } |
| |
| /* |
| * Truncate the given transfer width parameter to a value the |
| * current adapter type is capable of. |
| */ |
| static void |
| ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo, |
| u_int *bus_width, role_t role) |
| { |
| switch (*bus_width) { |
| default: |
| if (ahd->features & AHD_WIDE) { |
| /* Respond Wide */ |
| *bus_width = MSG_EXT_WDTR_BUS_16_BIT; |
| break; |
| } |
| fallthrough; |
| case MSG_EXT_WDTR_BUS_8_BIT: |
| *bus_width = MSG_EXT_WDTR_BUS_8_BIT; |
| break; |
| } |
| if (tinfo != NULL) { |
| if (role == ROLE_TARGET) |
| *bus_width = min((u_int)tinfo->user.width, *bus_width); |
| else |
| *bus_width = min((u_int)tinfo->goal.width, *bus_width); |
| } |
| } |
| |
| /* |
| * Update the bitmask of targets for which the controller should |
| * negotiate with at the next convenient opportunity. This currently |
| * means the next time we send the initial identify messages for |
| * a new transaction. |
| */ |
| int |
| ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| struct ahd_tmode_tstate *tstate, |
| struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type) |
| { |
| u_int auto_negotiate_orig; |
| |
| auto_negotiate_orig = tstate->auto_negotiate; |
| if (neg_type == AHD_NEG_ALWAYS) { |
| /* |
| * Force our "current" settings to be |
| * unknown so that unless a bus reset |
| * occurs the need to renegotiate is |
| * recorded persistently. |
| */ |
| if ((ahd->features & AHD_WIDE) != 0) |
| tinfo->curr.width = AHD_WIDTH_UNKNOWN; |
| tinfo->curr.period = AHD_PERIOD_UNKNOWN; |
| tinfo->curr.offset = AHD_OFFSET_UNKNOWN; |
| } |
| if (tinfo->curr.period != tinfo->goal.period |
| || tinfo->curr.width != tinfo->goal.width |
| || tinfo->curr.offset != tinfo->goal.offset |
| || tinfo->curr.ppr_options != tinfo->goal.ppr_options |
| || (neg_type == AHD_NEG_IF_NON_ASYNC |
| && (tinfo->goal.offset != 0 |
| || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT |
| || tinfo->goal.ppr_options != 0))) |
| tstate->auto_negotiate |= devinfo->target_mask; |
| else |
| tstate->auto_negotiate &= ~devinfo->target_mask; |
| |
| return (auto_negotiate_orig != tstate->auto_negotiate); |
| } |
| |
| /* |
| * Update the user/goal/curr tables of synchronous negotiation |
| * parameters as well as, in the case of a current or active update, |
| * any data structures on the host controller. In the case of an |
| * active update, the specified target is currently talking to us on |
| * the bus, so the transfer parameter update must take effect |
| * immediately. |
| */ |
| void |
| ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| u_int period, u_int offset, u_int ppr_options, |
| u_int type, int paused) |
| { |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| u_int old_period; |
| u_int old_offset; |
| u_int old_ppr; |
| int active; |
| int update_needed; |
| |
| active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE; |
| update_needed = 0; |
| |
| if (period == 0 || offset == 0) { |
| period = 0; |
| offset = 0; |
| } |
| |
| tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| |
| if ((type & AHD_TRANS_USER) != 0) { |
| tinfo->user.period = period; |
| tinfo->user.offset = offset; |
| tinfo->user.ppr_options = ppr_options; |
| } |
| |
| if ((type & AHD_TRANS_GOAL) != 0) { |
| tinfo->goal.period = period; |
| tinfo->goal.offset = offset; |
| tinfo->goal.ppr_options = ppr_options; |
| } |
| |
| old_period = tinfo->curr.period; |
| old_offset = tinfo->curr.offset; |
| old_ppr = tinfo->curr.ppr_options; |
| |
| if ((type & AHD_TRANS_CUR) != 0 |
| && (old_period != period |
| || old_offset != offset |
| || old_ppr != ppr_options)) { |
| |
| update_needed++; |
| |
| tinfo->curr.period = period; |
| tinfo->curr.offset = offset; |
| tinfo->curr.ppr_options = ppr_options; |
| |
| ahd_send_async(ahd, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_TRANSFER_NEG); |
| if (bootverbose) { |
| if (offset != 0) { |
| int options; |
| |
| printk("%s: target %d synchronous with " |
| "period = 0x%x, offset = 0x%x", |
| ahd_name(ahd), devinfo->target, |
| period, offset); |
| options = 0; |
| if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) { |
| printk("(RDSTRM"); |
| options++; |
| } |
| if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) { |
| printk("%s", options ? "|DT" : "(DT"); |
| options++; |
| } |
| if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { |
| printk("%s", options ? "|IU" : "(IU"); |
| options++; |
| } |
| if ((ppr_options & MSG_EXT_PPR_RTI) != 0) { |
| printk("%s", options ? "|RTI" : "(RTI"); |
| options++; |
| } |
| if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) { |
| printk("%s", options ? "|QAS" : "(QAS"); |
| options++; |
| } |
| if (options != 0) |
| printk(")\n"); |
| else |
| printk("\n"); |
| } else { |
| printk("%s: target %d using " |
| "asynchronous transfers%s\n", |
| ahd_name(ahd), devinfo->target, |
| (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0 |
| ? "(QAS)" : ""); |
| } |
| } |
| } |
| /* |
| * Always refresh the neg-table to handle the case of the |
| * sequencer setting the ENATNO bit for a MK_MESSAGE request. |
| * We will always renegotiate in that case if this is a |
| * packetized request. Also manage the busfree expected flag |
| * from this common routine so that we catch changes due to |
| * WDTR or SDTR messages. |
| */ |
| if ((type & AHD_TRANS_CUR) != 0) { |
| if (!paused) |
| ahd_pause(ahd); |
| ahd_update_neg_table(ahd, devinfo, &tinfo->curr); |
| if (!paused) |
| ahd_unpause(ahd); |
| if (ahd->msg_type != MSG_TYPE_NONE) { |
| if ((old_ppr & MSG_EXT_PPR_IU_REQ) |
| != (ppr_options & MSG_EXT_PPR_IU_REQ)) { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { |
| ahd_print_devinfo(ahd, devinfo); |
| printk("Expecting IU Change busfree\n"); |
| } |
| #endif |
| ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE |
| | MSG_FLAG_IU_REQ_CHANGED; |
| } |
| if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("PPR with IU_REQ outstanding\n"); |
| #endif |
| ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE; |
| } |
| } |
| } |
| |
| update_needed += ahd_update_neg_request(ahd, devinfo, tstate, |
| tinfo, AHD_NEG_TO_GOAL); |
| |
| if (update_needed && active) |
| ahd_update_pending_scbs(ahd); |
| } |
| |
| /* |
| * Update the user/goal/curr tables of wide negotiation |
| * parameters as well as, in the case of a current or active update, |
| * any data structures on the host controller. In the case of an |
| * active update, the specified target is currently talking to us on |
| * the bus, so the transfer parameter update must take effect |
| * immediately. |
| */ |
| void |
| ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| u_int width, u_int type, int paused) |
| { |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| u_int oldwidth; |
| int active; |
| int update_needed; |
| |
| active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE; |
| update_needed = 0; |
| tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| |
| if ((type & AHD_TRANS_USER) != 0) |
| tinfo->user.width = width; |
| |
| if ((type & AHD_TRANS_GOAL) != 0) |
| tinfo->goal.width = width; |
| |
| oldwidth = tinfo->curr.width; |
| if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) { |
| |
| update_needed++; |
| |
| tinfo->curr.width = width; |
| ahd_send_async(ahd, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_TRANSFER_NEG); |
| if (bootverbose) { |
| printk("%s: target %d using %dbit transfers\n", |
| ahd_name(ahd), devinfo->target, |
| 8 * (0x01 << width)); |
| } |
| } |
| |
| if ((type & AHD_TRANS_CUR) != 0) { |
| if (!paused) |
| ahd_pause(ahd); |
| ahd_update_neg_table(ahd, devinfo, &tinfo->curr); |
| if (!paused) |
| ahd_unpause(ahd); |
| } |
| |
| update_needed += ahd_update_neg_request(ahd, devinfo, tstate, |
| tinfo, AHD_NEG_TO_GOAL); |
| if (update_needed && active) |
| ahd_update_pending_scbs(ahd); |
| |
| } |
| |
| /* |
| * Update the current state of tagged queuing for a given target. |
| */ |
| static void |
| ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd, |
| struct ahd_devinfo *devinfo, ahd_queue_alg alg) |
| { |
| struct scsi_device *sdev = cmd->device; |
| |
| ahd_platform_set_tags(ahd, sdev, devinfo, alg); |
| ahd_send_async(ahd, devinfo->channel, devinfo->target, |
| devinfo->lun, AC_TRANSFER_NEG); |
| } |
| |
| static void |
| ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| struct ahd_transinfo *tinfo) |
| { |
| ahd_mode_state saved_modes; |
| u_int period; |
| u_int ppr_opts; |
| u_int con_opts; |
| u_int offset; |
| u_int saved_negoaddr; |
| uint8_t iocell_opts[sizeof(ahd->iocell_opts)]; |
| |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| |
| saved_negoaddr = ahd_inb(ahd, NEGOADDR); |
| ahd_outb(ahd, NEGOADDR, devinfo->target); |
| period = tinfo->period; |
| offset = tinfo->offset; |
| memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts)); |
| ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ |
| |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI); |
| con_opts = 0; |
| if (period == 0) |
| period = AHD_SYNCRATE_ASYNC; |
| if (period == AHD_SYNCRATE_160) { |
| |
| if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) { |
| /* |
| * When the SPI4 spec was finalized, PACE transfers |
| * was not made a configurable option in the PPR |
| * message. Instead it is assumed to be enabled for |
| * any syncrate faster than 80MHz. Nevertheless, |
| * Harpoon2A4 allows this to be configurable. |
| * |
| * Harpoon2A4 also assumes at most 2 data bytes per |
| * negotiated REQ/ACK offset. Paced transfers take |
| * 4, so we must adjust our offset. |
| */ |
| ppr_opts |= PPROPT_PACE; |
| offset *= 2; |
| |
| /* |
| * Harpoon2A assumed that there would be a |
| * fallback rate between 160MHz and 80MHz, |
| * so 7 is used as the period factor rather |
| * than 8 for 160MHz. |
| */ |
| period = AHD_SYNCRATE_REVA_160; |
| } |
| if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0) |
| iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= |
| ~AHD_PRECOMP_MASK; |
| } else { |
| /* |
| * Precomp should be disabled for non-paced transfers. |
| */ |
| iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK; |
| |
| if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0 |
| && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0 |
| && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) { |
| /* |
| * Slow down our CRC interval to be |
| * compatible with non-packetized |
| * U160 devices that can't handle a |
| * CRC at full speed. |
| */ |
| con_opts |= ENSLOWCRC; |
| } |
| |
| if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) { |
| /* |
| * On H2A4, revert to a slower slewrate |
| * on non-paced transfers. |
| */ |
| iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= |
| ~AHD_SLEWRATE_MASK; |
| } |
| } |
| |
| ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW); |
| ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]); |
| ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE); |
| ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]); |
| |
| ahd_outb(ahd, NEGPERIOD, period); |
| ahd_outb(ahd, NEGPPROPTS, ppr_opts); |
| ahd_outb(ahd, NEGOFFSET, offset); |
| |
| if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT) |
| con_opts |= WIDEXFER; |
| |
| /* |
| * Slow down our CRC interval to be |
| * compatible with packetized U320 devices |
| * that can't handle a CRC at full speed |
| */ |
| if (ahd->features & AHD_AIC79XXB_SLOWCRC) { |
| con_opts |= ENSLOWCRC; |
| } |
| |
| /* |
| * During packetized transfers, the target will |
| * give us the opportunity to send command packets |
| * without us asserting attention. |
| */ |
| if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0) |
| con_opts |= ENAUTOATNO; |
| ahd_outb(ahd, NEGCONOPTS, con_opts); |
| ahd_outb(ahd, NEGOADDR, saved_negoaddr); |
| ahd_restore_modes(ahd, saved_modes); |
| } |
| |
| /* |
| * When the transfer settings for a connection change, setup for |
| * negotiation in pending SCBs to effect the change as quickly as |
| * possible. We also cancel any negotiations that are scheduled |
| * for inflight SCBs that have not been started yet. |
| */ |
| static void |
| ahd_update_pending_scbs(struct ahd_softc *ahd) |
| { |
| struct scb *pending_scb; |
| int pending_scb_count; |
| int paused; |
| u_int saved_scbptr; |
| ahd_mode_state saved_modes; |
| |
| /* |
| * Traverse the pending SCB list and ensure that all of the |
| * SCBs there have the proper settings. We can only safely |
| * clear the negotiation required flag (setting requires the |
| * execution queue to be modified) and this is only possible |
| * if we are not already attempting to select out for this |
| * SCB. For this reason, all callers only call this routine |
| * if we are changing the negotiation settings for the currently |
| * active transaction on the bus. |
| */ |
| pending_scb_count = 0; |
| LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { |
| struct ahd_devinfo devinfo; |
| struct ahd_tmode_tstate *tstate; |
| |
| ahd_scb_devinfo(ahd, &devinfo, pending_scb); |
| ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid, |
| devinfo.target, &tstate); |
| if ((tstate->auto_negotiate & devinfo.target_mask) == 0 |
| && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) { |
| pending_scb->flags &= ~SCB_AUTO_NEGOTIATE; |
| pending_scb->hscb->control &= ~MK_MESSAGE; |
| } |
| ahd_sync_scb(ahd, pending_scb, |
| BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| pending_scb_count++; |
| } |
| |
| if (pending_scb_count == 0) |
| return; |
| |
| if (ahd_is_paused(ahd)) { |
| paused = 1; |
| } else { |
| paused = 0; |
| ahd_pause(ahd); |
| } |
| |
| /* |
| * Force the sequencer to reinitialize the selection for |
| * the command at the head of the execution queue if it |
| * has already been setup. The negotiation changes may |
| * effect whether we select-out with ATN. It is only |
| * safe to clear ENSELO when the bus is not free and no |
| * selection is in progres or completed. |
| */ |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0 |
| && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0) |
| ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); |
| saved_scbptr = ahd_get_scbptr(ahd); |
| /* Ensure that the hscbs down on the card match the new information */ |
| LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { |
| u_int scb_tag; |
| u_int control; |
| |
| scb_tag = SCB_GET_TAG(pending_scb); |
| ahd_set_scbptr(ahd, scb_tag); |
| control = ahd_inb_scbram(ahd, SCB_CONTROL); |
| control &= ~MK_MESSAGE; |
| control |= pending_scb->hscb->control & MK_MESSAGE; |
| ahd_outb(ahd, SCB_CONTROL, control); |
| } |
| ahd_set_scbptr(ahd, saved_scbptr); |
| ahd_restore_modes(ahd, saved_modes); |
| |
| if (paused == 0) |
| ahd_unpause(ahd); |
| } |
| |
| /**************************** Pathing Information *****************************/ |
| static void |
| ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) |
| { |
| ahd_mode_state saved_modes; |
| u_int saved_scsiid; |
| role_t role; |
| int our_id; |
| |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| |
| if (ahd_inb(ahd, SSTAT0) & TARGET) |
| role = ROLE_TARGET; |
| else |
| role = ROLE_INITIATOR; |
| |
| if (role == ROLE_TARGET |
| && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) { |
| /* We were selected, so pull our id from TARGIDIN */ |
| our_id = ahd_inb(ahd, TARGIDIN) & OID; |
| } else if (role == ROLE_TARGET) |
| our_id = ahd_inb(ahd, TOWNID); |
| else |
| our_id = ahd_inb(ahd, IOWNID); |
| |
| saved_scsiid = ahd_inb(ahd, SAVED_SCSIID); |
| ahd_compile_devinfo(devinfo, |
| our_id, |
| SCSIID_TARGET(ahd, saved_scsiid), |
| ahd_inb(ahd, SAVED_LUN), |
| SCSIID_CHANNEL(ahd, saved_scsiid), |
| role); |
| ahd_restore_modes(ahd, saved_modes); |
| } |
| |
| void |
| ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) |
| { |
| printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A', |
| devinfo->target, devinfo->lun); |
| } |
| |
| static const struct ahd_phase_table_entry* |
| ahd_lookup_phase_entry(int phase) |
| { |
| const struct ahd_phase_table_entry *entry; |
| const struct ahd_phase_table_entry *last_entry; |
| |
| /* |
| * num_phases doesn't include the default entry which |
| * will be returned if the phase doesn't match. |
| */ |
| last_entry = &ahd_phase_table[num_phases]; |
| for (entry = ahd_phase_table; entry < last_entry; entry++) { |
| if (phase == entry->phase) |
| break; |
| } |
| return (entry); |
| } |
| |
| void |
| ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target, |
| u_int lun, char channel, role_t role) |
| { |
| devinfo->our_scsiid = our_id; |
| devinfo->target = target; |
| devinfo->lun = lun; |
| devinfo->target_offset = target; |
| devinfo->channel = channel; |
| devinfo->role = role; |
| if (channel == 'B') |
| devinfo->target_offset += 8; |
| devinfo->target_mask = (0x01 << devinfo->target_offset); |
| } |
| |
| static void |
| ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| struct scb *scb) |
| { |
| role_t role; |
| int our_id; |
| |
| our_id = SCSIID_OUR_ID(scb->hscb->scsiid); |
| role = ROLE_INITIATOR; |
| if ((scb->hscb->control & TARGET_SCB) != 0) |
| role = ROLE_TARGET; |
| ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb), |
| SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role); |
| } |
| |
| |
| /************************ Message Phase Processing ****************************/ |
| /* |
| * When an initiator transaction with the MK_MESSAGE flag either reconnects |
| * or enters the initial message out phase, we are interrupted. Fill our |
| * outgoing message buffer with the appropriate message and beging handing |
| * the message phase(s) manually. |
| */ |
| static void |
| ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| struct scb *scb) |
| { |
| /* |
| * To facilitate adding multiple messages together, |
| * each routine should increment the index and len |
| * variables instead of setting them explicitly. |
| */ |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| |
| if (ahd_currently_packetized(ahd)) |
| ahd->msg_flags |= MSG_FLAG_PACKETIZED; |
| |
| if (ahd->send_msg_perror |
| && ahd_inb(ahd, MSG_OUT) == HOST_MSG) { |
| ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror; |
| ahd->msgout_len++; |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("Setting up for Parity Error delivery\n"); |
| #endif |
| return; |
| } else if (scb == NULL) { |
| printk("%s: WARNING. No pending message for " |
| "I_T msgin. Issuing NO-OP\n", ahd_name(ahd)); |
| ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP; |
| ahd->msgout_len++; |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| return; |
| } |
| |
| if ((scb->flags & SCB_DEVICE_RESET) == 0 |
| && (scb->flags & SCB_PACKETIZED) == 0 |
| && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) { |
| u_int identify_msg; |
| |
| identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb); |
| if ((scb->hscb->control & DISCENB) != 0) |
| identify_msg |= MSG_IDENTIFY_DISCFLAG; |
| ahd->msgout_buf[ahd->msgout_index++] = identify_msg; |
| ahd->msgout_len++; |
| |
| if ((scb->hscb->control & TAG_ENB) != 0) { |
| ahd->msgout_buf[ahd->msgout_index++] = |
| scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE); |
| ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb); |
| ahd->msgout_len += 2; |
| } |
| } |
| |
| if (scb->flags & SCB_DEVICE_RESET) { |
| ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET; |
| ahd->msgout_len++; |
| ahd_print_path(ahd, scb); |
| printk("Bus Device Reset Message Sent\n"); |
| /* |
| * Clear our selection hardware in advance of |
| * the busfree. We may have an entry in the waiting |
| * Q for this target, and we don't want to go about |
| * selecting while we handle the busfree and blow it |
| * away. |
| */ |
| ahd_outb(ahd, SCSISEQ0, 0); |
| } else if ((scb->flags & SCB_ABORT) != 0) { |
| |
| if ((scb->hscb->control & TAG_ENB) != 0) { |
| ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG; |
| } else { |
| ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT; |
| } |
| ahd->msgout_len++; |
| ahd_print_path(ahd, scb); |
| printk("Abort%s Message Sent\n", |
| (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : ""); |
| /* |
| * Clear our selection hardware in advance of |
| * the busfree. We may have an entry in the waiting |
| * Q for this target, and we don't want to go about |
| * selecting while we handle the busfree and blow it |
| * away. |
| */ |
| ahd_outb(ahd, SCSISEQ0, 0); |
| } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) { |
| ahd_build_transfer_msg(ahd, devinfo); |
| /* |
| * Clear our selection hardware in advance of potential |
| * PPR IU status change busfree. We may have an entry in |
| * the waiting Q for this target, and we don't want to go |
| * about selecting while we handle the busfree and blow |
| * it away. |
| */ |
| ahd_outb(ahd, SCSISEQ0, 0); |
| } else { |
| printk("ahd_intr: AWAITING_MSG for an SCB that " |
| "does not have a waiting message\n"); |
| printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid, |
| devinfo->target_mask); |
| panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x " |
| "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control, |
| ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT), |
| scb->flags); |
| } |
| |
| /* |
| * Clear the MK_MESSAGE flag from the SCB so we aren't |
| * asked to send this message again. |
| */ |
| ahd_outb(ahd, SCB_CONTROL, |
| ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE); |
| scb->hscb->control &= ~MK_MESSAGE; |
| ahd->msgout_index = 0; |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| } |
| |
| /* |
| * Build an appropriate transfer negotiation message for the |
| * currently active target. |
| */ |
| static void |
| ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) |
| { |
| /* |
| * We need to initiate transfer negotiations. |
| * If our current and goal settings are identical, |
| * we want to renegotiate due to a check condition. |
| */ |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| int dowide; |
| int dosync; |
| int doppr; |
| u_int period; |
| u_int ppr_options; |
| u_int offset; |
| |
| tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| /* |
| * Filter our period based on the current connection. |
| * If we can't perform DT transfers on this segment (not in LVD |
| * mode for instance), then our decision to issue a PPR message |
| * may change. |
| */ |
| period = tinfo->goal.period; |
| offset = tinfo->goal.offset; |
| ppr_options = tinfo->goal.ppr_options; |
| /* Target initiated PPR is not allowed in the SCSI spec */ |
| if (devinfo->role == ROLE_TARGET) |
| ppr_options = 0; |
| ahd_devlimited_syncrate(ahd, tinfo, &period, |
| &ppr_options, devinfo->role); |
| dowide = tinfo->curr.width != tinfo->goal.width; |
| dosync = tinfo->curr.offset != offset || tinfo->curr.period != period; |
| /* |
| * Only use PPR if we have options that need it, even if the device |
| * claims to support it. There might be an expander in the way |
| * that doesn't. |
| */ |
| doppr = ppr_options != 0; |
| |
| if (!dowide && !dosync && !doppr) { |
| dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT; |
| dosync = tinfo->goal.offset != 0; |
| } |
| |
| if (!dowide && !dosync && !doppr) { |
| /* |
| * Force async with a WDTR message if we have a wide bus, |
| * or just issue an SDTR with a 0 offset. |
| */ |
| if ((ahd->features & AHD_WIDE) != 0) |
| dowide = 1; |
| else |
| dosync = 1; |
| |
| if (bootverbose) { |
| ahd_print_devinfo(ahd, devinfo); |
| printk("Ensuring async\n"); |
| } |
| } |
| /* Target initiated PPR is not allowed in the SCSI spec */ |
| if (devinfo->role == ROLE_TARGET) |
| doppr = 0; |
| |
| /* |
| * Both the PPR message and SDTR message require the |
| * goal syncrate to be limited to what the target device |
| * is capable of handling (based on whether an LVD->SE |
| * expander is on the bus), so combine these two cases. |
| * Regardless, guarantee that if we are using WDTR and SDTR |
| * messages that WDTR comes first. |
| */ |
| if (doppr || (dosync && !dowide)) { |
| |
| offset = tinfo->goal.offset; |
| ahd_validate_offset(ahd, tinfo, period, &offset, |
| doppr ? tinfo->goal.width |
| : tinfo->curr.width, |
| devinfo->role); |
| if (doppr) { |
| ahd_construct_ppr(ahd, devinfo, period, offset, |
| tinfo->goal.width, ppr_options); |
| } else { |
| ahd_construct_sdtr(ahd, devinfo, period, offset); |
| } |
| } else { |
| ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width); |
| } |
| } |
| |
| /* |
| * Build a synchronous negotiation message in our message |
| * buffer based on the input parameters. |
| */ |
| static void |
| ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| u_int period, u_int offset) |
| { |
| if (offset == 0) |
| period = AHD_ASYNC_XFER_PERIOD; |
| ahd->msgout_index += spi_populate_sync_msg( |
| ahd->msgout_buf + ahd->msgout_index, period, offset); |
| ahd->msgout_len += 5; |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n", |
| ahd_name(ahd), devinfo->channel, devinfo->target, |
| devinfo->lun, period, offset); |
| } |
| } |
| |
| /* |
| * Build a wide negotiateion message in our message |
| * buffer based on the input parameters. |
| */ |
| static void |
| ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| u_int bus_width) |
| { |
| ahd->msgout_index += spi_populate_width_msg( |
| ahd->msgout_buf + ahd->msgout_index, bus_width); |
| ahd->msgout_len += 4; |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Sending WDTR %x\n", |
| ahd_name(ahd), devinfo->channel, devinfo->target, |
| devinfo->lun, bus_width); |
| } |
| } |
| |
| /* |
| * Build a parallel protocol request message in our message |
| * buffer based on the input parameters. |
| */ |
| static void |
| ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| u_int period, u_int offset, u_int bus_width, |
| u_int ppr_options) |
| { |
| /* |
| * Always request precompensation from |
| * the other target if we are running |
| * at paced syncrates. |
| */ |
| if (period <= AHD_SYNCRATE_PACED) |
| ppr_options |= MSG_EXT_PPR_PCOMP_EN; |
| if (offset == 0) |
| period = AHD_ASYNC_XFER_PERIOD; |
| ahd->msgout_index += spi_populate_ppr_msg( |
| ahd->msgout_buf + ahd->msgout_index, period, offset, |
| bus_width, ppr_options); |
| ahd->msgout_len += 8; |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, " |
| "offset %x, ppr_options %x\n", ahd_name(ahd), |
| devinfo->channel, devinfo->target, devinfo->lun, |
| bus_width, period, offset, ppr_options); |
| } |
| } |
| |
| /* |
| * Clear any active message state. |
| */ |
| static void |
| ahd_clear_msg_state(struct ahd_softc *ahd) |
| { |
| ahd_mode_state saved_modes; |
| |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd->send_msg_perror = 0; |
| ahd->msg_flags = MSG_FLAG_NONE; |
| ahd->msgout_len = 0; |
| ahd->msgin_index = 0; |
| ahd->msg_type = MSG_TYPE_NONE; |
| if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) { |
| /* |
| * The target didn't care to respond to our |
| * message request, so clear ATN. |
| */ |
| ahd_outb(ahd, CLRSINT1, CLRATNO); |
| } |
| ahd_outb(ahd, MSG_OUT, MSG_NOOP); |
| ahd_outb(ahd, SEQ_FLAGS2, |
| ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING); |
| ahd_restore_modes(ahd, saved_modes); |
| } |
| |
| /* |
| * Manual message loop handler. |
| */ |
| static void |
| ahd_handle_message_phase(struct ahd_softc *ahd) |
| { |
| struct ahd_devinfo devinfo; |
| u_int bus_phase; |
| int end_session; |
| |
| ahd_fetch_devinfo(ahd, &devinfo); |
| end_session = FALSE; |
| bus_phase = ahd_inb(ahd, LASTPHASE); |
| |
| if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) { |
| printk("LQIRETRY for LQIPHASE_OUTPKT\n"); |
| ahd_outb(ahd, LQCTL2, LQIRETRY); |
| } |
| reswitch: |
| switch (ahd->msg_type) { |
| case MSG_TYPE_INITIATOR_MSGOUT: |
| { |
| int lastbyte; |
| int phasemis; |
| int msgdone; |
| |
| if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0) |
| panic("HOST_MSG_LOOP interrupt with no active message"); |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { |
| ahd_print_devinfo(ahd, &devinfo); |
| printk("INITIATOR_MSG_OUT"); |
| } |
| #endif |
| phasemis = bus_phase != P_MESGOUT; |
| if (phasemis) { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { |
| printk(" PHASEMIS %s\n", |
| ahd_lookup_phase_entry(bus_phase) |
| ->phasemsg); |
| } |
| #endif |
| if (bus_phase == P_MESGIN) { |
| /* |
| * Change gears and see if |
| * this messages is of interest to |
| * us or should be passed back to |
| * the sequencer. |
| */ |
| ahd_outb(ahd, CLRSINT1, CLRATNO); |
| ahd->send_msg_perror = 0; |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN; |
| ahd->msgin_index = 0; |
| goto reswitch; |
| } |
| end_session = TRUE; |
| break; |
| } |
| |
| if (ahd->send_msg_perror) { |
| ahd_outb(ahd, CLRSINT1, CLRATNO); |
| ahd_outb(ahd, CLRSINT1, CLRREQINIT); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk(" byte 0x%x\n", ahd->send_msg_perror); |
| #endif |
| /* |
| * If we are notifying the target of a CRC error |
| * during packetized operations, the target is |
| * within its rights to acknowledge our message |
| * with a busfree. |
| */ |
| if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0 |
| && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR) |
| ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE; |
| |
| ahd_outb(ahd, RETURN_2, ahd->send_msg_perror); |
| ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE); |
| break; |
| } |
| |
| msgdone = ahd->msgout_index == ahd->msgout_len; |
| if (msgdone) { |
| /* |
| * The target has requested a retry. |
| * Re-assert ATN, reset our message index to |
| * 0, and try again. |
| */ |
| ahd->msgout_index = 0; |
| ahd_assert_atn(ahd); |
| } |
| |
| lastbyte = ahd->msgout_index == (ahd->msgout_len - 1); |
| if (lastbyte) { |
| /* Last byte is signified by dropping ATN */ |
| ahd_outb(ahd, CLRSINT1, CLRATNO); |
| } |
| |
| /* |
| * Clear our interrupt status and present |
| * the next byte on the bus. |
| */ |
| ahd_outb(ahd, CLRSINT1, CLRREQINIT); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk(" byte 0x%x\n", |
| ahd->msgout_buf[ahd->msgout_index]); |
| #endif |
| ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]); |
| ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE); |
| break; |
| } |
| case MSG_TYPE_INITIATOR_MSGIN: |
| { |
| int phasemis; |
| int message_done; |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { |
| ahd_print_devinfo(ahd, &devinfo); |
| printk("INITIATOR_MSG_IN"); |
| } |
| #endif |
| phasemis = bus_phase != P_MESGIN; |
| if (phasemis) { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { |
| printk(" PHASEMIS %s\n", |
| ahd_lookup_phase_entry(bus_phase) |
| ->phasemsg); |
| } |
| #endif |
| ahd->msgin_index = 0; |
| if (bus_phase == P_MESGOUT |
| && (ahd->send_msg_perror != 0 |
| || (ahd->msgout_len != 0 |
| && ahd->msgout_index == 0))) { |
| ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| goto reswitch; |
| } |
| end_session = TRUE; |
| break; |
| } |
| |
| /* Pull the byte in without acking it */ |
| ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk(" byte 0x%x\n", |
| ahd->msgin_buf[ahd->msgin_index]); |
| #endif |
| |
| message_done = ahd_parse_msg(ahd, &devinfo); |
| |
| if (message_done) { |
| /* |
| * Clear our incoming message buffer in case there |
| * is another message following this one. |
| */ |
| ahd->msgin_index = 0; |
| |
| /* |
| * If this message illicited a response, |
| * assert ATN so the target takes us to the |
| * message out phase. |
| */ |
| if (ahd->msgout_len != 0) { |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { |
| ahd_print_devinfo(ahd, &devinfo); |
| printk("Asserting ATN for response\n"); |
| } |
| #endif |
| ahd_assert_atn(ahd); |
| } |
| } else |
| ahd->msgin_index++; |
| |
| if (message_done == MSGLOOP_TERMINATED) { |
| end_session = TRUE; |
| } else { |
| /* Ack the byte */ |
| ahd_outb(ahd, CLRSINT1, CLRREQINIT); |
| ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ); |
| } |
| break; |
| } |
| case MSG_TYPE_TARGET_MSGIN: |
| { |
| int msgdone; |
| int msgout_request; |
| |
| /* |
| * By default, the message loop will continue. |
| */ |
| ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG); |
| |
| if (ahd->msgout_len == 0) |
| panic("Target MSGIN with no active message"); |
| |
| /* |
| * If we interrupted a mesgout session, the initiator |
| * will not know this until our first REQ. So, we |
| * only honor mesgout requests after we've sent our |
| * first byte. |
| */ |
| if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0 |
| && ahd->msgout_index > 0) |
| msgout_request = TRUE; |
| else |
| msgout_request = FALSE; |
| |
| if (msgout_request) { |
| |
| /* |
| * Change gears and see if |
| * this messages is of interest to |
| * us or should be passed back to |
| * the sequencer. |
| */ |
| ahd->msg_type = MSG_TYPE_TARGET_MSGOUT; |
| ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO); |
| ahd->msgin_index = 0; |
| /* Dummy read to REQ for first byte */ |
| ahd_inb(ahd, SCSIDAT); |
| ahd_outb(ahd, SXFRCTL0, |
| ahd_inb(ahd, SXFRCTL0) | SPIOEN); |
| break; |
| } |
| |
| msgdone = ahd->msgout_index == ahd->msgout_len; |
| if (msgdone) { |
| ahd_outb(ahd, SXFRCTL0, |
| ahd_inb(ahd, SXFRCTL0) & ~SPIOEN); |
| end_session = TRUE; |
| break; |
| } |
| |
| /* |
| * Present the next byte on the bus. |
| */ |
| ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN); |
| ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]); |
| break; |
| } |
| case MSG_TYPE_TARGET_MSGOUT: |
| { |
| int lastbyte; |
| int msgdone; |
| |
| /* |
| * By default, the message loop will continue. |
| */ |
| ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG); |
| |
| /* |
| * The initiator signals that this is |
| * the last byte by dropping ATN. |
| */ |
| lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0; |
| |
| /* |
| * Read the latched byte, but turn off SPIOEN first |
| * so that we don't inadvertently cause a REQ for the |
| * next byte. |
| */ |
| ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN); |
| ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT); |
| msgdone = ahd_parse_msg(ahd, &devinfo); |
| if (msgdone == MSGLOOP_TERMINATED) { |
| /* |
| * The message is *really* done in that it caused |
| * us to go to bus free. The sequencer has already |
| * been reset at this point, so pull the ejection |
| * handle. |
| */ |
| return; |
| } |
| |
| ahd->msgin_index++; |
| |
| /* |
| * XXX Read spec about initiator dropping ATN too soon |
| * and use msgdone to detect it. |
| */ |
| if (msgdone == MSGLOOP_MSGCOMPLETE) { |
| ahd->msgin_index = 0; |
| |
| /* |
| * If this message illicited a response, transition |
| * to the Message in phase and send it. |
| */ |
| if (ahd->msgout_len != 0) { |
| ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO); |
| ahd_outb(ahd, SXFRCTL0, |
| ahd_inb(ahd, SXFRCTL0) | SPIOEN); |
| ahd->msg_type = MSG_TYPE_TARGET_MSGIN; |
| ahd->msgin_index = 0; |
| break; |
| } |
| } |
| |
| if (lastbyte) |
| end_session = TRUE; |
| else { |
| /* Ask for the next byte. */ |
| ahd_outb(ahd, SXFRCTL0, |
| ahd_inb(ahd, SXFRCTL0) | SPIOEN); |
| } |
| |
| break; |
| } |
| default: |
| panic("Unknown REQINIT message type"); |
| } |
| |
| if (end_session) { |
| if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) { |
| printk("%s: Returning to Idle Loop\n", |
| ahd_name(ahd)); |
| ahd_clear_msg_state(ahd); |
| |
| /* |
| * Perform the equivalent of a clear_target_state. |
| */ |
| ahd_outb(ahd, LASTPHASE, P_BUSFREE); |
| ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT); |
| ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET); |
| } else { |
| ahd_clear_msg_state(ahd); |
| ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP); |
| } |
| } |
| } |
| |
| /* |
| * See if we sent a particular extended message to the target. |
| * If "full" is true, return true only if the target saw the full |
| * message. If "full" is false, return true if the target saw at |
| * least the first byte of the message. |
| */ |
| static int |
| ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full) |
| { |
| int found; |
| u_int index; |
| |
| found = FALSE; |
| index = 0; |
| |
| while (index < ahd->msgout_len) { |
| if (ahd->msgout_buf[index] == MSG_EXTENDED) { |
| u_int end_index; |
| |
| end_index = index + 1 + ahd->msgout_buf[index + 1]; |
| if (ahd->msgout_buf[index+2] == msgval |
| && type == AHDMSG_EXT) { |
| |
| if (full) { |
| if (ahd->msgout_index > end_index) |
| found = TRUE; |
| } else if (ahd->msgout_index > index) |
| found = TRUE; |
| } |
| index = end_index; |
| } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK |
| && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) { |
| |
| /* Skip tag type and tag id or residue param*/ |
| index += 2; |
| } else { |
| /* Single byte message */ |
| if (type == AHDMSG_1B |
| && ahd->msgout_index > index |
| && (ahd->msgout_buf[index] == msgval |
| || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0 |
| && msgval == MSG_IDENTIFYFLAG))) |
| found = TRUE; |
| index++; |
| } |
| |
| if (found) |
| break; |
| } |
| return (found); |
| } |
| |
| /* |
| * Wait for a complete incoming message, parse it, and respond accordingly. |
| */ |
| static int |
| ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) |
| { |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| int reject; |
| int done; |
| int response; |
| |
| done = MSGLOOP_IN_PROG; |
| response = FALSE; |
| reject = FALSE; |
| tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| |
| /* |
| * Parse as much of the message as is available, |
| * rejecting it if we don't support it. When |
| * the entire message is available and has been |
| * handled, return MSGLOOP_MSGCOMPLETE, indicating |
| * that we have parsed an entire message. |
| * |
| * In the case of extended messages, we accept the length |
| * byte outright and perform more checking once we know the |
| * extended message type. |
| */ |
| switch (ahd->msgin_buf[0]) { |
| case MSG_DISCONNECT: |
| case MSG_SAVEDATAPOINTER: |
| case MSG_CMDCOMPLETE: |
| case MSG_RESTOREPOINTERS: |
| case MSG_IGN_WIDE_RESIDUE: |
| /* |
| * End our message loop as these are messages |
| * the sequencer handles on its own. |
| */ |
| done = MSGLOOP_TERMINATED; |
| break; |
| case MSG_MESSAGE_REJECT: |
| response = ahd_handle_msg_reject(ahd, devinfo); |
| fallthrough; |
| case MSG_NOOP: |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| case MSG_EXTENDED: |
| { |
| /* Wait for enough of the message to begin validation */ |
| if (ahd->msgin_index < 2) |
| break; |
| switch (ahd->msgin_buf[2]) { |
| case MSG_EXT_SDTR: |
| { |
| u_int period; |
| u_int ppr_options; |
| u_int offset; |
| u_int saved_offset; |
| |
| if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) { |
| reject = TRUE; |
| break; |
| } |
| |
| /* |
| * Wait until we have both args before validating |
| * and acting on this message. |
| * |
| * Add one to MSG_EXT_SDTR_LEN to account for |
| * the extended message preamble. |
| */ |
| if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1)) |
| break; |
| |
| period = ahd->msgin_buf[3]; |
| ppr_options = 0; |
| saved_offset = offset = ahd->msgin_buf[4]; |
| ahd_devlimited_syncrate(ahd, tinfo, &period, |
| &ppr_options, devinfo->role); |
| ahd_validate_offset(ahd, tinfo, period, &offset, |
| tinfo->curr.width, devinfo->role); |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Received " |
| "SDTR period %x, offset %x\n\t" |
| "Filtered to period %x, offset %x\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| ahd->msgin_buf[3], saved_offset, |
| period, offset); |
| } |
| ahd_set_syncrate(ahd, devinfo, period, |
| offset, ppr_options, |
| AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| |
| /* |
| * See if we initiated Sync Negotiation |
| * and didn't have to fall down to async |
| * transfers. |
| */ |
| if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) { |
| /* We started it */ |
| if (saved_offset != offset) { |
| /* Went too low - force async */ |
| reject = TRUE; |
| } |
| } else { |
| /* |
| * Send our own SDTR in reply |
| */ |
| if (bootverbose |
| && devinfo->role == ROLE_INITIATOR) { |
| printk("(%s:%c:%d:%d): Target " |
| "Initiated SDTR\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| ahd_construct_sdtr(ahd, devinfo, |
| period, offset); |
| ahd->msgout_index = 0; |
| response = TRUE; |
| } |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| } |
| case MSG_EXT_WDTR: |
| { |
| u_int bus_width; |
| u_int saved_width; |
| u_int sending_reply; |
| |
| sending_reply = FALSE; |
| if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) { |
| reject = TRUE; |
| break; |
| } |
| |
| /* |
| * Wait until we have our arg before validating |
| * and acting on this message. |
| * |
| * Add one to MSG_EXT_WDTR_LEN to account for |
| * the extended message preamble. |
| */ |
| if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1)) |
| break; |
| |
| bus_width = ahd->msgin_buf[3]; |
| saved_width = bus_width; |
| ahd_validate_width(ahd, tinfo, &bus_width, |
| devinfo->role); |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Received WDTR " |
| "%x filtered to %x\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| saved_width, bus_width); |
| } |
| |
| if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) { |
| /* |
| * Don't send a WDTR back to the |
| * target, since we asked first. |
| * If the width went higher than our |
| * request, reject it. |
| */ |
| if (saved_width > bus_width) { |
| reject = TRUE; |
| printk("(%s:%c:%d:%d): requested %dBit " |
| "transfers. Rejecting...\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| 8 * (0x01 << bus_width)); |
| bus_width = 0; |
| } |
| } else { |
| /* |
| * Send our own WDTR in reply |
| */ |
| if (bootverbose |
| && devinfo->role == ROLE_INITIATOR) { |
| printk("(%s:%c:%d:%d): Target " |
| "Initiated WDTR\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| ahd_construct_wdtr(ahd, devinfo, bus_width); |
| ahd->msgout_index = 0; |
| response = TRUE; |
| sending_reply = TRUE; |
| } |
| /* |
| * After a wide message, we are async, but |
| * some devices don't seem to honor this portion |
| * of the spec. Force a renegotiation of the |
| * sync component of our transfer agreement even |
| * if our goal is async. By updating our width |
| * after forcing the negotiation, we avoid |
| * renegotiating for width. |
| */ |
| ahd_update_neg_request(ahd, devinfo, tstate, |
| tinfo, AHD_NEG_ALWAYS); |
| ahd_set_width(ahd, devinfo, bus_width, |
| AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| if (sending_reply == FALSE && reject == FALSE) { |
| |
| /* |
| * We will always have an SDTR to send. |
| */ |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| ahd_build_transfer_msg(ahd, devinfo); |
| ahd->msgout_index = 0; |
| response = TRUE; |
| } |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| } |
| case MSG_EXT_PPR: |
| { |
| u_int period; |
| u_int offset; |
| u_int bus_width; |
| u_int ppr_options; |
| u_int saved_width; |
| u_int saved_offset; |
| u_int saved_ppr_options; |
| |
| if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) { |
| reject = TRUE; |
| break; |
| } |
| |
| /* |
| * Wait until we have all args before validating |
| * and acting on this message. |
| * |
| * Add one to MSG_EXT_PPR_LEN to account for |
| * the extended message preamble. |
| */ |
| if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1)) |
| break; |
| |
| period = ahd->msgin_buf[3]; |
| offset = ahd->msgin_buf[5]; |
| bus_width = ahd->msgin_buf[6]; |
| saved_width = bus_width; |
| ppr_options = ahd->msgin_buf[7]; |
| /* |
| * According to the spec, a DT only |
| * period factor with no DT option |
| * set implies async. |
| */ |
| if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0 |
| && period <= 9) |
| offset = 0; |
| saved_ppr_options = ppr_options; |
| saved_offset = offset; |
| |
| /* |
| * Transfer options are only available if we |
| * are negotiating wide. |
| */ |
| if (bus_width == 0) |
| ppr_options &= MSG_EXT_PPR_QAS_REQ; |
| |
| ahd_validate_width(ahd, tinfo, &bus_width, |
| devinfo->role); |
| ahd_devlimited_syncrate(ahd, tinfo, &period, |
| &ppr_options, devinfo->role); |
| ahd_validate_offset(ahd, tinfo, period, &offset, |
| bus_width, devinfo->role); |
| |
| if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) { |
| /* |
| * If we are unable to do any of the |
| * requested options (we went too low), |
| * then we'll have to reject the message. |
| */ |
| if (saved_width > bus_width |
| || saved_offset != offset |
| || saved_ppr_options != ppr_options) { |
| reject = TRUE; |
| period = 0; |
| offset = 0; |
| bus_width = 0; |
| ppr_options = 0; |
| } |
| } else { |
| if (devinfo->role != ROLE_TARGET) |
| printk("(%s:%c:%d:%d): Target " |
| "Initiated PPR\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| else |
| printk("(%s:%c:%d:%d): Initiator " |
| "Initiated PPR\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| ahd_construct_ppr(ahd, devinfo, period, offset, |
| bus_width, ppr_options); |
| ahd->msgout_index = 0; |
| response = TRUE; |
| } |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Received PPR width %x, " |
| "period %x, offset %x,options %x\n" |
| "\tFiltered to width %x, period %x, " |
| "offset %x, options %x\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| saved_width, ahd->msgin_buf[3], |
| saved_offset, saved_ppr_options, |
| bus_width, period, offset, ppr_options); |
| } |
| ahd_set_width(ahd, devinfo, bus_width, |
| AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| ahd_set_syncrate(ahd, devinfo, period, |
| offset, ppr_options, |
| AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| } |
| default: |
| /* Unknown extended message. Reject it. */ |
| reject = TRUE; |
| break; |
| } |
| break; |
| } |
| #ifdef AHD_TARGET_MODE |
| case MSG_BUS_DEV_RESET: |
| ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD, |
| CAM_BDR_SENT, |
| "Bus Device Reset Received", |
| /*verbose_level*/0); |
| ahd_restart(ahd); |
| done = MSGLOOP_TERMINATED; |
| break; |
| case MSG_ABORT_TAG: |
| case MSG_ABORT: |
| case MSG_CLEAR_QUEUE: |
| { |
| int tag; |
| |
| /* Target mode messages */ |
| if (devinfo->role != ROLE_TARGET) { |
| reject = TRUE; |
| break; |
| } |
| tag = SCB_LIST_NULL; |
| if (ahd->msgin_buf[0] == MSG_ABORT_TAG) |
| tag = ahd_inb(ahd, INITIATOR_TAG); |
| ahd_abort_scbs(ahd, devinfo->target, devinfo->channel, |
| devinfo->lun, tag, ROLE_TARGET, |
| CAM_REQ_ABORTED); |
| |
| tstate = ahd->enabled_targets[devinfo->our_scsiid]; |
| if (tstate != NULL) { |
| struct ahd_tmode_lstate* lstate; |
| |
| lstate = tstate->enabled_luns[devinfo->lun]; |
| if (lstate != NULL) { |
| ahd_queue_lstate_event(ahd, lstate, |
| devinfo->our_scsiid, |
| ahd->msgin_buf[0], |
| /*arg*/tag); |
| ahd_send_lstate_events(ahd, lstate); |
| } |
| } |
| ahd_restart(ahd); |
| done = MSGLOOP_TERMINATED; |
| break; |
| } |
| #endif |
| case MSG_QAS_REQUEST: |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) |
| printk("%s: QAS request. SCSISIGI == 0x%x\n", |
| ahd_name(ahd), ahd_inb(ahd, SCSISIGI)); |
| #endif |
| ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE; |
| fallthrough; |
| case MSG_TERM_IO_PROC: |
| default: |
| reject = TRUE; |
| break; |
| } |
| |
| if (reject) { |
| /* |
| * Setup to reject the message. |
| */ |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 1; |
| ahd->msgout_buf[0] = MSG_MESSAGE_REJECT; |
| done = MSGLOOP_MSGCOMPLETE; |
| response = TRUE; |
| } |
| |
| if (done != MSGLOOP_IN_PROG && !response) |
| /* Clear the outgoing message buffer */ |
| ahd->msgout_len = 0; |
| |
| return (done); |
| } |
| |
| /* |
| * Process a message reject message. |
| */ |
| static int |
| ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) |
| { |
| /* |
| * What we care about here is if we had an |
| * outstanding SDTR or WDTR message for this |
| * target. If we did, this is a signal that |
| * the target is refusing negotiation. |
| */ |
| struct scb *scb; |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| u_int scb_index; |
| u_int last_msg; |
| int response = 0; |
| |
| scb_index = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scb_index); |
| tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, |
| devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| /* Might be necessary */ |
| last_msg = ahd_inb(ahd, LAST_MSG); |
| |
| if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) { |
| if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE) |
| && tinfo->goal.period <= AHD_SYNCRATE_PACED) { |
| /* |
| * Target may not like our SPI-4 PPR Options. |
| * Attempt to negotiate 80MHz which will turn |
| * off these options. |
| */ |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): PPR Rejected. " |
| "Trying simple U160 PPR\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| tinfo->goal.period = AHD_SYNCRATE_DT; |
| tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ |
| | MSG_EXT_PPR_QAS_REQ |
| | MSG_EXT_PPR_DT_REQ; |
| } else { |
| /* |
| * Target does not support the PPR message. |
| * Attempt to negotiate SPI-2 style. |
| */ |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): PPR Rejected. " |
| "Trying WDTR/SDTR\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| tinfo->goal.ppr_options = 0; |
| tinfo->curr.transport_version = 2; |
| tinfo->goal.transport_version = 2; |
| } |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| ahd_build_transfer_msg(ahd, devinfo); |
| ahd->msgout_index = 0; |
| response = 1; |
| } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) { |
| |
| /* note 8bit xfers */ |
| printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using " |
| "8bit transfers\n", ahd_name(ahd), |
| devinfo->channel, devinfo->target, devinfo->lun); |
| ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| /* |
| * No need to clear the sync rate. If the target |
| * did not accept the command, our syncrate is |
| * unaffected. If the target started the negotiation, |
| * but rejected our response, we already cleared the |
| * sync rate before sending our WDTR. |
| */ |
| if (tinfo->goal.offset != tinfo->curr.offset) { |
| |
| /* Start the sync negotiation */ |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| ahd_build_transfer_msg(ahd, devinfo); |
| ahd->msgout_index = 0; |
| response = 1; |
| } |
| } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) { |
| /* note asynch xfers and clear flag */ |
| ahd_set_syncrate(ahd, devinfo, /*period*/0, |
| /*offset*/0, /*ppr_options*/0, |
| AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| printk("(%s:%c:%d:%d): refuses synchronous negotiation. " |
| "Using asynchronous transfers\n", |
| ahd_name(ahd), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) { |
| int tag_type; |
| int mask; |
| |
| tag_type = (scb->hscb->control & MSG_SIMPLE_TASK); |
| |
| if (tag_type == MSG_SIMPLE_TASK) { |
| printk("(%s:%c:%d:%d): refuses tagged commands. " |
| "Performing non-tagged I/O\n", ahd_name(ahd), |
| devinfo->channel, devinfo->target, devinfo->lun); |
| ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE); |
| mask = ~0x23; |
| } else { |
| printk("(%s:%c:%d:%d): refuses %s tagged commands. " |
| "Performing simple queue tagged I/O only\n", |
| ahd_name(ahd), devinfo->channel, devinfo->target, |
| devinfo->lun, tag_type == MSG_ORDERED_TASK |
| ? "ordered" : "head of queue"); |
| ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC); |
| mask = ~0x03; |
| } |
| |
| /* |
| * Resend the identify for this CCB as the target |
| * may believe that the selection is invalid otherwise. |
| */ |
| ahd_outb(ahd, SCB_CONTROL, |
| ahd_inb_scbram(ahd, SCB_CONTROL) & mask); |
| scb->hscb->control &= mask; |
| ahd_set_transaction_tag(scb, /*enabled*/FALSE, |
| /*type*/MSG_SIMPLE_TASK); |
| ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG); |
| ahd_assert_atn(ahd); |
| ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun), |
| SCB_GET_TAG(scb)); |
| |
| /* |
| * Requeue all tagged commands for this target |
| * currently in our possession so they can be |
| * converted to untagged commands. |
| */ |
| ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), |
| SCB_GET_CHANNEL(ahd, scb), |
| SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL, |
| ROLE_INITIATOR, CAM_REQUEUE_REQ, |
| SEARCH_COMPLETE); |
| } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) { |
| /* |
| * Most likely the device believes that we had |
| * previously negotiated packetized. |
| */ |
| ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE |
| | MSG_FLAG_IU_REQ_CHANGED; |
| |
| ahd_force_renegotiation(ahd, devinfo); |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| ahd_build_transfer_msg(ahd, devinfo); |
| ahd->msgout_index = 0; |
| response = 1; |
| } else { |
| /* |
| * Otherwise, we ignore it. |
| */ |
| printk("%s:%c:%d: Message reject for %x -- ignored\n", |
| ahd_name(ahd), devinfo->channel, devinfo->target, |
| last_msg); |
| } |
| return (response); |
| } |
| |
| /* |
| * Process an ingnore wide residue message. |
| */ |
| static void |
| ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) |
| { |
| u_int scb_index; |
| struct scb *scb; |
| |
| scb_index = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scb_index); |
| /* |
| * XXX Actually check data direction in the sequencer? |
| * Perhaps add datadir to some spare bits in the hscb? |
| */ |
| if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0 |
| || ahd_get_transfer_dir(scb) != CAM_DIR_IN) { |
| /* |
| * Ignore the message if we haven't |
| * seen an appropriate data phase yet. |
| */ |
| } else { |
| /* |
| * If the residual occurred on the last |
| * transfer and the transfer request was |
| * expected to end on an odd count, do |
| * nothing. Otherwise, subtract a byte |
| * and update the residual count accordingly. |
| */ |
| uint32_t sgptr; |
| |
| sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR); |
| if ((sgptr & SG_LIST_NULL) != 0 |
| && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE) |
| & SCB_XFERLEN_ODD) != 0) { |
| /* |
| * If the residual occurred on the last |
| * transfer and the transfer request was |
| * expected to end on an odd count, do |
| * nothing. |
| */ |
| } else { |
| uint32_t data_cnt; |
| uint64_t data_addr; |
| uint32_t sglen; |
| |
| /* Pull in the rest of the sgptr */ |
| sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); |
| data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT); |
| if ((sgptr & SG_LIST_NULL) != 0) { |
| /* |
| * The residual data count is not updated |
| * for the command run to completion case. |
| * Explicitly zero the count. |
| */ |
| data_cnt &= ~AHD_SG_LEN_MASK; |
| } |
| data_addr = ahd_inq(ahd, SHADDR); |
| data_cnt += 1; |
| data_addr -= 1; |
| sgptr &= SG_PTR_MASK; |
| if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { |
| struct ahd_dma64_seg *sg; |
| |
| sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); |
| |
| /* |
| * The residual sg ptr points to the next S/G |
| * to load so we must go back one. |
| */ |
| sg--; |
| sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; |
| if (sg != scb->sg_list |
| && sglen < (data_cnt & AHD_SG_LEN_MASK)) { |
| |
| sg--; |
| sglen = ahd_le32toh(sg->len); |
| /* |
| * Preserve High Address and SG_LIST |
| * bits while setting the count to 1. |
| */ |
| data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK)); |
| data_addr = ahd_le64toh(sg->addr) |
| + (sglen & AHD_SG_LEN_MASK) |
| - 1; |
| |
| /* |
| * Increment sg so it points to the |
| * "next" sg. |
| */ |
| sg++; |
| sgptr = ahd_sg_virt_to_bus(ahd, scb, |
| sg); |
| } |
| } else { |
| struct ahd_dma_seg *sg; |
| |
| sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); |
| |
| /* |
| * The residual sg ptr points to the next S/G |
| * to load so we must go back one. |
| */ |
| sg--; |
| sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; |
| if (sg != scb->sg_list |
| && sglen < (data_cnt & AHD_SG_LEN_MASK)) { |
| |
| sg--; |
| sglen = ahd_le32toh(sg->len); |
| /* |
| * Preserve High Address and SG_LIST |
| * bits while setting the count to 1. |
| */ |
| data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK)); |
| data_addr = ahd_le32toh(sg->addr) |
| + (sglen & AHD_SG_LEN_MASK) |
| - 1; |
| |
| /* |
| * Increment sg so it points to the |
| * "next" sg. |
| */ |
| sg++; |
| sgptr = ahd_sg_virt_to_bus(ahd, scb, |
| sg); |
| } |
| } |
| /* |
| * Toggle the "oddness" of the transfer length |
| * to handle this mid-transfer ignore wide |
| * residue. This ensures that the oddness is |
| * correct for subsequent data transfers. |
| */ |
| ahd_outb(ahd, SCB_TASK_ATTRIBUTE, |
| ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE) |
| ^ SCB_XFERLEN_ODD); |
| |
| ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); |
| ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt); |
| /* |
| * The FIFO's pointers will be updated if/when the |
| * sequencer re-enters a data phase. |
| */ |
| } |
| } |
| } |
| |
| |
| /* |
| * Reinitialize the data pointers for the active transfer |
| * based on its current residual. |
| */ |
| static void |
| ahd_reinitialize_dataptrs(struct ahd_softc *ahd) |
| { |
| struct scb *scb; |
| ahd_mode_state saved_modes; |
| u_int scb_index; |
| u_int wait; |
| uint32_t sgptr; |
| uint32_t resid; |
| uint64_t dataptr; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK, |
| AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK); |
| |
| scb_index = ahd_get_scbptr(ahd); |
| scb = ahd_lookup_scb(ahd, scb_index); |
| |
| /* |
| * Release and reacquire the FIFO so we |
| * have a clean slate. |
| */ |
| ahd_outb(ahd, DFFSXFRCTL, CLRCHN); |
| wait = 1000; |
| while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE)) |
| ahd_delay(100); |
| if (wait == 0) { |
| ahd_print_path(ahd, scb); |
| printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n"); |
| ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT); |
| } |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd_outb(ahd, DFFSTAT, |
| ahd_inb(ahd, DFFSTAT) |
| | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0)); |
| |
| /* |
| * Determine initial values for data_addr and data_cnt |
| * for resuming the data phase. |
| */ |
| sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); |
| sgptr &= SG_PTR_MASK; |
| |
| resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16) |
| | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8) |
| | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT); |
| |
| if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { |
| struct ahd_dma64_seg *sg; |
| |
| sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); |
| |
| /* The residual sg_ptr always points to the next sg */ |
| sg--; |
| |
| dataptr = ahd_le64toh(sg->addr) |
| + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK) |
| - resid; |
| ahd_outl(ahd, HADDR + 4, dataptr >> 32); |
| } else { |
| struct ahd_dma_seg *sg; |
| |
| sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); |
| |
| /* The residual sg_ptr always points to the next sg */ |
| sg--; |
| |
| dataptr = ahd_le32toh(sg->addr) |
| + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK) |
| - resid; |
| ahd_outb(ahd, HADDR + 4, |
| (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24); |
| } |
| ahd_outl(ahd, HADDR, dataptr); |
| ahd_outb(ahd, HCNT + 2, resid >> 16); |
| ahd_outb(ahd, HCNT + 1, resid >> 8); |
| ahd_outb(ahd, HCNT, resid); |
| } |
| |
| /* |
| * Handle the effects of issuing a bus device reset message. |
| */ |
| static void |
| ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| u_int lun, cam_status status, char *message, |
| int verbose_level) |
| { |
| #ifdef AHD_TARGET_MODE |
| struct ahd_tmode_tstate* tstate; |
| #endif |
| int found; |
| |
| found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel, |
| lun, SCB_LIST_NULL, devinfo->role, |
| status); |
| |
| #ifdef AHD_TARGET_MODE |
| /* |
| * Send an immediate notify ccb to all target mord peripheral |
| * drivers affected by this action. |
| */ |
| tstate = ahd->enabled_targets[devinfo->our_scsiid]; |
| if (tstate != NULL) { |
| u_int cur_lun; |
| u_int max_lun; |
| |
| if (lun != CAM_LUN_WILDCARD) { |
| cur_lun = 0; |
| max_lun = AHD_NUM_LUNS - 1; |
| } else { |
| cur_lun = lun; |
| max_lun = lun; |
| } |
| for (;cur_lun <= max_lun; cur_lun++) { |
| struct ahd_tmode_lstate* lstate; |
| |
| lstate = tstate->enabled_luns[cur_lun]; |
| if (lstate == NULL) |
| continue; |
| |
| ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid, |
| MSG_BUS_DEV_RESET, /*arg*/0); |
| ahd_send_lstate_events(ahd, lstate); |
| } |
| } |
| #endif |
| |
| /* |
| * Go back to async/narrow transfers and renegotiate. |
| */ |
| ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_CUR, /*paused*/TRUE); |
| ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0, |
| /*ppr_options*/0, AHD_TRANS_CUR, |
| /*paused*/TRUE); |
| |
| if (status != CAM_SEL_TIMEOUT) |
| ahd_send_async(ahd, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_SENT_BDR); |
| |
| if (message != NULL && bootverbose) |
| printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd), |
| message, devinfo->channel, devinfo->target, found); |
| } |
| |
| #ifdef AHD_TARGET_MODE |
| static void |
| ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, |
| struct scb *scb) |
| { |
| |
| /* |
| * To facilitate adding multiple messages together, |
| * each routine should increment the index and len |
| * variables instead of setting them explicitly. |
| */ |
| ahd->msgout_index = 0; |
| ahd->msgout_len = 0; |
| |
| if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0) |
| ahd_build_transfer_msg(ahd, devinfo); |
| else |
| panic("ahd_intr: AWAITING target message with no message"); |
| |
| ahd->msgout_index = 0; |
| ahd->msg_type = MSG_TYPE_TARGET_MSGIN; |
| } |
| #endif |
| /**************************** Initialization **********************************/ |
| static u_int |
| ahd_sglist_size(struct ahd_softc *ahd) |
| { |
| bus_size_t list_size; |
| |
| list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG; |
| if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) |
| list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG; |
| return (list_size); |
| } |
| |
| /* |
| * Calculate the optimum S/G List allocation size. S/G elements used |
| * for a given transaction must be physically contiguous. Assume the |
| * OS will allocate full pages to us, so it doesn't make sense to request |
| * less than a page. |
| */ |
| static u_int |
| ahd_sglist_allocsize(struct ahd_softc *ahd) |
| { |
| bus_size_t sg_list_increment; |
| bus_size_t sg_list_size; |
| bus_size_t max_list_size; |
| bus_size_t best_list_size; |
| |
| /* Start out with the minimum required for AHD_NSEG. */ |
| sg_list_increment = ahd_sglist_size(ahd); |
| sg_list_size = sg_list_increment; |
| |
| /* Get us as close as possible to a page in size. */ |
| while ((sg_list_size + sg_list_increment) <= PAGE_SIZE) |
| sg_list_size += sg_list_increment; |
| |
| /* |
| * Try to reduce the amount of wastage by allocating |
| * multiple pages. |
| */ |
| best_list_size = sg_list_size; |
| max_list_size = roundup(sg_list_increment, PAGE_SIZE); |
| if (max_list_size < 4 * PAGE_SIZE) |
| max_list_size = 4 * PAGE_SIZE; |
| if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment)) |
| max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment); |
| while ((sg_list_size + sg_list_increment) <= max_list_size |
| && (sg_list_size % PAGE_SIZE) != 0) { |
| bus_size_t new_mod; |
| bus_size_t best_mod; |
| |
| sg_list_size += sg_list_increment; |
| new_mod = sg_list_size % PAGE_SIZE; |
| best_mod = best_list_size % PAGE_SIZE; |
| if (new_mod > best_mod || new_mod == 0) { |
| best_list_size = sg_list_size; |
| } |
| } |
| return (best_list_size); |
| } |
| |
| /* |
| * Allocate a controller structure for a new device |
| * and perform initial initializion. |
| */ |
| struct ahd_softc * |
| ahd_alloc(void *platform_arg, char *name) |
| { |
| struct ahd_softc *ahd; |
| |
| ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC); |
| if (!ahd) { |
| printk("aic7xxx: cannot malloc softc!\n"); |
| kfree(name); |
| return NULL; |
| } |
| |
| ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC); |
| if (ahd->seep_config == NULL) { |
| kfree(ahd); |
| kfree(name); |
| return (NULL); |
| } |
| LIST_INIT(&ahd->pending_scbs); |
| /* We don't know our unit number until the OSM sets it */ |
| ahd->name = name; |
| ahd->unit = -1; |
| ahd->description = NULL; |
| ahd->bus_description = NULL; |
| ahd->channel = 'A'; |
| ahd->chip = AHD_NONE; |
| ahd->features = AHD_FENONE; |
| ahd->bugs = AHD_BUGNONE; |
| ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A |
| | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A; |
| timer_setup(&ahd->stat_timer, ahd_stat_timer, 0); |
| ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT; |
| ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT; |
| ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT; |
| ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT; |
| ahd->int_coalescing_stop_threshold = |
| AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT; |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MEMORY) != 0) { |
| printk("%s: scb size = 0x%x, hscb size = 0x%x\n", |
| ahd_name(ahd), (u_int)sizeof(struct scb), |
| (u_int)sizeof(struct hardware_scb)); |
| } |
| #endif |
| if (ahd_platform_alloc(ahd, platform_arg) != 0) { |
| ahd_free(ahd); |
| ahd = NULL; |
| } |
| return (ahd); |
| } |
| |
| int |
| ahd_softc_init(struct ahd_softc *ahd) |
| { |
| |
| ahd->unpause = 0; |
| ahd->pause = PAUSE; |
| return (0); |
| } |
| |
| void |
| ahd_set_unit(struct ahd_softc *ahd, int unit) |
| { |
| ahd->unit = unit; |
| } |
| |
| void |
| ahd_set_name(struct ahd_softc *ahd, char *name) |
| { |
| kfree(ahd->name); |
| ahd->name = name; |
| } |
| |
| void |
| ahd_free(struct ahd_softc *ahd) |
| { |
| int i; |
| |
| switch (ahd->init_level) { |
| default: |
| case 5: |
| ahd_shutdown(ahd); |
| fallthrough; |
| case 4: |
| ahd_dmamap_unload(ahd, ahd->shared_data_dmat, |
| ahd->shared_data_map.dmamap); |
| fallthrough; |
| case 3: |
| ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo, |
| ahd->shared_data_map.dmamap); |
| ahd_dmamap_destroy(ahd, ahd->shared_data_dmat, |
| ahd->shared_data_map.dmamap); |
| fallthrough; |
| case 2: |
| ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat); |
| case 1: |
| break; |
| case 0: |
| break; |
| } |
| |
| ahd_platform_free(ahd); |
| ahd_fini_scbdata(ahd); |
| for (i = 0; i < AHD_NUM_TARGETS; i++) { |
| struct ahd_tmode_tstate *tstate; |
| |
| tstate = ahd->enabled_targets[i]; |
| if (tstate != NULL) { |
| #ifdef AHD_TARGET_MODE |
| int j; |
| |
| for (j = 0; j < AHD_NUM_LUNS; j++) { |
| struct ahd_tmode_lstate *lstate; |
| |
| lstate = tstate->enabled_luns[j]; |
| if (lstate != NULL) { |
| xpt_free_path(lstate->path); |
| kfree(lstate); |
| } |
| } |
| #endif |
| kfree(tstate); |
| } |
| } |
| #ifdef AHD_TARGET_MODE |
| if (ahd->black_hole != NULL) { |
| xpt_free_path(ahd->black_hole->path); |
| kfree(ahd->black_hole); |
| } |
| #endif |
| kfree(ahd->name); |
| kfree(ahd->seep_config); |
| kfree(ahd->saved_stack); |
| kfree(ahd); |
| return; |
| } |
| |
| static void |
| ahd_shutdown(void *arg) |
| { |
| struct ahd_softc *ahd; |
| |
| ahd = (struct ahd_softc *)arg; |
| |
| /* |
| * Stop periodic timer callbacks. |
| */ |
| del_timer_sync(&ahd->stat_timer); |
| |
| /* This will reset most registers to 0, but not all */ |
| ahd_reset(ahd, /*reinit*/FALSE); |
| } |
| |
| /* |
| * Reset the controller and record some information about it |
| * that is only available just after a reset. If "reinit" is |
| * non-zero, this reset occurred after initial configuration |
| * and the caller requests that the chip be fully reinitialized |
| * to a runable state. Chip interrupts are *not* enabled after |
| * a reinitialization. The caller must enable interrupts via |
| * ahd_intr_enable(). |
| */ |
| int |
| ahd_reset(struct ahd_softc *ahd, int reinit) |
| { |
| u_int sxfrctl1; |
| int wait; |
| uint32_t cmd; |
| |
| /* |
| * Preserve the value of the SXFRCTL1 register for all channels. |
| * It contains settings that affect termination and we don't want |
| * to disturb the integrity of the bus. |
| */ |
| ahd_pause(ahd); |
| ahd_update_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| sxfrctl1 = ahd_inb(ahd, SXFRCTL1); |
| |
| cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2); |
| if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) { |
| uint32_t mod_cmd; |
| |
| /* |
| * A4 Razor #632 |
| * During the assertion of CHIPRST, the chip |
| * does not disable its parity logic prior to |
| * the start of the reset. This may cause a |
| * parity error to be detected and thus a |
| * spurious SERR or PERR assertion. Disable |
| * PERR and SERR responses during the CHIPRST. |
| */ |
| mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN); |
| ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, |
| mod_cmd, /*bytes*/2); |
| } |
| ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause); |
| |
| /* |
| * Ensure that the reset has finished. We delay 1000us |
| * prior to reading the register to make sure the chip |
| * has sufficiently completed its reset to handle register |
| * accesses. |
| */ |
| wait = 1000; |
| do { |
| ahd_delay(1000); |
| } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK)); |
| |
| if (wait == 0) { |
| printk("%s: WARNING - Failed chip reset! " |
| "Trying to initialize anyway.\n", ahd_name(ahd)); |
| } |
| ahd_outb(ahd, HCNTRL, ahd->pause); |
| |
| if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) { |
| /* |
| * Clear any latched PCI error status and restore |
| * previous SERR and PERR response enables. |
| */ |
| ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1, |
| 0xFF, /*bytes*/1); |
| ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, |
| cmd, /*bytes*/2); |
| } |
| |
| /* |
| * Mode should be SCSI after a chip reset, but lets |
| * set it just to be safe. We touch the MODE_PTR |
| * register directly so as to bypass the lazy update |
| * code in ahd_set_modes(). |
| */ |
| ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd_outb(ahd, MODE_PTR, |
| ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI)); |
| |
| /* |
| * Restore SXFRCTL1. |
| * |
| * We must always initialize STPWEN to 1 before we |
| * restore the saved values. STPWEN is initialized |
| * to a tri-state condition which can only be cleared |
| * by turning it on. |
| */ |
| ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN); |
| ahd_outb(ahd, SXFRCTL1, sxfrctl1); |
| |
| /* Determine chip configuration */ |
| ahd->features &= ~AHD_WIDE; |
| if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0) |
| ahd->features |= AHD_WIDE; |
| |
| /* |
| * If a recovery action has forced a chip reset, |
| * re-initialize the chip to our liking. |
| */ |
| if (reinit != 0) |
| ahd_chip_init(ahd); |
| |
| return (0); |
| } |
| |
| /* |
| * Determine the number of SCBs available on the controller |
| */ |
| static int |
| ahd_probe_scbs(struct ahd_softc *ahd) { |
| int i; |
| |
| AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), |
| ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); |
| for (i = 0; i < AHD_SCB_MAX; i++) { |
| int j; |
| |
| ahd_set_scbptr(ahd, i); |
| ahd_outw(ahd, SCB_BASE, i); |
| for (j = 2; j < 64; j++) |
| ahd_outb(ahd, SCB_BASE+j, 0); |
| /* Start out life as unallocated (needing an abort) */ |
| ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE); |
| if (ahd_inw_scbram(ahd, SCB_BASE) != i) |
| break; |
| ahd_set_scbptr(ahd, 0); |
| if (ahd_inw_scbram(ahd, SCB_BASE) != 0) |
| break; |
| } |
| return (i); |
| } |
| |
| static void |
| ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) |
| { |
| dma_addr_t *baddr; |
| |
| baddr = (dma_addr_t *)arg; |
| *baddr = segs->ds_addr; |
| } |
| |
| static void |
| ahd_initialize_hscbs(struct ahd_softc *ahd) |
| { |
| int i; |
| |
| for (i = 0; i < ahd->scb_data.maxhscbs; i++) { |
| ahd_set_scbptr(ahd, i); |
| |
| /* Clear the control byte. */ |
| ahd_outb(ahd, SCB_CONTROL, 0); |
| |
| /* Set the next pointer */ |
| ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL); |
| } |
| } |
| |
| static int |
| ahd_init_scbdata(struct ahd_softc *ahd) |
| { |
| struct scb_data *scb_data; |
| int i; |
| |
| scb_data = &ahd->scb_data; |
| TAILQ_INIT(&scb_data->free_scbs); |
| for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++) |
| LIST_INIT(&scb_data->free_scb_lists[i]); |
| LIST_INIT(&scb_data->any_dev_free_scb_list); |
| SLIST_INIT(&scb_data->hscb_maps); |
| SLIST_INIT(&scb_data->sg_maps); |
| SLIST_INIT(&scb_data->sense_maps); |
| |
| /* Determine the number of hardware SCBs and initialize them */ |
| scb_data->maxhscbs = ahd_probe_scbs(ahd); |
| if (scb_data->maxhscbs == 0) { |
| printk("%s: No SCB space found\n", ahd_name(ahd)); |
| return (ENXIO); |
| } |
| |
| ahd_initialize_hscbs(ahd); |
| |
| /* |
| * Create our DMA tags. These tags define the kinds of device |
| * accessible memory allocations and memory mappings we will |
| * need to perform during normal operation. |
| * |
| * Unless we need to further restrict the allocation, we rely |
| * on the restrictions of the parent dmat, hence the common |
| * use of MAXADDR and MAXSIZE. |
| */ |
| |
| /* DMA tag for our hardware scb structures */ |
| if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| PAGE_SIZE, /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &scb_data->hscb_dmat) != 0) { |
| goto error_exit; |
| } |
| |
| scb_data->init_level++; |
| |
| /* DMA tag for our S/G structures. */ |
| if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| ahd_sglist_allocsize(ahd), /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &scb_data->sg_dmat) != 0) { |
| goto error_exit; |
| } |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MEMORY) != 0) |
| printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd), |
| ahd_sglist_allocsize(ahd)); |
| #endif |
| |
| scb_data->init_level++; |
| |
| /* DMA tag for our sense buffers. We allocate in page sized chunks */ |
| if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| PAGE_SIZE, /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &scb_data->sense_dmat) != 0) { |
| goto error_exit; |
| } |
| |
| scb_data->init_level++; |
| |
| /* Perform initial CCB allocation */ |
| ahd_alloc_scbs(ahd); |
| |
| if (scb_data->numscbs == 0) { |
| printk("%s: ahd_init_scbdata - " |
| "Unable to allocate initial scbs\n", |
| ahd_name(ahd)); |
| goto error_exit; |
| } |
| |
| /* |
| * Note that we were successful |
| */ |
| return (0); |
| |
| error_exit: |
| |
| return (ENOMEM); |
| } |
| |
| static struct scb * |
| ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag) |
| { |
| struct scb *scb; |
| |
| /* |
| * Look on the pending list. |
| */ |
| LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { |
| if (SCB_GET_TAG(scb) == tag) |
| return (scb); |
| } |
| |
| /* |
| * Then on all of the collision free lists. |
| */ |
| TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { |
| struct scb *list_scb; |
| |
| list_scb = scb; |
| do { |
| if (SCB_GET_TAG(list_scb) == tag) |
| return (list_scb); |
| list_scb = LIST_NEXT(list_scb, collision_links); |
| } while (list_scb); |
| } |
| |
| /* |
| * And finally on the generic free list. |
| */ |
| LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) { |
| if (SCB_GET_TAG(scb) == tag) |
| return (scb); |
| } |
| |
| return (NULL); |
| } |
| |
| static void |
| ahd_fini_scbdata(struct ahd_softc *ahd) |
| { |
| struct scb_data *scb_data; |
| |
| scb_data = &ahd->scb_data; |
| if (scb_data == NULL) |
| return; |
| |
| switch (scb_data->init_level) { |
| default: |
| case 7: |
| { |
| struct map_node *sns_map; |
| |
| while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) { |
| SLIST_REMOVE_HEAD(&scb_data->sense_maps, links); |
| ahd_dmamap_unload(ahd, scb_data->sense_dmat, |
| sns_map->dmamap); |
| ahd_dmamem_free(ahd, scb_data->sense_dmat, |
| sns_map->vaddr, sns_map->dmamap); |
| kfree(sns_map); |
| } |
| ahd_dma_tag_destroy(ahd, scb_data->sense_dmat); |
| } |
| fallthrough; |
| case 6: |
| { |
| struct map_node *sg_map; |
| |
| while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) { |
| SLIST_REMOVE_HEAD(&scb_data->sg_maps, links); |
| ahd_dmamap_unload(ahd, scb_data->sg_dmat, |
| sg_map->dmamap); |
| ahd_dmamem_free(ahd, scb_data->sg_dmat, |
| sg_map->vaddr, sg_map->dmamap); |
| kfree(sg_map); |
| } |
| ahd_dma_tag_destroy(ahd, scb_data->sg_dmat); |
| } |
| fallthrough; |
| case 5: |
| { |
| struct map_node *hscb_map; |
| |
| while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) { |
| SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links); |
| ahd_dmamap_unload(ahd, scb_data->hscb_dmat, |
| hscb_map->dmamap); |
| ahd_dmamem_free(ahd, scb_data->hscb_dmat, |
| hscb_map->vaddr, hscb_map->dmamap); |
| kfree(hscb_map); |
| } |
| ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat); |
| /* FALLTHROUGH */ |
| } |
| case 4: |
| case 3: |
| case 2: |
| case 1: |
| case 0: |
| break; |
| } |
| } |
| |
| /* |
| * DSP filter Bypass must be enabled until the first selection |
| * after a change in bus mode (Razor #491 and #493). |
| */ |
| static void |
| ahd_setup_iocell_workaround(struct ahd_softc *ahd) |
| { |
| ahd_mode_state saved_modes; |
| |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL) |
| | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS); |
| ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI)); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("%s: Setting up iocell workaround\n", ahd_name(ahd)); |
| #endif |
| ahd_restore_modes(ahd, saved_modes); |
| ahd->flags &= ~AHD_HAD_FIRST_SEL; |
| } |
| |
| static void |
| ahd_iocell_first_selection(struct ahd_softc *ahd) |
| { |
| ahd_mode_state saved_modes; |
| u_int sblkctl; |
| |
| if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0) |
| return; |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| sblkctl = ahd_inb(ahd, SBLKCTL); |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("%s: iocell first selection\n", ahd_name(ahd)); |
| #endif |
| if ((sblkctl & ENAB40) != 0) { |
| ahd_outb(ahd, DSPDATACTL, |
| ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("%s: BYPASS now disabled\n", ahd_name(ahd)); |
| #endif |
| } |
| ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI)); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| ahd_restore_modes(ahd, saved_modes); |
| ahd->flags |= AHD_HAD_FIRST_SEL; |
| } |
| |
| /*************************** SCB Management ***********************************/ |
| static void |
| ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx) |
| { |
| struct scb_list *free_list; |
| struct scb_tailq *free_tailq; |
| struct scb *first_scb; |
| |
| scb->flags |= SCB_ON_COL_LIST; |
| AHD_SET_SCB_COL_IDX(scb, col_idx); |
| free_list = &ahd->scb_data.free_scb_lists[col_idx]; |
| free_tailq = &ahd->scb_data.free_scbs; |
| first_scb = LIST_FIRST(free_list); |
| if (first_scb != NULL) { |
| LIST_INSERT_AFTER(first_scb, scb, collision_links); |
| } else { |
| LIST_INSERT_HEAD(free_list, scb, collision_links); |
| TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe); |
| } |
| } |
| |
| static void |
| ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb) |
| { |
| struct scb_list *free_list; |
| struct scb_tailq *free_tailq; |
| struct scb *first_scb; |
| u_int col_idx; |
| |
| scb->flags &= ~SCB_ON_COL_LIST; |
| col_idx = AHD_GET_SCB_COL_IDX(ahd, scb); |
| free_list = &ahd->scb_data.free_scb_lists[col_idx]; |
| free_tailq = &ahd->scb_data.free_scbs; |
| first_scb = LIST_FIRST(free_list); |
| if (first_scb == scb) { |
| struct scb *next_scb; |
| |
| /* |
| * Maintain order in the collision free |
| * lists for fairness if this device has |
| * other colliding tags active. |
| */ |
| next_scb = LIST_NEXT(scb, collision_links); |
| if (next_scb != NULL) { |
| TAILQ_INSERT_AFTER(free_tailq, scb, |
| next_scb, links.tqe); |
| } |
| TAILQ_REMOVE(free_tailq, scb, links.tqe); |
| } |
| LIST_REMOVE(scb, collision_links); |
| } |
| |
| /* |
| * Get a free scb. If there are none, see if we can allocate a new SCB. |
| */ |
| struct scb * |
| ahd_get_scb(struct ahd_softc *ahd, u_int col_idx) |
| { |
| struct scb *scb; |
| int tries; |
| |
| tries = 0; |
| look_again: |
| TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { |
| if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) { |
| ahd_rem_col_list(ahd, scb); |
| goto found; |
| } |
| } |
| if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) { |
| |
| if (tries++ != 0) |
| return (NULL); |
| ahd_alloc_scbs(ahd); |
| goto look_again; |
| } |
| LIST_REMOVE(scb, links.le); |
| if (col_idx != AHD_NEVER_COL_IDX |
| && (scb->col_scb != NULL) |
| && (scb->col_scb->flags & SCB_ACTIVE) == 0) { |
| LIST_REMOVE(scb->col_scb, links.le); |
| ahd_add_col_list(ahd, scb->col_scb, col_idx); |
| } |
| found: |
| scb->flags |= SCB_ACTIVE; |
| return (scb); |
| } |
| |
| /* |
| * Return an SCB resource to the free list. |
| */ |
| void |
| ahd_free_scb(struct ahd_softc *ahd, struct scb *scb) |
| { |
| /* Clean up for the next user */ |
| scb->flags = SCB_FLAG_NONE; |
| scb->hscb->control = 0; |
| ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL; |
| |
| if (scb->col_scb == NULL) { |
| |
| /* |
| * No collision possible. Just free normally. |
| */ |
| LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, |
| scb, links.le); |
| } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) { |
| |
| /* |
| * The SCB we might have collided with is on |
| * a free collision list. Put both SCBs on |
| * the generic list. |
| */ |
| ahd_rem_col_list(ahd, scb->col_scb); |
| LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, |
| scb, links.le); |
| LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, |
| scb->col_scb, links.le); |
| } else if ((scb->col_scb->flags |
| & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE |
| && (scb->col_scb->hscb->control & TAG_ENB) != 0) { |
| |
| /* |
| * The SCB we might collide with on the next allocation |
| * is still active in a non-packetized, tagged, context. |
| * Put us on the SCB collision list. |
| */ |
| ahd_add_col_list(ahd, scb, |
| AHD_GET_SCB_COL_IDX(ahd, scb->col_scb)); |
| } else { |
| /* |
| * The SCB we might collide with on the next allocation |
| * is either active in a packetized context, or free. |
| * Since we can't collide, put this SCB on the generic |
| * free list. |
| */ |
| LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, |
| scb, links.le); |
| } |
| |
| ahd_platform_scb_free(ahd, scb); |
| } |
| |
| static void |
| ahd_alloc_scbs(struct ahd_softc *ahd) |
| { |
| struct scb_data *scb_data; |
| struct scb *next_scb; |
| struct hardware_scb *hscb; |
| struct map_node *hscb_map; |
| struct map_node *sg_map; |
| struct map_node *sense_map; |
| uint8_t *segs; |
| uint8_t *sense_data; |
| dma_addr_t hscb_busaddr; |
| dma_addr_t sg_busaddr; |
| dma_addr_t sense_busaddr; |
| int newcount; |
| int i; |
| |
| scb_data = &ahd->scb_data; |
| if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC) |
| /* Can't allocate any more */ |
| return; |
| |
| if (scb_data->scbs_left != 0) { |
| int offset; |
| |
| offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left; |
| hscb_map = SLIST_FIRST(&scb_data->hscb_maps); |
| hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset]; |
| hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb)); |
| } else { |
| hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC); |
| |
| if (hscb_map == NULL) |
| return; |
| |
| /* Allocate the next batch of hardware SCBs */ |
| if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat, |
| (void **)&hscb_map->vaddr, |
| BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) { |
| kfree(hscb_map); |
| return; |
| } |
| |
| SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links); |
| |
| ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap, |
| hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb, |
| &hscb_map->physaddr, /*flags*/0); |
| |
| hscb = (struct hardware_scb *)hscb_map->vaddr; |
| hscb_busaddr = hscb_map->physaddr; |
| scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb); |
| } |
| |
| if (scb_data->sgs_left != 0) { |
| int offset; |
| |
| offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd)) |
| - scb_data->sgs_left) * ahd_sglist_size(ahd); |
| sg_map = SLIST_FIRST(&scb_data->sg_maps); |
| segs = sg_map->vaddr + offset; |
| sg_busaddr = sg_map->physaddr + offset; |
| } else { |
| sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC); |
| |
| if (sg_map == NULL) |
| return; |
| |
| /* Allocate the next batch of S/G lists */ |
| if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat, |
| (void **)&sg_map->vaddr, |
| BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) { |
| kfree(sg_map); |
| return; |
| } |
| |
| SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links); |
| |
| ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap, |
| sg_map->vaddr, ahd_sglist_allocsize(ahd), |
| ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0); |
| |
| segs = sg_map->vaddr; |
| sg_busaddr = sg_map->physaddr; |
| scb_data->sgs_left = |
| ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd); |
| #ifdef AHD_DEBUG |
| if (ahd_debug & AHD_SHOW_MEMORY) |
| printk("Mapped SG data\n"); |
| #endif |
| } |
| |
| if (scb_data->sense_left != 0) { |
| int offset; |
| |
| offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left); |
| sense_map = SLIST_FIRST(&scb_data->sense_maps); |
| sense_data = sense_map->vaddr + offset; |
| sense_busaddr = sense_map->physaddr + offset; |
| } else { |
| sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC); |
| |
| if (sense_map == NULL) |
| return; |
| |
| /* Allocate the next batch of sense buffers */ |
| if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat, |
| (void **)&sense_map->vaddr, |
| BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) { |
| kfree(sense_map); |
| return; |
| } |
| |
| SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links); |
| |
| ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap, |
| sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb, |
| &sense_map->physaddr, /*flags*/0); |
| |
| sense_data = sense_map->vaddr; |
| sense_busaddr = sense_map->physaddr; |
| scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE; |
| #ifdef AHD_DEBUG |
| if (ahd_debug & AHD_SHOW_MEMORY) |
| printk("Mapped sense data\n"); |
| #endif |
| } |
| |
| newcount = min(scb_data->sense_left, scb_data->scbs_left); |
| newcount = min(newcount, scb_data->sgs_left); |
| newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs)); |
| for (i = 0; i < newcount; i++) { |
| struct scb_platform_data *pdata; |
| u_int col_tag; |
| |
| next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC); |
| if (next_scb == NULL) |
| break; |
| |
| pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC); |
| if (pdata == NULL) { |
| kfree(next_scb); |
| break; |
| } |
| next_scb->platform_data = pdata; |
| next_scb->hscb_map = hscb_map; |
| next_scb->sg_map = sg_map; |
| next_scb->sense_map = sense_map; |
| next_scb->sg_list = segs; |
| next_scb->sense_data = sense_data; |
| next_scb->sense_busaddr = sense_busaddr; |
| memset(hscb, 0, sizeof(*hscb)); |
| next_scb->hscb = hscb; |
| hscb->hscb_busaddr = ahd_htole32(hscb_busaddr); |
| |
| /* |
| * The sequencer always starts with the second entry. |
| * The first entry is embedded in the scb. |
| */ |
| next_scb->sg_list_busaddr = sg_busaddr; |
| if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) |
| next_scb->sg_list_busaddr |
| += sizeof(struct ahd_dma64_seg); |
| else |
| next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg); |
| next_scb->ahd_softc = ahd; |
| next_scb->flags = SCB_FLAG_NONE; |
| next_scb->hscb->tag = ahd_htole16(scb_data->numscbs); |
| col_tag = scb_data->numscbs ^ 0x100; |
| next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag); |
| if (next_scb->col_scb != NULL) |
| next_scb->col_scb->col_scb = next_scb; |
| ahd_free_scb(ahd, next_scb); |
| hscb++; |
| hscb_busaddr += sizeof(*hscb); |
| segs += ahd_sglist_size(ahd); |
| sg_busaddr += ahd_sglist_size(ahd); |
| sense_data += AHD_SENSE_BUFSIZE; |
| sense_busaddr += AHD_SENSE_BUFSIZE; |
| scb_data->numscbs++; |
| scb_data->sense_left--; |
| scb_data->scbs_left--; |
| scb_data->sgs_left--; |
| } |
| } |
| |
| void |
| ahd_controller_info(struct ahd_softc *ahd, char *buf) |
| { |
| const char *speed; |
| const char *type; |
| int len; |
| |
| len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]); |
| buf += len; |
| |
| speed = "Ultra320 "; |
| if ((ahd->features & AHD_WIDE) != 0) { |
| type = "Wide "; |
| } else { |
| type = "Single "; |
| } |
| len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ", |
| speed, type, ahd->channel, ahd->our_id); |
| buf += len; |
| |
| sprintf(buf, "%s, %d SCBs", ahd->bus_description, |
| ahd->scb_data.maxhscbs); |
| } |
| |
| static const char *channel_strings[] = { |
| "Primary Low", |
| "Primary High", |
| "Secondary Low", |
| "Secondary High" |
| }; |
| |
| static const char *termstat_strings[] = { |
| "Terminated Correctly", |
| "Over Terminated", |
| "Under Terminated", |
| "Not Configured" |
| }; |
| |
| /***************************** Timer Facilities *******************************/ |
| static void |
| ahd_timer_reset(struct timer_list *timer, int usec) |
| { |
| del_timer(timer); |
| timer->expires = jiffies + (usec * HZ)/1000000; |
| add_timer(timer); |
| } |
| |
| /* |
| * Start the board, ready for normal operation |
| */ |
| int |
| ahd_init(struct ahd_softc *ahd) |
| { |
| uint8_t *next_vaddr; |
| dma_addr_t next_baddr; |
| size_t driver_data_size; |
| int i; |
| int error; |
| u_int warn_user; |
| uint8_t current_sensing; |
| uint8_t fstat; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| |
| ahd->stack_size = ahd_probe_stack_size(ahd); |
| ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t), |
| GFP_ATOMIC); |
| if (ahd->saved_stack == NULL) |
| return (ENOMEM); |
| |
| /* |
| * Verify that the compiler hasn't over-aggressively |
| * padded important structures. |
| */ |
| if (sizeof(struct hardware_scb) != 64) |
| panic("Hardware SCB size is incorrect"); |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0) |
| ahd->flags |= AHD_SEQUENCER_DEBUG; |
| #endif |
| |
| /* |
| * Default to allowing initiator operations. |
| */ |
| ahd->flags |= AHD_INITIATORROLE; |
| |
| /* |
| * Only allow target mode features if this unit has them enabled. |
| */ |
| if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0) |
| ahd->features &= ~AHD_TARGETMODE; |
| |
| ahd->init_level++; |
| |
| /* |
| * DMA tag for our command fifos and other data in system memory |
| * the card's sequencer must be able to access. For initiator |
| * roles, we need to allocate space for the qoutfifo. When providing |
| * for the target mode role, we must additionally provide space for |
| * the incoming target command fifo. |
| */ |
| driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo) |
| + sizeof(struct hardware_scb); |
| if ((ahd->features & AHD_TARGETMODE) != 0) |
| driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd); |
| if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) |
| driver_data_size += PKT_OVERRUN_BUFSIZE; |
| if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| driver_data_size, |
| /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &ahd->shared_data_dmat) != 0) { |
| return (ENOMEM); |
| } |
| |
| ahd->init_level++; |
| |
| /* Allocation of driver data */ |
| if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat, |
| (void **)&ahd->shared_data_map.vaddr, |
| BUS_DMA_NOWAIT, |
| &ahd->shared_data_map.dmamap) != 0) { |
| return (ENOMEM); |
| } |
| |
| ahd->init_level++; |
| |
| /* And permanently map it in */ |
| ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, |
| ahd->shared_data_map.vaddr, driver_data_size, |
| ahd_dmamap_cb, &ahd->shared_data_map.physaddr, |
| /*flags*/0); |
| ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr; |
| next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE]; |
| next_baddr = ahd->shared_data_map.physaddr |
| + AHD_QOUT_SIZE*sizeof(struct ahd_completion); |
| if ((ahd->features & AHD_TARGETMODE) != 0) { |
| ahd->targetcmds = (struct target_cmd *)next_vaddr; |
| next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd); |
| next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd); |
| } |
| |
| if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { |
| ahd->overrun_buf = next_vaddr; |
| next_vaddr += PKT_OVERRUN_BUFSIZE; |
| next_baddr += PKT_OVERRUN_BUFSIZE; |
| } |
| |
| /* |
| * We need one SCB to serve as the "next SCB". Since the |
| * tag identifier in this SCB will never be used, there is |
| * no point in using a valid HSCB tag from an SCB pulled from |
| * the standard free pool. So, we allocate this "sentinel" |
| * specially from the DMA safe memory chunk used for the QOUTFIFO. |
| */ |
| ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr; |
| ahd->next_queued_hscb_map = &ahd->shared_data_map; |
| ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr); |
| |
| ahd->init_level++; |
| |
| /* Allocate SCB data now that buffer_dmat is initialized */ |
| if (ahd_init_scbdata(ahd) != 0) |
| return (ENOMEM); |
| |
| if ((ahd->flags & AHD_INITIATORROLE) == 0) |
| ahd->flags &= ~AHD_RESET_BUS_A; |
| |
| /* |
| * Before committing these settings to the chip, give |
| * the OSM one last chance to modify our configuration. |
| */ |
| ahd_platform_init(ahd); |
| |
| /* Bring up the chip. */ |
| ahd_chip_init(ahd); |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| |
| if ((ahd->flags & AHD_CURRENT_SENSING) == 0) |
| goto init_done; |
| |
| /* |
| * Verify termination based on current draw and |
| * warn user if the bus is over/under terminated. |
| */ |
| error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, |
| CURSENSE_ENB); |
| if (error != 0) { |
| printk("%s: current sensing timeout 1\n", ahd_name(ahd)); |
| goto init_done; |
| } |
| for (i = 20, fstat = FLX_FSTAT_BUSY; |
| (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) { |
| error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat); |
| if (error != 0) { |
| printk("%s: current sensing timeout 2\n", |
| ahd_name(ahd)); |
| goto init_done; |
| } |
| } |
| if (i == 0) { |
| printk("%s: Timedout during current-sensing test\n", |
| ahd_name(ahd)); |
| goto init_done; |
| } |
| |
| /* Latch Current Sensing status. */ |
| error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing); |
| if (error != 0) { |
| printk("%s: current sensing timeout 3\n", ahd_name(ahd)); |
| goto init_done; |
| } |
| |
| /* Diable current sensing. */ |
| ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0); |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) { |
| printk("%s: current_sensing == 0x%x\n", |
| ahd_name(ahd), current_sensing); |
| } |
| #endif |
| warn_user = 0; |
| for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) { |
| u_int term_stat; |
| |
| term_stat = (current_sensing & FLX_CSTAT_MASK); |
| switch (term_stat) { |
| case FLX_CSTAT_OVER: |
| case FLX_CSTAT_UNDER: |
| warn_user++; |
| fallthrough; |
| case FLX_CSTAT_INVALID: |
| case FLX_CSTAT_OKAY: |
| if (warn_user == 0 && bootverbose == 0) |
| break; |
| printk("%s: %s Channel %s\n", ahd_name(ahd), |
| channel_strings[i], termstat_strings[term_stat]); |
| break; |
| } |
| } |
| if (warn_user) { |
| printk("%s: WARNING. Termination is not configured correctly.\n" |
| "%s: WARNING. SCSI bus operations may FAIL.\n", |
| ahd_name(ahd), ahd_name(ahd)); |
| } |
| init_done: |
| ahd_restart(ahd); |
| ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US); |
| return (0); |
| } |
| |
| /* |
| * (Re)initialize chip state after a chip reset. |
| */ |
| static void |
| ahd_chip_init(struct ahd_softc *ahd) |
| { |
| uint32_t busaddr; |
| u_int sxfrctl1; |
| u_int scsiseq_template; |
| u_int wait; |
| u_int i; |
| u_int target; |
| |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| /* |
| * Take the LED out of diagnostic mode |
| */ |
| ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON)); |
| |
| /* |
| * Return HS_MAILBOX to its default value. |
| */ |
| ahd->hs_mailbox = 0; |
| ahd_outb(ahd, HS_MAILBOX, 0); |
| |
| /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */ |
| ahd_outb(ahd, IOWNID, ahd->our_id); |
| ahd_outb(ahd, TOWNID, ahd->our_id); |
| sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0; |
| sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0; |
| if ((ahd->bugs & AHD_LONG_SETIMO_BUG) |
| && (ahd->seltime != STIMESEL_MIN)) { |
| /* |
| * The selection timer duration is twice as long |
| * as it should be. Halve it by adding "1" to |
| * the user specified setting. |
| */ |
| sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ; |
| } else { |
| sxfrctl1 |= ahd->seltime; |
| } |
| |
| ahd_outb(ahd, SXFRCTL0, DFON); |
| ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN); |
| ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR); |
| |
| /* |
| * Now that termination is set, wait for up |
| * to 500ms for our transceivers to settle. If |
| * the adapter does not have a cable attached, |
| * the transceivers may never settle, so don't |
| * complain if we fail here. |
| */ |
| for (wait = 10000; |
| (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait; |
| wait--) |
| ahd_delay(100); |
| |
| /* Clear any false bus resets due to the transceivers settling */ |
| ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| |
| /* Initialize mode specific S/G state. */ |
| for (i = 0; i < 2; i++) { |
| ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i); |
| ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); |
| ahd_outb(ahd, SG_STATE, 0); |
| ahd_outb(ahd, CLRSEQINTSRC, 0xFF); |
| ahd_outb(ahd, SEQIMODE, |
| ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT |
| |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD); |
| } |
| |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN); |
| ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75); |
| ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN); |
| ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR); |
| if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { |
| ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE); |
| } else { |
| ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE); |
| } |
| ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS); |
| if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX) |
| /* |
| * Do not issue a target abort when a split completion |
| * error occurs. Let our PCIX interrupt handler deal |
| * with it instead. H2A4 Razor #625 |
| */ |
| ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS); |
| |
| if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0) |
| ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER); |
| |
| /* |
| * Tweak IOCELL settings. |
| */ |
| if ((ahd->flags & AHD_HP_BOARD) != 0) { |
| for (i = 0; i < NUMDSPS; i++) { |
| ahd_outb(ahd, DSPSELECT, i); |
| ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT); |
| } |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd), |
| WRTBIASCTL_HP_DEFAULT); |
| #endif |
| } |
| ahd_setup_iocell_workaround(ahd); |
| |
| /* |
| * Enable LQI Manager interrupts. |
| */ |
| ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT |
| | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI |
| | ENLQIOVERI_LQ|ENLQIOVERI_NLQ); |
| ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC); |
| /* |
| * We choose to have the sequencer catch LQOPHCHGINPKT errors |
| * manually for the command phase at the start of a packetized |
| * selection case. ENLQOBUSFREE should be made redundant by |
| * the BUSFREE interrupt, but it seems that some LQOBUSFREE |
| * events fail to assert the BUSFREE interrupt so we must |
| * also enable LQOBUSFREE interrupts. |
| */ |
| ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE); |
| |
| /* |
| * Setup sequencer interrupt handlers. |
| */ |
| ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr)); |
| ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr)); |
| |
| /* |
| * Setup SCB Offset registers. |
| */ |
| if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { |
| ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, |
| pkt_long_lun)); |
| } else { |
| ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun)); |
| } |
| ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len)); |
| ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute)); |
| ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management)); |
| ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb, |
| shared_data.idata.cdb)); |
| ahd_outb(ahd, QNEXTPTR, |
| offsetof(struct hardware_scb, next_hscb_busaddr)); |
| ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET); |
| ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control)); |
| if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { |
| ahd_outb(ahd, LUNLEN, |
| sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1); |
| } else { |
| ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN); |
| } |
| ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1); |
| ahd_outb(ahd, MAXCMD, 0xFF); |
| ahd_outb(ahd, SCBAUTOPTR, |
| AUSCBPTR_EN | offsetof(struct hardware_scb, tag)); |
| |
| /* We haven't been enabled for target mode yet. */ |
| ahd_outb(ahd, MULTARGID, 0); |
| ahd_outb(ahd, MULTARGID + 1, 0); |
| |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| /* Initialize the negotiation table. */ |
| if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) { |
| /* |
| * Clear the spare bytes in the neg table to avoid |
| * spurious parity errors. |
| */ |
| for (target = 0; target < AHD_NUM_TARGETS; target++) { |
| ahd_outb(ahd, NEGOADDR, target); |
| ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0); |
| for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++) |
| ahd_outb(ahd, ANNEXDAT, 0); |
| } |
| } |
| for (target = 0; target < AHD_NUM_TARGETS; target++) { |
| struct ahd_devinfo devinfo; |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| |
| tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, |
| target, &tstate); |
| ahd_compile_devinfo(&devinfo, ahd->our_id, |
| target, CAM_LUN_WILDCARD, |
| 'A', ROLE_INITIATOR); |
| ahd_update_neg_table(ahd, &devinfo, &tinfo->curr); |
| } |
| |
| ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR); |
| ahd_outb(ahd, CLRINT, CLRSCSIINT); |
| |
| #ifdef NEEDS_MORE_TESTING |
| /* |
| * Always enable abort on incoming L_Qs if this feature is |
| * supported. We use this to catch invalid SCB references. |
| */ |
| if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0) |
| ahd_outb(ahd, LQCTL1, ABORTPENDING); |
| else |
| #endif |
| ahd_outb(ahd, LQCTL1, 0); |
| |
| /* All of our queues are empty */ |
| ahd->qoutfifonext = 0; |
| ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID; |
| ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID); |
| for (i = 0; i < AHD_QOUT_SIZE; i++) |
| ahd->qoutfifo[i].valid_tag = 0; |
| ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD); |
| |
| ahd->qinfifonext = 0; |
| for (i = 0; i < AHD_QIN_SIZE; i++) |
| ahd->qinfifo[i] = SCB_LIST_NULL; |
| |
| if ((ahd->features & AHD_TARGETMODE) != 0) { |
| /* All target command blocks start out invalid. */ |
| for (i = 0; i < AHD_TMODE_CMDS; i++) |
| ahd->targetcmds[i].cmd_valid = 0; |
| ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD); |
| ahd->tqinfifonext = 1; |
| ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1); |
| ahd_outb(ahd, TQINPOS, ahd->tqinfifonext); |
| } |
| |
| /* Initialize Scratch Ram. */ |
| ahd_outb(ahd, SEQ_FLAGS, 0); |
| ahd_outb(ahd, SEQ_FLAGS2, 0); |
| |
| /* We don't have any waiting selections */ |
| ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL); |
| ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL); |
| ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL); |
| ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF); |
| for (i = 0; i < AHD_NUM_TARGETS; i++) |
| ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL); |
| |
| /* |
| * Nobody is waiting to be DMAed into the QOUTFIFO. |
| */ |
| ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL); |
| ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL); |
| ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL); |
| ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL); |
| ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL); |
| |
| /* |
| * The Freeze Count is 0. |
| */ |
| ahd->qfreeze_cnt = 0; |
| ahd_outw(ahd, QFREEZE_COUNT, 0); |
| ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0); |
| |
| /* |
| * Tell the sequencer where it can find our arrays in memory. |
| */ |
| busaddr = ahd->shared_data_map.physaddr; |
| ahd_outl(ahd, SHARED_DATA_ADDR, busaddr); |
| ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr); |
| |
| /* |
| * Setup the allowed SCSI Sequences based on operational mode. |
| * If we are a target, we'll enable select in operations once |
| * we've had a lun enabled. |
| */ |
| scsiseq_template = ENAUTOATNP; |
| if ((ahd->flags & AHD_INITIATORROLE) != 0) |
| scsiseq_template |= ENRSELI; |
| ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template); |
| |
| /* There are no busy SCBs yet. */ |
| for (target = 0; target < AHD_NUM_TARGETS; target++) { |
| int lun; |
| |
| for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++) |
| ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun)); |
| } |
| |
| /* |
| * Initialize the group code to command length table. |
| * Vendor Unique codes are set to 0 so we only capture |
| * the first byte of the cdb. These can be overridden |
| * when target mode is enabled. |
| */ |
| ahd_outb(ahd, CMDSIZE_TABLE, 5); |
| ahd_outb(ahd, CMDSIZE_TABLE + 1, 9); |
| ahd_outb(ahd, CMDSIZE_TABLE + 2, 9); |
| ahd_outb(ahd, CMDSIZE_TABLE + 3, 0); |
| ahd_outb(ahd, CMDSIZE_TABLE + 4, 15); |
| ahd_outb(ahd, CMDSIZE_TABLE + 5, 11); |
| ahd_outb(ahd, CMDSIZE_TABLE + 6, 0); |
| ahd_outb(ahd, CMDSIZE_TABLE + 7, 0); |
| |
| /* Tell the sequencer of our initial queue positions */ |
| ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); |
| ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512); |
| ahd->qinfifonext = 0; |
| ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); |
| ahd_set_hescb_qoff(ahd, 0); |
| ahd_set_snscb_qoff(ahd, 0); |
| ahd_set_sescb_qoff(ahd, 0); |
| ahd_set_sdscb_qoff(ahd, 0); |
| |
| /* |
| * Tell the sequencer which SCB will be the next one it receives. |
| */ |
| busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr); |
| ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); |
| |
| /* |
| * Default to coalescing disabled. |
| */ |
| ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0); |
| ahd_outw(ahd, CMDS_PENDING, 0); |
| ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer, |
| ahd->int_coalescing_maxcmds, |
| ahd->int_coalescing_mincmds); |
| ahd_enable_coalescing(ahd, FALSE); |
| |
| ahd_loadseq(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| |
| if (ahd->features & AHD_AIC79XXB_SLOWCRC) { |
| u_int negodat3 = ahd_inb(ahd, NEGCONOPTS); |
| |
| negodat3 |= ENSLOWCRC; |
| ahd_outb(ahd, NEGCONOPTS, negodat3); |
| negodat3 = ahd_inb(ahd, NEGCONOPTS); |
| if (!(negodat3 & ENSLOWCRC)) |
| printk("aic79xx: failed to set the SLOWCRC bit\n"); |
| else |
| printk("aic79xx: SLOWCRC bit set\n"); |
| } |
| } |
| |
| /* |
| * Setup default device and controller settings. |
| * This should only be called if our probe has |
| * determined that no configuration data is available. |
| */ |
| int |
| ahd_default_config(struct ahd_softc *ahd) |
| { |
| int targ; |
| |
| ahd->our_id = 7; |
| |
| /* |
| * Allocate a tstate to house information for our |
| * initiator presence on the bus as well as the user |
| * data for any target mode initiator. |
| */ |
| if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) { |
| printk("%s: unable to allocate ahd_tmode_tstate. " |
| "Failing attach\n", ahd_name(ahd)); |
| return (ENOMEM); |
| } |
| |
| for (targ = 0; targ < AHD_NUM_TARGETS; targ++) { |
| struct ahd_devinfo devinfo; |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_tmode_tstate *tstate; |
| uint16_t target_mask; |
| |
| tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, |
| targ, &tstate); |
| /* |
| * We support SPC2 and SPI4. |
| */ |
| tinfo->user.protocol_version = 4; |
| tinfo->user.transport_version = 4; |
| |
| target_mask = 0x01 << targ; |
| ahd->user_discenable |= target_mask; |
| tstate->discenable |= target_mask; |
| ahd->user_tagenable |= target_mask; |
| #ifdef AHD_FORCE_160 |
| tinfo->user.period = AHD_SYNCRATE_DT; |
| #else |
| tinfo->user.period = AHD_SYNCRATE_160; |
| #endif |
| tinfo->user.offset = MAX_OFFSET; |
| tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM |
| | MSG_EXT_PPR_WR_FLOW |
| | MSG_EXT_PPR_HOLD_MCS |
| | MSG_EXT_PPR_IU_REQ |
| | MSG_EXT_PPR_QAS_REQ |
| | MSG_EXT_PPR_DT_REQ; |
| if ((ahd->features & AHD_RTI) != 0) |
| tinfo->user.ppr_options |= MSG_EXT_PPR_RTI; |
| |
| tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT; |
| |
| /* |
| * Start out Async/Narrow/Untagged and with |
| * conservative protocol support. |
| */ |
| tinfo->goal.protocol_version = 2; |
| tinfo->goal.transport_version = 2; |
| tinfo->curr.protocol_version = 2; |
| tinfo->curr.transport_version = 2; |
| ahd_compile_devinfo(&devinfo, ahd->our_id, |
| targ, CAM_LUN_WILDCARD, |
| 'A', ROLE_INITIATOR); |
| tstate->tagenable &= ~target_mask; |
| ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); |
| ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, |
| /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| } |
| return (0); |
| } |
| |
| /* |
| * Parse device configuration information. |
| */ |
| int |
| ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc) |
| { |
| int targ; |
| int max_targ; |
| |
| max_targ = sc->max_targets & CFMAXTARG; |
| ahd->our_id = sc->brtime_id & CFSCSIID; |
| |
| /* |
| * Allocate a tstate to house information for our |
| * initiator presence on the bus as well as the user |
| * data for any target mode initiator. |
| */ |
| if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) { |
| printk("%s: unable to allocate ahd_tmode_tstate. " |
| "Failing attach\n", ahd_name(ahd)); |
| return (ENOMEM); |
| } |
| |
| for (targ = 0; targ < max_targ; targ++) { |
| struct ahd_devinfo devinfo; |
| struct ahd_initiator_tinfo *tinfo; |
| struct ahd_transinfo *user_tinfo; |
| struct ahd_tmode_tstate *tstate; |
| uint16_t target_mask; |
| |
| tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, |
| targ, &tstate); |
| user_tinfo = &tinfo->user; |
| |
| /* |
| * We support SPC2 and SPI4. |
| */ |
| tinfo->user.protocol_version = 4; |
| tinfo->user.transport_version = 4; |
| |
| target_mask = 0x01 << targ; |
| ahd->user_discenable &= ~target_mask; |
| tstate->discenable &= ~target_mask; |
| ahd->user_tagenable &= ~target_mask; |
| if (sc->device_flags[targ] & CFDISC) { |
| tstate->discenable |= target_mask; |
| ahd->user_discenable |= target_mask; |
| ahd->user_tagenable |= target_mask; |
| } else { |
| /* |
| * Cannot be packetized without disconnection. |
| */ |
| sc->device_flags[targ] &= ~CFPACKETIZED; |
| } |
| |
| user_tinfo->ppr_options = 0; |
| user_tinfo->period = (sc->device_flags[targ] & CFXFER); |
| if (user_tinfo->period < CFXFER_ASYNC) { |
| if (user_tinfo->period <= AHD_PERIOD_10MHz) |
| user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ; |
| user_tinfo->offset = MAX_OFFSET; |
| } else { |
| user_tinfo->offset = 0; |
| user_tinfo->period = AHD_ASYNC_XFER_PERIOD; |
| } |
| #ifdef AHD_FORCE_160 |
| if (user_tinfo->period <= AHD_SYNCRATE_160) |
| user_tinfo->period = AHD_SYNCRATE_DT; |
| #endif |
| |
| if ((sc->device_flags[targ] & CFPACKETIZED) != 0) { |
| user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM |
| | MSG_EXT_PPR_WR_FLOW |
| | MSG_EXT_PPR_HOLD_MCS |
| | MSG_EXT_PPR_IU_REQ; |
| if ((ahd->features & AHD_RTI) != 0) |
| user_tinfo->ppr_options |= MSG_EXT_PPR_RTI; |
| } |
| |
| if ((sc->device_flags[targ] & CFQAS) != 0) |
| user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ; |
| |
| if ((sc->device_flags[targ] & CFWIDEB) != 0) |
| user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT; |
| else |
| user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT; |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) |
| printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width, |
| user_tinfo->period, user_tinfo->offset, |
| user_tinfo->ppr_options); |
| #endif |
| /* |
| * Start out Async/Narrow/Untagged and with |
| * conservative protocol support. |
| */ |
| tstate->tagenable &= ~target_mask; |
| tinfo->goal.protocol_version = 2; |
| tinfo->goal.transport_version = 2; |
| tinfo->curr.protocol_version = 2; |
| tinfo->curr.transport_version = 2; |
| ahd_compile_devinfo(&devinfo, ahd->our_id, |
| targ, CAM_LUN_WILDCARD, |
| 'A', ROLE_INITIATOR); |
| ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); |
| ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, |
| /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL, |
| /*paused*/TRUE); |
| } |
| |
| ahd->flags &= ~AHD_SPCHK_ENB_A; |
| if (sc->bios_control & CFSPARITY) |
| ahd->flags |= AHD_SPCHK_ENB_A; |
| |
| ahd->flags &= ~AHD_RESET_BUS_A; |
| if (sc->bios_control & CFRESETB) |
| ahd->flags |= AHD_RESET_BUS_A; |
| |
| ahd->flags &= ~AHD_EXTENDED_TRANS_A; |
| if (sc->bios_control & CFEXTEND) |
| ahd->flags |= AHD_EXTENDED_TRANS_A; |
| |
| ahd->flags &= ~AHD_BIOS_ENABLED; |
| if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED) |
| ahd->flags |= AHD_BIOS_ENABLED; |
| |
| ahd->flags &= ~AHD_STPWLEVEL_A; |
| if ((sc->adapter_control & CFSTPWLEVEL) != 0) |
| ahd->flags |= AHD_STPWLEVEL_A; |
| |
| return (0); |
| } |
| |
| /* |
| * Parse device configuration information. |
| */ |
| int |
| ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd) |
| { |
| int error; |
| |
| error = ahd_verify_vpd_cksum(vpd); |
| if (error == 0) |
| return (EINVAL); |
| if ((vpd->bios_flags & VPDBOOTHOST) != 0) |
| ahd->flags |= AHD_BOOT_CHANNEL; |
| return (0); |
| } |
| |
| void |
| ahd_intr_enable(struct ahd_softc *ahd, int enable) |
| { |
| u_int hcntrl; |
| |
| hcntrl = ahd_inb(ahd, HCNTRL); |
| hcntrl &= ~INTEN; |
| ahd->pause &= ~INTEN; |
| ahd->unpause &= ~INTEN; |
| if (enable) { |
| hcntrl |= INTEN; |
| ahd->pause |= INTEN; |
| ahd->unpause |= INTEN; |
| } |
| ahd_outb(ahd, HCNTRL, hcntrl); |
| } |
| |
| static void |
| ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds, |
| u_int mincmds) |
| { |
| if (timer > AHD_TIMER_MAX_US) |
| timer = AHD_TIMER_MAX_US; |
| ahd->int_coalescing_timer = timer; |
| |
| if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX) |
| maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX; |
| if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX) |
| mincmds = AHD_INT_COALESCING_MINCMDS_MAX; |
| ahd->int_coalescing_maxcmds = maxcmds; |
| ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK); |
| ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds); |
| ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds); |
| } |
| |
| static void |
| ahd_enable_coalescing(struct ahd_softc *ahd, int enable) |
| { |
| |
| ahd->hs_mailbox &= ~ENINT_COALESCE; |
| if (enable) |
| ahd->hs_mailbox |= ENINT_COALESCE; |
| ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox); |
| ahd_flush_device_writes(ahd); |
| ahd_run_qoutfifo(ahd); |
| } |
| |
| /* |
| * Ensure that the card is paused in a location |
| * outside of all critical sections and that all |
| * pending work is completed prior to returning. |
| * This routine should only be called from outside |
| * an interrupt context. |
| */ |
| void |
| ahd_pause_and_flushwork(struct ahd_softc *ahd) |
| { |
| u_int intstat; |
| u_int maxloops; |
| |
| maxloops = 1000; |
| ahd->flags |= AHD_ALL_INTERRUPTS; |
| ahd_pause(ahd); |
| /* |
| * Freeze the outgoing selections. We do this only |
| * until we are safely paused without further selections |
| * pending. |
| */ |
| ahd->qfreeze_cnt--; |
| ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); |
| ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN); |
| do { |
| |
| ahd_unpause(ahd); |
| /* |
| * Give the sequencer some time to service |
| * any active selections. |
| */ |
| ahd_delay(500); |
| |
| ahd_intr(ahd); |
| ahd_pause(ahd); |
| intstat = ahd_inb(ahd, INTSTAT); |
| if ((intstat & INT_PEND) == 0) { |
| ahd_clear_critical_section(ahd); |
| intstat = ahd_inb(ahd, INTSTAT); |
| } |
| } while (--maxloops |
| && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0) |
| && ((intstat & INT_PEND) != 0 |
| || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0 |
| || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0)); |
| |
| if (maxloops == 0) { |
| printk("Infinite interrupt loop, INTSTAT = %x", |
| ahd_inb(ahd, INTSTAT)); |
| } |
| ahd->qfreeze_cnt++; |
| ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); |
| |
| ahd_flush_qoutfifo(ahd); |
| |
| ahd->flags &= ~AHD_ALL_INTERRUPTS; |
| } |
| |
| #ifdef CONFIG_PM |
| int |
| ahd_suspend(struct ahd_softc *ahd) |
| { |
| |
| ahd_pause_and_flushwork(ahd); |
| |
| if (LIST_FIRST(&ahd->pending_scbs) != NULL) { |
| ahd_unpause(ahd); |
| return (EBUSY); |
| } |
| ahd_shutdown(ahd); |
| return (0); |
| } |
| |
| void |
| ahd_resume(struct ahd_softc *ahd) |
| { |
| |
| ahd_reset(ahd, /*reinit*/TRUE); |
| ahd_intr_enable(ahd, TRUE); |
| ahd_restart(ahd); |
| } |
| #endif |
| |
| /************************** Busy Target Table *********************************/ |
| /* |
| * Set SCBPTR to the SCB that contains the busy |
| * table entry for TCL. Return the offset into |
| * the SCB that contains the entry for TCL. |
| * saved_scbid is dereferenced and set to the |
| * scbid that should be restored once manipualtion |
| * of the TCL entry is complete. |
| */ |
| static inline u_int |
| ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl) |
| { |
| /* |
| * Index to the SCB that contains the busy entry. |
| */ |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| *saved_scbid = ahd_get_scbptr(ahd); |
| ahd_set_scbptr(ahd, TCL_LUN(tcl) |
| | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4)); |
| |
| /* |
| * And now calculate the SCB offset to the entry. |
| * Each entry is 2 bytes wide, hence the |
| * multiplication by 2. |
| */ |
| return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS); |
| } |
| |
| /* |
| * Return the untagged transaction id for a given target/channel lun. |
| */ |
| static u_int |
| ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl) |
| { |
| u_int scbid; |
| u_int scb_offset; |
| u_int saved_scbptr; |
| |
| scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl); |
| scbid = ahd_inw_scbram(ahd, scb_offset); |
| ahd_set_scbptr(ahd, saved_scbptr); |
| return (scbid); |
| } |
| |
| static void |
| ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid) |
| { |
| u_int scb_offset; |
| u_int saved_scbptr; |
| |
| scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl); |
| ahd_outw(ahd, scb_offset, scbid); |
| ahd_set_scbptr(ahd, saved_scbptr); |
| } |
| |
| /************************** SCB and SCB queue management **********************/ |
| static int |
| ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target, |
| char channel, int lun, u_int tag, role_t role) |
| { |
| int targ = SCB_GET_TARGET(ahd, scb); |
| char chan = SCB_GET_CHANNEL(ahd, scb); |
| int slun = SCB_GET_LUN(scb); |
| int match; |
| |
| match = ((chan == channel) || (channel == ALL_CHANNELS)); |
| if (match != 0) |
| match = ((targ == target) || (target == CAM_TARGET_WILDCARD)); |
| if (match != 0) |
| match = ((lun == slun) || (lun == CAM_LUN_WILDCARD)); |
| if (match != 0) { |
| #ifdef AHD_TARGET_MODE |
| int group; |
| |
| group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code); |
| if (role == ROLE_INITIATOR) { |
| match = (group != XPT_FC_GROUP_TMODE) |
| && ((tag == SCB_GET_TAG(scb)) |
| || (tag == SCB_LIST_NULL)); |
| } else if (role == ROLE_TARGET) { |
| match = (group == XPT_FC_GROUP_TMODE) |
| && ((tag == scb->io_ctx->csio.tag_id) |
| || (tag == SCB_LIST_NULL)); |
| } |
| #else /* !AHD_TARGET_MODE */ |
| match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL)); |
| #endif /* AHD_TARGET_MODE */ |
| } |
| |
| return match; |
| } |
| |
| static void |
| ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb) |
| { |
| int target; |
| char channel; |
| int lun; |
| |
| target = SCB_GET_TARGET(ahd, scb); |
| lun = SCB_GET_LUN(scb); |
| channel = SCB_GET_CHANNEL(ahd, scb); |
| |
| ahd_search_qinfifo(ahd, target, channel, lun, |
| /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN, |
| CAM_REQUEUE_REQ, SEARCH_COMPLETE); |
| |
| ahd_platform_freeze_devq(ahd, scb); |
| } |
| |
| void |
| ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb) |
| { |
| struct scb *prev_scb; |
| ahd_mode_state saved_modes; |
| |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); |
| prev_scb = NULL; |
| if (ahd_qinfifo_count(ahd) != 0) { |
| u_int prev_tag; |
| u_int prev_pos; |
| |
| prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1); |
| prev_tag = ahd->qinfifo[prev_pos]; |
| prev_scb = ahd_lookup_scb(ahd, prev_tag); |
| } |
| ahd_qinfifo_requeue(ahd, prev_scb, scb); |
| ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); |
| ahd_restore_modes(ahd, saved_modes); |
| } |
| |
| static void |
| ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb, |
| struct scb *scb) |
| { |
| if (prev_scb == NULL) { |
| uint32_t busaddr; |
| |
| busaddr = ahd_le32toh(scb->hscb->hscb_busaddr); |
| ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); |
| } else { |
| prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr; |
| ahd_sync_scb(ahd, prev_scb, |
| BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| } |
| ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb); |
| ahd->qinfifonext++; |
| scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr; |
| ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| } |
| |
| static int |
| ahd_qinfifo_count(struct ahd_softc *ahd) |
| { |
| u_int qinpos; |
| u_int wrap_qinpos; |
| u_int wrap_qinfifonext; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); |
| qinpos = ahd_get_snscb_qoff(ahd); |
| wrap_qinpos = AHD_QIN_WRAP(qinpos); |
| wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext); |
| if (wrap_qinfifonext >= wrap_qinpos) |
| return (wrap_qinfifonext - wrap_qinpos); |
| else |
| return (wrap_qinfifonext |
| + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos); |
| } |
| |
| static void |
| ahd_reset_cmds_pending(struct ahd_softc *ahd) |
| { |
| struct scb *scb; |
| ahd_mode_state saved_modes; |
| u_int pending_cmds; |
| |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); |
| |
| /* |
| * Don't count any commands as outstanding that the |
| * sequencer has already marked for completion. |
| */ |
| ahd_flush_qoutfifo(ahd); |
| |
| pending_cmds = 0; |
| LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { |
| pending_cmds++; |
| } |
| ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd)); |
| ahd_restore_modes(ahd, saved_modes); |
| ahd->flags &= ~AHD_UPDATE_PEND_CMDS; |
| } |
| |
| static void |
| ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status) |
| { |
| cam_status ostat; |
| cam_status cstat; |
| |
| ostat = ahd_get_transaction_status(scb); |
| if (ostat == CAM_REQ_INPROG) |
| ahd_set_transaction_status(scb, status); |
| cstat = ahd_get_transaction_status(scb); |
| if (cstat != CAM_REQ_CMP) |
| ahd_freeze_scb(scb); |
| ahd_done(ahd, scb); |
| } |
| |
| int |
| ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel, |
| int lun, u_int tag, role_t role, uint32_t status, |
| ahd_search_action action) |
| { |
| struct scb *scb; |
| struct scb *mk_msg_scb; |
| struct scb *prev_scb; |
| ahd_mode_state saved_modes; |
| u_int qinstart; |
| u_int qinpos; |
| u_int qintail; |
| u_int tid_next; |
| u_int tid_prev; |
| u_int scbid; |
| u_int seq_flags2; |
| u_int savedscbptr; |
| uint32_t busaddr; |
| int found; |
| int targets; |
| |
| /* Must be in CCHAN mode */ |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); |
| |
| /* |
| * Halt any pending SCB DMA. The sequencer will reinitiate |
| * this dma if the qinfifo is not empty once we unpause. |
| */ |
| if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR)) |
| == (CCARREN|CCSCBEN|CCSCBDIR)) { |
| ahd_outb(ahd, CCSCBCTL, |
| ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN)); |
| while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0) |
| ; |
| } |
| /* Determine sequencer's position in the qinfifo. */ |
| qintail = AHD_QIN_WRAP(ahd->qinfifonext); |
| qinstart = ahd_get_snscb_qoff(ahd); |
| qinpos = AHD_QIN_WRAP(qinstart); |
| found = 0; |
| prev_scb = NULL; |
| |
| if (action == SEARCH_PRINT) { |
| printk("qinstart = %d qinfifonext = %d\nQINFIFO:", |
| qinstart, ahd->qinfifonext); |
| } |
| |
| /* |
| * Start with an empty queue. Entries that are not chosen |
| * for removal will be re-added to the queue as we go. |
| */ |
| ahd->qinfifonext = qinstart; |
| busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr); |
| ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); |
| |
| while (qinpos != qintail) { |
| scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]); |
| if (scb == NULL) { |
| printk("qinpos = %d, SCB index = %d\n", |
| qinpos, ahd->qinfifo[qinpos]); |
| panic("Loop 1\n"); |
| } |
| |
| if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) { |
| /* |
| * We found an scb that needs to be acted on. |
| */ |
| found++; |
| switch (action) { |
| case SEARCH_COMPLETE: |
| if ((scb->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB in qinfifo\n"); |
| ahd_done_with_status(ahd, scb, status); |
| fallthrough; |
| case SEARCH_REMOVE: |
| break; |
| case SEARCH_PRINT: |
| printk(" 0x%x", ahd->qinfifo[qinpos]); |
| fallthrough; |
| case SEARCH_COUNT: |
| ahd_qinfifo_requeue(ahd, prev_scb, scb); |
| prev_scb = scb; |
| break; |
| } |
| } else { |
| ahd_qinfifo_requeue(ahd, prev_scb, scb); |
| prev_scb = scb; |
| } |
| qinpos = AHD_QIN_WRAP(qinpos+1); |
| } |
| |
| ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); |
| |
| if (action == SEARCH_PRINT) |
| printk("\nWAITING_TID_QUEUES:\n"); |
| |
| /* |
| * Search waiting for selection lists. We traverse the |
| * list of "their ids" waiting for selection and, if |
| * appropriate, traverse the SCBs of each "their id" |
| * looking for matches. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2); |
| if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) { |
| scbid = ahd_inw(ahd, MK_MESSAGE_SCB); |
| mk_msg_scb = ahd_lookup_scb(ahd, scbid); |
| } else |
| mk_msg_scb = NULL; |
| savedscbptr = ahd_get_scbptr(ahd); |
| tid_next = ahd_inw(ahd, WAITING_TID_HEAD); |
| tid_prev = SCB_LIST_NULL; |
| targets = 0; |
| for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) { |
| u_int tid_head; |
| u_int tid_tail; |
| |
| targets++; |
| if (targets > AHD_NUM_TARGETS) |
| panic("TID LIST LOOP"); |
| |
| if (scbid >= ahd->scb_data.numscbs) { |
| printk("%s: Waiting TID List inconsistency. " |
| "SCB index == 0x%x, yet numscbs == 0x%x.", |
| ahd_name(ahd), scbid, ahd->scb_data.numscbs); |
| ahd_dump_card_state(ahd); |
| panic("for safety"); |
| } |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: SCB = 0x%x Not Active!\n", |
| ahd_name(ahd), scbid); |
| panic("Waiting TID List traversal\n"); |
| } |
| ahd_set_scbptr(ahd, scbid); |
| tid_next = ahd_inw_scbram(ahd, SCB_NEXT2); |
| if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD, |
| SCB_LIST_NULL, ROLE_UNKNOWN) == 0) { |
| tid_prev = scbid; |
| continue; |
| } |
| |
| /* |
| * We found a list of scbs that needs to be searched. |
| */ |
| if (action == SEARCH_PRINT) |
| printk(" %d ( ", SCB_GET_TARGET(ahd, scb)); |
| tid_head = scbid; |
| found += ahd_search_scb_list(ahd, target, channel, |
| lun, tag, role, status, |
| action, &tid_head, &tid_tail, |
| SCB_GET_TARGET(ahd, scb)); |
| /* |
| * Check any MK_MESSAGE SCB that is still waiting to |
| * enter this target's waiting for selection queue. |
| */ |
| if (mk_msg_scb != NULL |
| && ahd_match_scb(ahd, mk_msg_scb, target, channel, |
| lun, tag, role)) { |
| |
| /* |
| * We found an scb that needs to be acted on. |
| */ |
| found++; |
| switch (action) { |
| case SEARCH_COMPLETE: |
| if ((mk_msg_scb->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB pending MK_MSG\n"); |
| ahd_done_with_status(ahd, mk_msg_scb, status); |
| fallthrough; |
| case SEARCH_REMOVE: |
| { |
| u_int tail_offset; |
| |
| printk("Removing MK_MSG scb\n"); |
| |
| /* |
| * Reset our tail to the tail of the |
| * main per-target list. |
| */ |
| tail_offset = WAITING_SCB_TAILS |
| + (2 * SCB_GET_TARGET(ahd, mk_msg_scb)); |
| ahd_outw(ahd, tail_offset, tid_tail); |
| |
| seq_flags2 &= ~PENDING_MK_MESSAGE; |
| ahd_outb(ahd, SEQ_FLAGS2, seq_flags2); |
| ahd_outw(ahd, CMDS_PENDING, |
| ahd_inw(ahd, CMDS_PENDING)-1); |
| mk_msg_scb = NULL; |
| break; |
| } |
| case SEARCH_PRINT: |
| printk(" 0x%x", SCB_GET_TAG(scb)); |
| fallthrough; |
| case SEARCH_COUNT: |
| break; |
| } |
| } |
| |
| if (mk_msg_scb != NULL |
| && SCBID_IS_NULL(tid_head) |
| && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD, |
| SCB_LIST_NULL, ROLE_UNKNOWN)) { |
| |
| /* |
| * When removing the last SCB for a target |
| * queue with a pending MK_MESSAGE scb, we |
| * must queue the MK_MESSAGE scb. |
| */ |
| printk("Queueing mk_msg_scb\n"); |
| tid_head = ahd_inw(ahd, MK_MESSAGE_SCB); |
| seq_flags2 &= ~PENDING_MK_MESSAGE; |
| ahd_outb(ahd, SEQ_FLAGS2, seq_flags2); |
| mk_msg_scb = NULL; |
| } |
| if (tid_head != scbid) |
| ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next); |
| if (!SCBID_IS_NULL(tid_head)) |
| tid_prev = tid_head; |
| if (action == SEARCH_PRINT) |
| printk(")\n"); |
| } |
| |
| /* Restore saved state. */ |
| ahd_set_scbptr(ahd, savedscbptr); |
| ahd_restore_modes(ahd, saved_modes); |
| return (found); |
| } |
| |
| static int |
| ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel, |
| int lun, u_int tag, role_t role, uint32_t status, |
| ahd_search_action action, u_int *list_head, |
| u_int *list_tail, u_int tid) |
| { |
| struct scb *scb; |
| u_int scbid; |
| u_int next; |
| u_int prev; |
| int found; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| found = 0; |
| prev = SCB_LIST_NULL; |
| next = *list_head; |
| *list_tail = SCB_LIST_NULL; |
| for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) { |
| if (scbid >= ahd->scb_data.numscbs) { |
| printk("%s:SCB List inconsistency. " |
| "SCB == 0x%x, yet numscbs == 0x%x.", |
| ahd_name(ahd), scbid, ahd->scb_data.numscbs); |
| ahd_dump_card_state(ahd); |
| panic("for safety"); |
| } |
| scb = ahd_lookup_scb(ahd, scbid); |
| if (scb == NULL) { |
| printk("%s: SCB = %d Not Active!\n", |
| ahd_name(ahd), scbid); |
| panic("Waiting List traversal\n"); |
| } |
| ahd_set_scbptr(ahd, scbid); |
| *list_tail = scbid; |
| next = ahd_inw_scbram(ahd, SCB_NEXT); |
| if (ahd_match_scb(ahd, scb, target, channel, |
| lun, SCB_LIST_NULL, role) == 0) { |
| prev = scbid; |
| continue; |
| } |
| found++; |
| switch (action) { |
| case SEARCH_COMPLETE: |
| if ((scb->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB in Waiting List\n"); |
| ahd_done_with_status(ahd, scb, status); |
| fallthrough; |
| case SEARCH_REMOVE: |
| ahd_rem_wscb(ahd, scbid, prev, next, tid); |
| *list_tail = prev; |
| if (SCBID_IS_NULL(prev)) |
| *list_head = next; |
| break; |
| case SEARCH_PRINT: |
| printk("0x%x ", scbid); |
| fallthrough; |
| case SEARCH_COUNT: |
| prev = scbid; |
| break; |
| } |
| if (found > AHD_SCB_MAX) |
| panic("SCB LIST LOOP"); |
| } |
| if (action == SEARCH_COMPLETE |
| || action == SEARCH_REMOVE) |
| ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found); |
| return (found); |
| } |
| |
| static void |
| ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev, |
| u_int tid_cur, u_int tid_next) |
| { |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| |
| if (SCBID_IS_NULL(tid_cur)) { |
| |
| /* Bypass current TID list */ |
| if (SCBID_IS_NULL(tid_prev)) { |
| ahd_outw(ahd, WAITING_TID_HEAD, tid_next); |
| } else { |
| ahd_set_scbptr(ahd, tid_prev); |
| ahd_outw(ahd, SCB_NEXT2, tid_next); |
| } |
| if (SCBID_IS_NULL(tid_next)) |
| ahd_outw(ahd, WAITING_TID_TAIL, tid_prev); |
| } else { |
| |
| /* Stitch through tid_cur */ |
| if (SCBID_IS_NULL(tid_prev)) { |
| ahd_outw(ahd, WAITING_TID_HEAD, tid_cur); |
| } else { |
| ahd_set_scbptr(ahd, tid_prev); |
| ahd_outw(ahd, SCB_NEXT2, tid_cur); |
| } |
| ahd_set_scbptr(ahd, tid_cur); |
| ahd_outw(ahd, SCB_NEXT2, tid_next); |
| |
| if (SCBID_IS_NULL(tid_next)) |
| ahd_outw(ahd, WAITING_TID_TAIL, tid_cur); |
| } |
| } |
| |
| /* |
| * Manipulate the waiting for selection list and return the |
| * scb that follows the one that we remove. |
| */ |
| static u_int |
| ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid, |
| u_int prev, u_int next, u_int tid) |
| { |
| u_int tail_offset; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| if (!SCBID_IS_NULL(prev)) { |
| ahd_set_scbptr(ahd, prev); |
| ahd_outw(ahd, SCB_NEXT, next); |
| } |
| |
| /* |
| * SCBs that have MK_MESSAGE set in them may |
| * cause the tail pointer to be updated without |
| * setting the next pointer of the previous tail. |
| * Only clear the tail if the removed SCB was |
| * the tail. |
| */ |
| tail_offset = WAITING_SCB_TAILS + (2 * tid); |
| if (SCBID_IS_NULL(next) |
| && ahd_inw(ahd, tail_offset) == scbid) |
| ahd_outw(ahd, tail_offset, prev); |
| |
| ahd_add_scb_to_free_list(ahd, scbid); |
| return (next); |
| } |
| |
| /* |
| * Add the SCB as selected by SCBPTR onto the on chip list of |
| * free hardware SCBs. This list is empty/unused if we are not |
| * performing SCB paging. |
| */ |
| static void |
| ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid) |
| { |
| /* XXX Need some other mechanism to designate "free". */ |
| /* |
| * Invalidate the tag so that our abort |
| * routines don't think it's active. |
| ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL); |
| */ |
| } |
| |
| /******************************** Error Handling ******************************/ |
| /* |
| * Abort all SCBs that match the given description (target/channel/lun/tag), |
| * setting their status to the passed in status if the status has not already |
| * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer |
| * is paused before it is called. |
| */ |
| static int |
| ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel, |
| int lun, u_int tag, role_t role, uint32_t status) |
| { |
| struct scb *scbp; |
| struct scb *scbp_next; |
| u_int i, j; |
| u_int maxtarget; |
| u_int minlun; |
| u_int maxlun; |
| int found; |
| ahd_mode_state saved_modes; |
| |
| /* restore this when we're done */ |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| |
| found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL, |
| role, CAM_REQUEUE_REQ, SEARCH_COMPLETE); |
| |
| /* |
| * Clean out the busy target table for any untagged commands. |
| */ |
| i = 0; |
| maxtarget = 16; |
| if (target != CAM_TARGET_WILDCARD) { |
| i = target; |
| if (channel == 'B') |
| i += 8; |
| maxtarget = i + 1; |
| } |
| |
| if (lun == CAM_LUN_WILDCARD) { |
| minlun = 0; |
| maxlun = AHD_NUM_LUNS_NONPKT; |
| } else if (lun >= AHD_NUM_LUNS_NONPKT) { |
| minlun = maxlun = 0; |
| } else { |
| minlun = lun; |
| maxlun = lun + 1; |
| } |
| |
| if (role != ROLE_TARGET) { |
| for (;i < maxtarget; i++) { |
| for (j = minlun;j < maxlun; j++) { |
| u_int scbid; |
| u_int tcl; |
| |
| tcl = BUILD_TCL_RAW(i, 'A', j); |
| scbid = ahd_find_busy_tcl(ahd, tcl); |
| scbp = ahd_lookup_scb(ahd, scbid); |
| if (scbp == NULL |
| || ahd_match_scb(ahd, scbp, target, channel, |
| lun, tag, role) == 0) |
| continue; |
| ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j)); |
| } |
| } |
| } |
| |
| /* |
| * Don't abort commands that have already completed, |
| * but haven't quite made it up to the host yet. |
| */ |
| ahd_flush_qoutfifo(ahd); |
| |
| /* |
| * Go through the pending CCB list and look for |
| * commands for this target that are still active. |
| * These are other tagged commands that were |
| * disconnected when the reset occurred. |
| */ |
| scbp_next = LIST_FIRST(&ahd->pending_scbs); |
| while (scbp_next != NULL) { |
| scbp = scbp_next; |
| scbp_next = LIST_NEXT(scbp, pending_links); |
| if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) { |
| cam_status ostat; |
| |
| ostat = ahd_get_transaction_status(scbp); |
| if (ostat == CAM_REQ_INPROG) |
| ahd_set_transaction_status(scbp, status); |
| if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP) |
| ahd_freeze_scb(scbp); |
| if ((scbp->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB on pending list\n"); |
| ahd_done(ahd, scbp); |
| found++; |
| } |
| } |
| ahd_restore_modes(ahd, saved_modes); |
| ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status); |
| ahd->flags |= AHD_UPDATE_PEND_CMDS; |
| return found; |
| } |
| |
| static void |
| ahd_reset_current_bus(struct ahd_softc *ahd) |
| { |
| uint8_t scsiseq; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST); |
| scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO); |
| ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO); |
| ahd_flush_device_writes(ahd); |
| ahd_delay(AHD_BUSRESET_DELAY); |
| /* Turn off the bus reset */ |
| ahd_outb(ahd, SCSISEQ0, scsiseq); |
| ahd_flush_device_writes(ahd); |
| ahd_delay(AHD_BUSRESET_DELAY); |
| if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) { |
| /* |
| * 2A Razor #474 |
| * Certain chip state is not cleared for |
| * SCSI bus resets that we initiate, so |
| * we must reset the chip. |
| */ |
| ahd_reset(ahd, /*reinit*/TRUE); |
| ahd_intr_enable(ahd, /*enable*/TRUE); |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| } |
| |
| ahd_clear_intstat(ahd); |
| } |
| |
| int |
| ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset) |
| { |
| struct ahd_devinfo caminfo; |
| u_int initiator; |
| u_int target; |
| u_int max_scsiid; |
| int found; |
| u_int fifo; |
| u_int next_fifo; |
| uint8_t scsiseq; |
| |
| /* |
| * Check if the last bus reset is cleared |
| */ |
| if (ahd->flags & AHD_BUS_RESET_ACTIVE) { |
| printk("%s: bus reset still active\n", |
| ahd_name(ahd)); |
| return 0; |
| } |
| ahd->flags |= AHD_BUS_RESET_ACTIVE; |
| |
| ahd->pending_device = NULL; |
| |
| ahd_compile_devinfo(&caminfo, |
| CAM_TARGET_WILDCARD, |
| CAM_TARGET_WILDCARD, |
| CAM_LUN_WILDCARD, |
| channel, ROLE_UNKNOWN); |
| ahd_pause(ahd); |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahd_clear_critical_section(ahd); |
| |
| /* |
| * Run our command complete fifos to ensure that we perform |
| * completion processing on any commands that 'completed' |
| * before the reset occurred. |
| */ |
| ahd_run_qoutfifo(ahd); |
| #ifdef AHD_TARGET_MODE |
| if ((ahd->flags & AHD_TARGETROLE) != 0) { |
| ahd_run_tqinfifo(ahd, /*paused*/TRUE); |
| } |
| #endif |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| |
| /* |
| * Disable selections so no automatic hardware |
| * functions will modify chip state. |
| */ |
| ahd_outb(ahd, SCSISEQ0, 0); |
| ahd_outb(ahd, SCSISEQ1, 0); |
| |
| /* |
| * Safely shut down our DMA engines. Always start with |
| * the FIFO that is not currently active (if any are |
| * actively connected). |
| */ |
| next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO; |
| if (next_fifo > CURRFIFO_1) |
| /* If disconneced, arbitrarily start with FIFO1. */ |
| next_fifo = fifo = 0; |
| do { |
| next_fifo ^= CURRFIFO_1; |
| ahd_set_modes(ahd, next_fifo, next_fifo); |
| ahd_outb(ahd, DFCNTRL, |
| ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN)); |
| while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) |
| ahd_delay(10); |
| /* |
| * Set CURRFIFO to the now inactive channel. |
| */ |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| ahd_outb(ahd, DFFSTAT, next_fifo); |
| } while (next_fifo != fifo); |
| |
| /* |
| * Reset the bus if we are initiating this reset |
| */ |
| ahd_clear_msg_state(ahd); |
| ahd_outb(ahd, SIMODE1, |
| ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST)); |
| |
| if (initiate_reset) |
| ahd_reset_current_bus(ahd); |
| |
| ahd_clear_intstat(ahd); |
| |
| /* |
| * Clean up all the state information for the |
| * pending transactions on this bus. |
| */ |
| found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel, |
| CAM_LUN_WILDCARD, SCB_LIST_NULL, |
| ROLE_UNKNOWN, CAM_SCSI_BUS_RESET); |
| |
| /* |
| * Cleanup anything left in the FIFOs. |
| */ |
| ahd_clear_fifo(ahd, 0); |
| ahd_clear_fifo(ahd, 1); |
| |
| /* |
| * Clear SCSI interrupt status |
| */ |
| ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); |
| |
| /* |
| * Reenable selections |
| */ |
| ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST); |
| scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE); |
| ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP)); |
| |
| max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7; |
| #ifdef AHD_TARGET_MODE |
| /* |
| * Send an immediate notify ccb to all target more peripheral |
| * drivers affected by this action. |
| */ |
| for (target = 0; target <= max_scsiid; target++) { |
| struct ahd_tmode_tstate* tstate; |
| u_int lun; |
| |
| tstate = ahd->enabled_targets[target]; |
| if (tstate == NULL) |
| continue; |
| for (lun = 0; lun < AHD_NUM_LUNS; lun++) { |
| struct ahd_tmode_lstate* lstate; |
| |
| lstate = tstate->enabled_luns[lun]; |
| if (lstate == NULL) |
| continue; |
| |
| ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD, |
| EVENT_TYPE_BUS_RESET, /*arg*/0); |
| ahd_send_lstate_events(ahd, lstate); |
| } |
| } |
| #endif |
| /* |
| * Revert to async/narrow transfers until we renegotiate. |
| */ |
| for (target = 0; target <= max_scsiid; target++) { |
| |
| if (ahd->enabled_targets[target] == NULL) |
| continue; |
| for (initiator = 0; initiator <= max_scsiid; initiator++) { |
| struct ahd_devinfo devinfo; |
| |
| ahd_compile_devinfo(&devinfo, target, initiator, |
| CAM_LUN_WILDCARD, |
| 'A', ROLE_UNKNOWN); |
| ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHD_TRANS_CUR, /*paused*/TRUE); |
| ahd_set_syncrate(ahd, &devinfo, /*period*/0, |
| /*offset*/0, /*ppr_options*/0, |
| AHD_TRANS_CUR, /*paused*/TRUE); |
| } |
| } |
| |
| /* Notify the XPT that a bus reset occurred */ |
| ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD, |
| CAM_LUN_WILDCARD, AC_BUS_RESET); |
| |
| ahd_restart(ahd); |
| |
| return (found); |
| } |
| |
| /**************************** Statistics Processing ***************************/ |
| static void |
| ahd_stat_timer(struct timer_list *t) |
| { |
| struct ahd_softc *ahd = from_timer(ahd, t, stat_timer); |
| u_long s; |
| int enint_coal; |
| |
| ahd_lock(ahd, &s); |
| |
| enint_coal = ahd->hs_mailbox & ENINT_COALESCE; |
| if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold) |
| enint_coal |= ENINT_COALESCE; |
| else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold) |
| enint_coal &= ~ENINT_COALESCE; |
| |
| if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) { |
| ahd_enable_coalescing(ahd, enint_coal); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0) |
| printk("%s: Interrupt coalescing " |
| "now %sabled. Cmds %d\n", |
| ahd_name(ahd), |
| (enint_coal & ENINT_COALESCE) ? "en" : "dis", |
| ahd->cmdcmplt_total); |
| #endif |
| } |
| |
| ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1); |
| ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]; |
| ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0; |
| ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US); |
| ahd_unlock(ahd, &s); |
| } |
| |
| /****************************** Status Processing *****************************/ |
| |
| static void |
| ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb) |
| { |
| struct hardware_scb *hscb; |
| int paused; |
| |
| /* |
| * The sequencer freezes its select-out queue |
| * anytime a SCSI status error occurs. We must |
| * handle the error and increment our qfreeze count |
| * to allow the sequencer to continue. We don't |
| * bother clearing critical sections here since all |
| * operations are on data structures that the sequencer |
| * is not touching once the queue is frozen. |
| */ |
| hscb = scb->hscb; |
| |
| if (ahd_is_paused(ahd)) { |
| paused = 1; |
| } else { |
| paused = 0; |
| ahd_pause(ahd); |
| } |
| |
| /* Freeze the queue until the client sees the error. */ |
| ahd_freeze_devq(ahd, scb); |
| ahd_freeze_scb(scb); |
| ahd->qfreeze_cnt++; |
| ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); |
| |
| if (paused == 0) |
| ahd_unpause(ahd); |
| |
| /* Don't want to clobber the original sense code */ |
| if ((scb->flags & SCB_SENSE) != 0) { |
| /* |
| * Clear the SCB_SENSE Flag and perform |
| * a normal command completion. |
| */ |
| scb->flags &= ~SCB_SENSE; |
| ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); |
| ahd_done(ahd, scb); |
| return; |
| } |
| ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR); |
| ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status); |
| switch (hscb->shared_data.istatus.scsi_status) { |
| case STATUS_PKT_SENSE: |
| { |
| struct scsi_status_iu_header *siu; |
| |
| ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD); |
| siu = (struct scsi_status_iu_header *)scb->sense_data; |
| ahd_set_scsi_status(scb, siu->status); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_SENSE) != 0) { |
| ahd_print_path(ahd, scb); |
| printk("SCB 0x%x Received PKT Status of 0x%x\n", |
| SCB_GET_TAG(scb), siu->status); |
| printk("\tflags = 0x%x, sense len = 0x%x, " |
| "pktfail = 0x%x\n", |
| siu->flags, scsi_4btoul(siu->sense_length), |
| scsi_4btoul(siu->pkt_failures_length)); |
| } |
| #endif |
| if ((siu->flags & SIU_RSPVALID) != 0) { |
| ahd_print_path(ahd, scb); |
| if (scsi_4btoul(siu->pkt_failures_length) < 4) { |
| printk("Unable to parse pkt_failures\n"); |
| } else { |
| |
| switch (SIU_PKTFAIL_CODE(siu)) { |
| case SIU_PFC_NONE: |
| printk("No packet failure found\n"); |
| break; |
| case SIU_PFC_CIU_FIELDS_INVALID: |
| printk("Invalid Command IU Field\n"); |
| break; |
| case SIU_PFC_TMF_NOT_SUPPORTED: |
| printk("TMF not supported\n"); |
| break; |
| case SIU_PFC_TMF_FAILED: |
| printk("TMF failed\n"); |
| break; |
| case SIU_PFC_INVALID_TYPE_CODE: |
| printk("Invalid L_Q Type code\n"); |
| break; |
| case SIU_PFC_ILLEGAL_REQUEST: |
| printk("Illegal request\n"); |
| default: |
| break; |
| } |
| } |
| if (siu->status == SCSI_STATUS_OK) |
| ahd_set_transaction_status(scb, |
| CAM_REQ_CMP_ERR); |
| } |
| if ((siu->flags & SIU_SNSVALID) != 0) { |
| scb->flags |= SCB_PKT_SENSE; |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_SENSE) != 0) |
| printk("Sense data available\n"); |
| #endif |
| } |
| ahd_done(ahd, scb); |
| break; |
| } |
| case SCSI_STATUS_CMD_TERMINATED: |
| case SCSI_STATUS_CHECK_COND: |
| { |
| struct ahd_devinfo devinfo; |
| struct ahd_dma_seg *sg; |
| struct scsi_sense *sc; |
| struct ahd_initiator_tinfo *targ_info; |
| struct ahd_tmode_tstate *tstate; |
| struct ahd_transinfo *tinfo; |
| #ifdef AHD_DEBUG |
| if (ahd_debug & AHD_SHOW_SENSE) { |
| ahd_print_path(ahd, scb); |
| printk("SCB %d: requests Check Status\n", |
| SCB_GET_TAG(scb)); |
| } |
| #endif |
| |
| if (ahd_perform_autosense(scb) == 0) |
| break; |
| |
| ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb), |
| SCB_GET_TARGET(ahd, scb), |
| SCB_GET_LUN(scb), |
| SCB_GET_CHANNEL(ahd, scb), |
| ROLE_INITIATOR); |
| targ_info = ahd_fetch_transinfo(ahd, |
| devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, |
| &tstate); |
| tinfo = &targ_info->curr; |
| sg = scb->sg_list; |
| sc = (struct scsi_sense *)hscb->shared_data.idata.cdb; |
| /* |
| * Save off the residual if there is one. |
| */ |
| ahd_update_residual(ahd, scb); |
| #ifdef AHD_DEBUG |
| if (ahd_debug & AHD_SHOW_SENSE) { |
| ahd_print_path(ahd, scb); |
| printk("Sending Sense\n"); |
| } |
| #endif |
| scb->sg_count = 0; |
| sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb), |
| ahd_get_sense_bufsize(ahd, scb), |
| /*last*/TRUE); |
| sc->opcode = REQUEST_SENSE; |
| sc->byte2 = 0; |
| if (tinfo->protocol_version <= SCSI_REV_2 |
| && SCB_GET_LUN(scb) < 8) |
| sc->byte2 = SCB_GET_LUN(scb) << 5; |
| sc->unused[0] = 0; |
| sc->unused[1] = 0; |
| sc->length = ahd_get_sense_bufsize(ahd, scb); |
| sc->control = 0; |
| |
| /* |
| * We can't allow the target to disconnect. |
| * This will be an untagged transaction and |
| * having the target disconnect will make this |
| * transaction indestinguishable from outstanding |
| * tagged transactions. |
| */ |
| hscb->control = 0; |
| |
| /* |
| * This request sense could be because the |
| * the device lost power or in some other |
| * way has lost our transfer negotiations. |
| * Renegotiate if appropriate. Unit attention |
| * errors will be reported before any data |
| * phases occur. |
| */ |
| if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) { |
| ahd_update_neg_request(ahd, &devinfo, |
| tstate, targ_info, |
| AHD_NEG_IF_NON_ASYNC); |
| } |
| if (tstate->auto_negotiate & devinfo.target_mask) { |
| hscb->control |= MK_MESSAGE; |
| scb->flags &= |
| ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET); |
| scb->flags |= SCB_AUTO_NEGOTIATE; |
| } |
| hscb->cdb_len = sizeof(*sc); |
| ahd_setup_data_scb(ahd, scb); |
| scb->flags |= SCB_SENSE; |
| ahd_queue_scb(ahd, scb); |
| break; |
| } |
| case SCSI_STATUS_OK: |
| printk("%s: Interrupted for status of 0???\n", |
| ahd_name(ahd)); |
| fallthrough; |
| default: |
| ahd_done(ahd, scb); |
| break; |
| } |
| } |
| |
| static void |
| ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb) |
| { |
| if (scb->hscb->shared_data.istatus.scsi_status != 0) { |
| ahd_handle_scsi_status(ahd, scb); |
| } else { |
| ahd_calc_residual(ahd, scb); |
| ahd_done(ahd, scb); |
| } |
| } |
| |
| /* |
| * Calculate the residual for a just completed SCB. |
| */ |
| static void |
| ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb) |
| { |
| struct hardware_scb *hscb; |
| struct initiator_status *spkt; |
| uint32_t sgptr; |
| uint32_t resid_sgptr; |
| uint32_t resid; |
| |
| /* |
| * 5 cases. |
| * 1) No residual. |
| * SG_STATUS_VALID clear in sgptr. |
| * 2) Transferless command |
| * 3) Never performed any transfers. |
| * sgptr has SG_FULL_RESID set. |
| * 4) No residual but target did not |
| * save data pointers after the |
| * last transfer, so sgptr was |
| * never updated. |
| * 5) We have a partial residual. |
| * Use residual_sgptr to determine |
| * where we are. |
| */ |
| |
| hscb = scb->hscb; |
| sgptr = ahd_le32toh(hscb->sgptr); |
| if ((sgptr & SG_STATUS_VALID) == 0) |
| /* Case 1 */ |
| return; |
| sgptr &= ~SG_STATUS_VALID; |
| |
| if ((sgptr & SG_LIST_NULL) != 0) |
| /* Case 2 */ |
| return; |
| |
| /* |
| * Residual fields are the same in both |
| * target and initiator status packets, |
| * so we can always use the initiator fields |
| * regardless of the role for this SCB. |
| */ |
| spkt = &hscb->shared_data.istatus; |
| resid_sgptr = ahd_le32toh(spkt->residual_sgptr); |
| if ((sgptr & SG_FULL_RESID) != 0) { |
| /* Case 3 */ |
| resid = ahd_get_transfer_length(scb); |
| } else if ((resid_sgptr & SG_LIST_NULL) != 0) { |
| /* Case 4 */ |
| return; |
| } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) { |
| ahd_print_path(ahd, scb); |
| printk("data overrun detected Tag == 0x%x.\n", |
| SCB_GET_TAG(scb)); |
| ahd_freeze_devq(ahd, scb); |
| ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); |
| ahd_freeze_scb(scb); |
| return; |
| } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) { |
| panic("Bogus resid sgptr value 0x%x\n", resid_sgptr); |
| /* NOTREACHED */ |
| } else { |
| struct ahd_dma_seg *sg; |
| |
| /* |
| * Remainder of the SG where the transfer |
| * stopped. |
| */ |
| resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK; |
| sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK); |
| |
| /* The residual sg_ptr always points to the next sg */ |
| sg--; |
| |
| /* |
| * Add up the contents of all residual |
| * SG segments that are after the SG where |
| * the transfer stopped. |
| */ |
| while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) { |
| sg++; |
| resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; |
| } |
| } |
| if ((scb->flags & SCB_SENSE) == 0) |
| ahd_set_residual(scb, resid); |
| else |
| ahd_set_sense_residual(scb, resid); |
| |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_MISC) != 0) { |
| ahd_print_path(ahd, scb); |
| printk("Handled %sResidual of %d bytes\n", |
| (scb->flags & SCB_SENSE) ? "Sense " : "", resid); |
| } |
| #endif |
| } |
| |
| /******************************* Target Mode **********************************/ |
| #ifdef AHD_TARGET_MODE |
| /* |
| * Add a target mode event to this lun's queue |
| */ |
| static void |
| ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate, |
| u_int initiator_id, u_int event_type, u_int event_arg) |
| { |
| struct ahd_tmode_event *event; |
| int pending; |
| |
| xpt_freeze_devq(lstate->path, /*count*/1); |
| if (lstate->event_w_idx >= lstate->event_r_idx) |
| pending = lstate->event_w_idx - lstate->event_r_idx; |
| else |
| pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1 |
| - (lstate->event_r_idx - lstate->event_w_idx); |
| |
| if (event_type == EVENT_TYPE_BUS_RESET |
| || event_type == MSG_BUS_DEV_RESET) { |
| /* |
| * Any earlier events are irrelevant, so reset our buffer. |
| * This has the effect of allowing us to deal with reset |
| * floods (an external device holding down the reset line) |
| * without losing the event that is really interesting. |
| */ |
| lstate->event_r_idx = 0; |
| lstate->event_w_idx = 0; |
| xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE); |
| } |
| |
| if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) { |
| xpt_print_path(lstate->path); |
| printk("immediate event %x:%x lost\n", |
| lstate->event_buffer[lstate->event_r_idx].event_type, |
| lstate->event_buffer[lstate->event_r_idx].event_arg); |
| lstate->event_r_idx++; |
| if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE) |
| lstate->event_r_idx = 0; |
| xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE); |
| } |
| |
| event = &lstate->event_buffer[lstate->event_w_idx]; |
| event->initiator_id = initiator_id; |
| event->event_type = event_type; |
| event->event_arg = event_arg; |
| lstate->event_w_idx++; |
| if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE) |
| lstate->event_w_idx = 0; |
| } |
| |
| /* |
| * Send any target mode events queued up waiting |
| * for immediate notify resources. |
| */ |
| void |
| ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate) |
| { |
| struct ccb_hdr *ccbh; |
| struct ccb_immed_notify *inot; |
| |
| while (lstate->event_r_idx != lstate->event_w_idx |
| && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) { |
| struct ahd_tmode_event *event; |
| |
| event = &lstate->event_buffer[lstate->event_r_idx]; |
| SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle); |
| inot = (struct ccb_immed_notify *)ccbh; |
| switch (event->event_type) { |
| case EVENT_TYPE_BUS_RESET: |
| ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN; |
| break; |
| default: |
| ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN; |
| inot->message_args[0] = event->event_type; |
| inot->message_args[1] = event->event_arg; |
| break; |
| } |
| inot->initiator_id = event->initiator_id; |
| inot->sense_len = 0; |
| xpt_done((union ccb *)inot); |
| lstate->event_r_idx++; |
| if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE) |
| lstate->event_r_idx = 0; |
| } |
| } |
| #endif |
| |
| /******************** Sequencer Program Patching/Download *********************/ |
| |
| #ifdef AHD_DUMP_SEQ |
| void |
| ahd_dumpseq(struct ahd_softc* ahd) |
| { |
| int i; |
| int max_prog; |
| |
| max_prog = 2048; |
| |
| ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); |
| ahd_outw(ahd, PRGMCNT, 0); |
| for (i = 0; i < max_prog; i++) { |
| uint8_t ins_bytes[4]; |
| |
| ahd_insb(ahd, SEQRAM, ins_bytes, 4); |
| printk("0x%08x\n", ins_bytes[0] << 24 |
| | ins_bytes[1] << 16 |
| | ins_bytes[2] << 8 |
| | ins_bytes[3]); |
| } |
| } |
| #endif |
| |
| static void |
| ahd_loadseq(struct ahd_softc *ahd) |
| { |
| struct cs cs_table[NUM_CRITICAL_SECTIONS]; |
| u_int begin_set[NUM_CRITICAL_SECTIONS]; |
| u_int end_set[NUM_CRITICAL_SECTIONS]; |
| const struct patch *cur_patch; |
| u_int cs_count; |
| u_int cur_cs; |
| u_int i; |
| int downloaded; |
| u_int skip_addr; |
| u_int sg_prefetch_cnt; |
| u_int sg_prefetch_cnt_limit; |
| u_int sg_prefetch_align; |
| u_int sg_size; |
| u_int cacheline_mask; |
| uint8_t download_consts[DOWNLOAD_CONST_COUNT]; |
| |
| if (bootverbose) |
| printk("%s: Downloading Sequencer Program...", |
| ahd_name(ahd)); |
| |
| #if DOWNLOAD_CONST_COUNT != 8 |
| #error "Download Const Mismatch" |
| #endif |
| /* |
| * Start out with 0 critical sections |
| * that apply to this firmware load. |
| */ |
| cs_count = 0; |
| cur_cs = 0; |
| memset(begin_set, 0, sizeof(begin_set)); |
| memset(end_set, 0, sizeof(end_set)); |
| |
| /* |
| * Setup downloadable constant table. |
| * |
| * The computation for the S/G prefetch variables is |
| * a bit complicated. We would like to always fetch |
| * in terms of cachelined sized increments. However, |
| * if the cacheline is not an even multiple of the |
| * SG element size or is larger than our SG RAM, using |
| * just the cache size might leave us with only a portion |
| * of an SG element at the tail of a prefetch. If the |
| * cacheline is larger than our S/G prefetch buffer less |
| * the size of an SG element, we may round down to a cacheline |
| * that doesn't contain any or all of the S/G of interest |
| * within the bounds of our S/G ram. Provide variables to |
| * the sequencer that will allow it to handle these edge |
| * cases. |
| */ |
| /* Start by aligning to the nearest cacheline. */ |
| sg_prefetch_align = ahd->pci_cachesize; |
| if (sg_prefetch_align == 0) |
| sg_prefetch_align = 8; |
| /* Round down to the nearest power of 2. */ |
| while (powerof2(sg_prefetch_align) == 0) |
| sg_prefetch_align--; |
| |
| cacheline_mask = sg_prefetch_align - 1; |
| |
| /* |
| * If the cacheline boundary is greater than half our prefetch RAM |
| * we risk not being able to fetch even a single complete S/G |
| * segment if we align to that boundary. |
| */ |
| if (sg_prefetch_align > CCSGADDR_MAX/2) |
| sg_prefetch_align = CCSGADDR_MAX/2; |
| /* Start by fetching a single cacheline. */ |
| sg_prefetch_cnt = sg_prefetch_align; |
| /* |
| * Increment the prefetch count by cachelines until |
| * at least one S/G element will fit. |
| */ |
| sg_size = sizeof(struct ahd_dma_seg); |
| if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) |
| sg_size = sizeof(struct ahd_dma64_seg); |
| while (sg_prefetch_cnt < sg_size) |
| sg_prefetch_cnt += sg_prefetch_align; |
| /* |
| * If the cacheline is not an even multiple of |
| * the S/G size, we may only get a partial S/G when |
| * we align. Add a cacheline if this is the case. |
| */ |
| if ((sg_prefetch_align % sg_size) != 0 |
| && (sg_prefetch_cnt < CCSGADDR_MAX)) |
| sg_prefetch_cnt += sg_prefetch_align; |
| /* |
| * Lastly, compute a value that the sequencer can use |
| * to determine if the remainder of the CCSGRAM buffer |
| * has a full S/G element in it. |
| */ |
| sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1); |
| download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt; |
| download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit; |
| download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1); |
| download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1); |
| download_consts[SG_SIZEOF] = sg_size; |
| download_consts[PKT_OVERRUN_BUFOFFSET] = |
| (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256; |
| download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN; |
| download_consts[CACHELINE_MASK] = cacheline_mask; |
| cur_patch = patches; |
| downloaded = 0; |
| skip_addr = 0; |
| ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); |
| ahd_outw(ahd, PRGMCNT, 0); |
| |
| for (i = 0; i < sizeof(seqprog)/4; i++) { |
| if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) { |
| /* |
| * Don't download this instruction as it |
| * is in a patch that was removed. |
| */ |
| continue; |
| } |
| /* |
| * Move through the CS table until we find a CS |
| * that might apply to this instruction. |
| */ |
| for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) { |
| if (critical_sections[cur_cs].end <= i) { |
| if (begin_set[cs_count] == TRUE |
| && end_set[cs_count] == FALSE) { |
| cs_table[cs_count].end = downloaded; |
| end_set[cs_count] = TRUE; |
| cs_count++; |
| } |
| continue; |
| } |
| if (critical_sections[cur_cs].begin <= i |
| && begin_set[cs_count] == FALSE) { |
| cs_table[cs_count].begin = downloaded; |
| begin_set[cs_count] = TRUE; |
| } |
| break; |
| } |
| ahd_download_instr(ahd, i, download_consts); |
| downloaded++; |
| } |
| |
| ahd->num_critical_sections = cs_count; |
| if (cs_count != 0) { |
| |
| cs_count *= sizeof(struct cs); |
| ahd->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC); |
| if (ahd->critical_sections == NULL) |
| panic("ahd_loadseq: Could not malloc"); |
| } |
| ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE); |
| |
| if (bootverbose) { |
| printk(" %d instructions downloaded\n", downloaded); |
| printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n", |
| ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags); |
| } |
| } |
| |
| static int |
| ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch, |
| u_int start_instr, u_int *skip_addr) |
| { |
| const struct patch *cur_patch; |
| const struct patch *last_patch; |
| u_int num_patches; |
| |
| num_patches = ARRAY_SIZE(patches); |
| last_patch = &patches[num_patches]; |
| cur_patch = *start_patch; |
| |
| while (cur_patch < last_patch && start_instr == cur_patch->begin) { |
| |
| if (cur_patch->patch_func(ahd) == 0) { |
| |
| /* Start rejecting code */ |
| *skip_addr = start_instr + cur_patch->skip_instr; |
| cur_patch += cur_patch->skip_patch; |
| } else { |
| /* Accepted this patch. Advance to the next |
| * one and wait for our intruction pointer to |
| * hit this point. |
| */ |
| cur_patch++; |
| } |
| } |
| |
| *start_patch = cur_patch; |
| if (start_instr < *skip_addr) |
| /* Still skipping */ |
| return (0); |
| |
| return (1); |
| } |
| |
| static u_int |
| ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address) |
| { |
| const struct patch *cur_patch; |
| int address_offset; |
| u_int skip_addr; |
| u_int i; |
| |
| address_offset = 0; |
| cur_patch = patches; |
| skip_addr = 0; |
| |
| for (i = 0; i < address;) { |
| |
| ahd_check_patch(ahd, &cur_patch, i, &skip_addr); |
| |
| if (skip_addr > i) { |
| int end_addr; |
| |
| end_addr = min(address, skip_addr); |
| address_offset += end_addr - i; |
| i = skip_addr; |
| } else { |
| i++; |
| } |
| } |
| return (address - address_offset); |
| } |
| |
| static void |
| ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts) |
| { |
| union ins_formats instr; |
| struct ins_format1 *fmt1_ins; |
| struct ins_format3 *fmt3_ins; |
| u_int opcode; |
| |
| /* |
| * The firmware is always compiled into a little endian format. |
| */ |
| instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]); |
| |
| fmt1_ins = &instr.format1; |
| fmt3_ins = NULL; |
| |
| /* Pull the opcode */ |
| opcode = instr.format1.opcode; |
| switch (opcode) { |
| case AIC_OP_JMP: |
| case AIC_OP_JC: |
| case AIC_OP_JNC: |
| case AIC_OP_CALL: |
| case AIC_OP_JNE: |
| case AIC_OP_JNZ: |
| case AIC_OP_JE: |
| case AIC_OP_JZ: |
| { |
| fmt3_ins = &instr.format3; |
| fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address); |
| } |
| fallthrough; |
| case AIC_OP_OR: |
| case AIC_OP_AND: |
| case AIC_OP_XOR: |
| case AIC_OP_ADD: |
| case AIC_OP_ADC: |
| case AIC_OP_BMOV: |
| if (fmt1_ins->parity != 0) { |
| fmt1_ins->immediate = dconsts[fmt1_ins->immediate]; |
| } |
| fmt1_ins->parity = 0; |
| fallthrough; |
| case AIC_OP_ROL: |
| { |
| int i, count; |
| |
| /* Calculate odd parity for the instruction */ |
| for (i = 0, count = 0; i < 31; i++) { |
| uint32_t mask; |
| |
| mask = 0x01 << i; |
| if ((instr.integer & mask) != 0) |
| count++; |
| } |
| if ((count & 0x01) == 0) |
| instr.format1.parity = 1; |
| |
| /* The sequencer is a little endian cpu */ |
| instr.integer = ahd_htole32(instr.integer); |
| ahd_outsb(ahd, SEQRAM, instr.bytes, 4); |
| break; |
| } |
| default: |
| panic("Unknown opcode encountered in seq program"); |
| break; |
| } |
| } |
| |
| static int |
| ahd_probe_stack_size(struct ahd_softc *ahd) |
| { |
| int last_probe; |
| |
| last_probe = 0; |
| while (1) { |
| int i; |
| |
| /* |
| * We avoid using 0 as a pattern to avoid |
| * confusion if the stack implementation |
| * "back-fills" with zeros when "poping' |
| * entries. |
| */ |
| for (i = 1; i <= last_probe+1; i++) { |
| ahd_outb(ahd, STACK, i & 0xFF); |
| ahd_outb(ahd, STACK, (i >> 8) & 0xFF); |
| } |
| |
| /* Verify */ |
| for (i = last_probe+1; i > 0; i--) { |
| u_int stack_entry; |
| |
| stack_entry = ahd_inb(ahd, STACK) |
| |(ahd_inb(ahd, STACK) << 8); |
| if (stack_entry != i) |
| goto sized; |
| } |
| last_probe++; |
| } |
| sized: |
| return (last_probe); |
| } |
| |
| int |
| ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries, |
| const char *name, u_int address, u_int value, |
| u_int *cur_column, u_int wrap_point) |
| { |
| int printed; |
| u_int printed_mask; |
| |
| if (cur_column != NULL && *cur_column >= wrap_point) { |
| printk("\n"); |
| *cur_column = 0; |
| } |
| printed = printk("%s[0x%x]", name, value); |
| if (table == NULL) { |
| printed += printk(" "); |
| *cur_column += printed; |
| return (printed); |
| } |
| printed_mask = 0; |
| while (printed_mask != 0xFF) { |
| int entry; |
| |
| for (entry = 0; entry < num_entries; entry++) { |
| if (((value & table[entry].mask) |
| != table[entry].value) |
| || ((printed_mask & table[entry].mask) |
| == table[entry].mask)) |
| continue; |
| |
| printed += printk("%s%s", |
| printed_mask == 0 ? ":(" : "|", |
| table[entry].name); |
| printed_mask |= table[entry].mask; |
| |
| break; |
| } |
| if (entry >= num_entries) |
| break; |
| } |
| if (printed_mask != 0) |
| printed += printk(") "); |
| else |
| printed += printk(" "); |
| if (cur_column != NULL) |
| *cur_column += printed; |
| return (printed); |
| } |
| |
| void |
| ahd_dump_card_state(struct ahd_softc *ahd) |
| { |
| struct scb *scb; |
| ahd_mode_state saved_modes; |
| u_int dffstat; |
| int paused; |
| u_int scb_index; |
| u_int saved_scb_index; |
| u_int cur_col; |
| int i; |
| |
| if (ahd_is_paused(ahd)) { |
| paused = 1; |
| } else { |
| paused = 0; |
| ahd_pause(ahd); |
| } |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n" |
| "%s: Dumping Card State at program address 0x%x Mode 0x%x\n", |
| ahd_name(ahd), |
| ahd_inw(ahd, CURADDR), |
| ahd_build_mode_state(ahd, ahd->saved_src_mode, |
| ahd->saved_dst_mode)); |
| if (paused) |
| printk("Card was paused\n"); |
| |
| if (ahd_check_cmdcmpltqueues(ahd)) |
| printk("Completions are pending\n"); |
| |
| /* |
| * Mode independent registers. |
| */ |
| cur_col = 0; |
| ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50); |
| ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50); |
| ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50); |
| ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50); |
| ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50); |
| ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50); |
| ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50); |
| ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50); |
| ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50); |
| ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50); |
| ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50); |
| ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50); |
| ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50); |
| ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50); |
| ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50); |
| ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50); |
| ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50); |
| ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50); |
| ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50); |
| ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT), |
| &cur_col, 50); |
| ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50); |
| ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID), |
| &cur_col, 50); |
| ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50); |
| ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50); |
| ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50); |
| ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50); |
| ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50); |
| ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50); |
| ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50); |
| ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50); |
| ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50); |
| ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50); |
| ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50); |
| ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50); |
| printk("\n"); |
| printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x " |
| "CURRSCB 0x%x NEXTSCB 0x%x\n", |
| ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING), |
| ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB), |
| ahd_inw(ahd, NEXTSCB)); |
| cur_col = 0; |
| /* QINFIFO */ |
| ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS, |
| CAM_LUN_WILDCARD, SCB_LIST_NULL, |
| ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT); |
| saved_scb_index = ahd_get_scbptr(ahd); |
| printk("Pending list:"); |
| i = 0; |
| LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { |
| if (i++ > AHD_SCB_MAX) |
| break; |
| cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb), |
| ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT)); |
| ahd_set_scbptr(ahd, SCB_GET_TAG(scb)); |
| ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL), |
| &cur_col, 60); |
| ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID), |
| &cur_col, 60); |
| } |
| printk("\nTotal %d\n", i); |
| |
| printk("Kernel Free SCB list: "); |
| i = 0; |
| TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { |
| struct scb *list_scb; |
| |
| list_scb = scb; |
| do { |
| printk("%d ", SCB_GET_TAG(list_scb)); |
| list_scb = LIST_NEXT(list_scb, collision_links); |
| } while (list_scb && i++ < AHD_SCB_MAX); |
| } |
| |
| LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) { |
| if (i++ > AHD_SCB_MAX) |
| break; |
| printk("%d ", SCB_GET_TAG(scb)); |
| } |
| printk("\n"); |
| |
| printk("Sequencer Complete DMA-inprog list: "); |
| scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD); |
| i = 0; |
| while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { |
| ahd_set_scbptr(ahd, scb_index); |
| printk("%d ", scb_index); |
| scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); |
| } |
| printk("\n"); |
| |
| printk("Sequencer Complete list: "); |
| scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD); |
| i = 0; |
| while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { |
| ahd_set_scbptr(ahd, scb_index); |
| printk("%d ", scb_index); |
| scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); |
| } |
| printk("\n"); |
| |
| |
| printk("Sequencer DMA-Up and Complete list: "); |
| scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); |
| i = 0; |
| while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { |
| ahd_set_scbptr(ahd, scb_index); |
| printk("%d ", scb_index); |
| scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); |
| } |
| printk("\n"); |
| printk("Sequencer On QFreeze and Complete list: "); |
| scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD); |
| i = 0; |
| while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { |
| ahd_set_scbptr(ahd, scb_index); |
| printk("%d ", scb_index); |
| scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); |
| } |
| printk("\n"); |
| ahd_set_scbptr(ahd, saved_scb_index); |
| dffstat = ahd_inb(ahd, DFFSTAT); |
| for (i = 0; i < 2; i++) { |
| #ifdef AHD_DEBUG |
| struct scb *fifo_scb; |
| #endif |
| u_int fifo_scbptr; |
| |
| ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i); |
| fifo_scbptr = ahd_get_scbptr(ahd); |
| printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n", |
| ahd_name(ahd), i, |
| (dffstat & (FIFO0FREE << i)) ? "Free" : "Active", |
| ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr); |
| cur_col = 0; |
| ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50); |
| ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50); |
| ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50); |
| ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50); |
| ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW), |
| &cur_col, 50); |
| ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50); |
| ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50); |
| ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50); |
| ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50); |
| if (cur_col > 50) { |
| printk("\n"); |
| cur_col = 0; |
| } |
| cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ", |
| ahd_inl(ahd, SHADDR+4), |
| ahd_inl(ahd, SHADDR), |
| (ahd_inb(ahd, SHCNT) |
| | (ahd_inb(ahd, SHCNT + 1) << 8) |
| | (ahd_inb(ahd, SHCNT + 2) << 16))); |
| if (cur_col > 50) { |
| printk("\n"); |
| cur_col = 0; |
| } |
| cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ", |
| ahd_inl(ahd, HADDR+4), |
| ahd_inl(ahd, HADDR), |
| (ahd_inb(ahd, HCNT) |
| | (ahd_inb(ahd, HCNT + 1) << 8) |
| | (ahd_inb(ahd, HCNT + 2) << 16))); |
| ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50); |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_SG) != 0) { |
| fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr); |
| if (fifo_scb != NULL) |
| ahd_dump_sglist(fifo_scb); |
| } |
| #endif |
| } |
| printk("\nLQIN: "); |
| for (i = 0; i < 20; i++) |
| printk("0x%x ", ahd_inb(ahd, LQIN + i)); |
| printk("\n"); |
| ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); |
| printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n", |
| ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE), |
| ahd_inb(ahd, OPTIONMODE)); |
| printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n", |
| ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT), |
| ahd_inb(ahd, MAXCMDCNT)); |
| printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n", |
| ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID), |
| ahd_inb(ahd, SAVED_LUN)); |
| ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50); |
| printk("\n"); |
| ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); |
| cur_col = 0; |
| ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50); |
| printk("\n"); |
| ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); |
| printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n", |
| ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX), |
| ahd_inw(ahd, DINDEX)); |
| printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n", |
| ahd_name(ahd), ahd_get_scbptr(ahd), |
| ahd_inw_scbram(ahd, SCB_NEXT), |
| ahd_inw_scbram(ahd, SCB_NEXT2)); |
| printk("CDB %x %x %x %x %x %x\n", |
| ahd_inb_scbram(ahd, SCB_CDB_STORE), |
| ahd_inb_scbram(ahd, SCB_CDB_STORE+1), |
| ahd_inb_scbram(ahd, SCB_CDB_STORE+2), |
| ahd_inb_scbram(ahd, SCB_CDB_STORE+3), |
| ahd_inb_scbram(ahd, SCB_CDB_STORE+4), |
| ahd_inb_scbram(ahd, SCB_CDB_STORE+5)); |
| printk("STACK:"); |
| for (i = 0; i < ahd->stack_size; i++) { |
| ahd->saved_stack[i] = |
| ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8); |
| printk(" 0x%x", ahd->saved_stack[i]); |
| } |
| for (i = ahd->stack_size-1; i >= 0; i--) { |
| ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF); |
| ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF); |
| } |
| printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n"); |
| ahd_restore_modes(ahd, saved_modes); |
| if (paused == 0) |
| ahd_unpause(ahd); |
| } |
| |
| #if 0 |
| void |
| ahd_dump_scbs(struct ahd_softc *ahd) |
| { |
| ahd_mode_state saved_modes; |
| u_int saved_scb_index; |
| int i; |
| |
| saved_modes = ahd_save_modes(ahd); |
| ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); |
| saved_scb_index = ahd_get_scbptr(ahd); |
| for (i = 0; i < AHD_SCB_MAX; i++) { |
| ahd_set_scbptr(ahd, i); |
| printk("%3d", i); |
| printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n", |
| ahd_inb_scbram(ahd, SCB_CONTROL), |
| ahd_inb_scbram(ahd, SCB_SCSIID), |
| ahd_inw_scbram(ahd, SCB_NEXT), |
| ahd_inw_scbram(ahd, SCB_NEXT2), |
| ahd_inl_scbram(ahd, SCB_SGPTR), |
| ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR)); |
| } |
| printk("\n"); |
| ahd_set_scbptr(ahd, saved_scb_index); |
| ahd_restore_modes(ahd, saved_modes); |
| } |
| #endif /* 0 */ |
| |
| /**************************** Flexport Logic **********************************/ |
| /* |
| * Read count 16bit words from 16bit word address start_addr from the |
| * SEEPROM attached to the controller, into buf, using the controller's |
| * SEEPROM reading state machine. Optionally treat the data as a byte |
| * stream in terms of byte order. |
| */ |
| int |
| ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf, |
| u_int start_addr, u_int count, int bytestream) |
| { |
| u_int cur_addr; |
| u_int end_addr; |
| int error; |
| |
| /* |
| * If we never make it through the loop even once, |
| * we were passed invalid arguments. |
| */ |
| error = EINVAL; |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| end_addr = start_addr + count; |
| for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) { |
| |
| ahd_outb(ahd, SEEADR, cur_addr); |
| ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART); |
| |
| error = ahd_wait_seeprom(ahd); |
| if (error) |
| break; |
| if (bytestream != 0) { |
| uint8_t *bytestream_ptr; |
| |
| bytestream_ptr = (uint8_t *)buf; |
| *bytestream_ptr++ = ahd_inb(ahd, SEEDAT); |
| *bytestream_ptr = ahd_inb(ahd, SEEDAT+1); |
| } else { |
| /* |
| * ahd_inw() already handles machine byte order. |
| */ |
| *buf = ahd_inw(ahd, SEEDAT); |
| } |
| buf++; |
| } |
| return (error); |
| } |
| |
| /* |
| * Write count 16bit words from buf, into SEEPROM attache to the |
| * controller starting at 16bit word address start_addr, using the |
| * controller's SEEPROM writing state machine. |
| */ |
| int |
| ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf, |
| u_int start_addr, u_int count) |
| { |
| u_int cur_addr; |
| u_int end_addr; |
| int error; |
| int retval; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| error = ENOENT; |
| |
| /* Place the chip into write-enable mode */ |
| ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR); |
| ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART); |
| error = ahd_wait_seeprom(ahd); |
| if (error) |
| return (error); |
| |
| /* |
| * Write the data. If we don't get through the loop at |
| * least once, the arguments were invalid. |
| */ |
| retval = EINVAL; |
| end_addr = start_addr + count; |
| for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) { |
| ahd_outw(ahd, SEEDAT, *buf++); |
| ahd_outb(ahd, SEEADR, cur_addr); |
| ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART); |
| |
| retval = ahd_wait_seeprom(ahd); |
| if (retval) |
| break; |
| } |
| |
| /* |
| * Disable writes. |
| */ |
| ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR); |
| ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART); |
| error = ahd_wait_seeprom(ahd); |
| if (error) |
| return (error); |
| return (retval); |
| } |
| |
| /* |
| * Wait ~100us for the serial eeprom to satisfy our request. |
| */ |
| static int |
| ahd_wait_seeprom(struct ahd_softc *ahd) |
| { |
| int cnt; |
| |
| cnt = 5000; |
| while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt) |
| ahd_delay(5); |
| |
| if (cnt == 0) |
| return (ETIMEDOUT); |
| return (0); |
| } |
| |
| /* |
| * Validate the two checksums in the per_channel |
| * vital product data struct. |
| */ |
| static int |
| ahd_verify_vpd_cksum(struct vpd_config *vpd) |
| { |
| int i; |
| int maxaddr; |
| uint32_t checksum; |
| uint8_t *vpdarray; |
| |
| vpdarray = (uint8_t *)vpd; |
| maxaddr = offsetof(struct vpd_config, vpd_checksum); |
| checksum = 0; |
| for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++) |
| checksum = checksum + vpdarray[i]; |
| if (checksum == 0 |
| || (-checksum & 0xFF) != vpd->vpd_checksum) |
| return (0); |
| |
| checksum = 0; |
| maxaddr = offsetof(struct vpd_config, checksum); |
| for (i = offsetof(struct vpd_config, default_target_flags); |
| i < maxaddr; i++) |
| checksum = checksum + vpdarray[i]; |
| if (checksum == 0 |
| || (-checksum & 0xFF) != vpd->checksum) |
| return (0); |
| return (1); |
| } |
| |
| int |
| ahd_verify_cksum(struct seeprom_config *sc) |
| { |
| int i; |
| int maxaddr; |
| uint32_t checksum; |
| uint16_t *scarray; |
| |
| maxaddr = (sizeof(*sc)/2) - 1; |
| checksum = 0; |
| scarray = (uint16_t *)sc; |
| |
| for (i = 0; i < maxaddr; i++) |
| checksum = checksum + scarray[i]; |
| if (checksum == 0 |
| || (checksum & 0xFFFF) != sc->checksum) { |
| return (0); |
| } else { |
| return (1); |
| } |
| } |
| |
| int |
| ahd_acquire_seeprom(struct ahd_softc *ahd) |
| { |
| /* |
| * We should be able to determine the SEEPROM type |
| * from the flexport logic, but unfortunately not |
| * all implementations have this logic and there is |
| * no programatic method for determining if the logic |
| * is present. |
| */ |
| return (1); |
| #if 0 |
| uint8_t seetype; |
| int error; |
| |
| error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype); |
| if (error != 0 |
| || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE)) |
| return (0); |
| return (1); |
| #endif |
| } |
| |
| void |
| ahd_release_seeprom(struct ahd_softc *ahd) |
| { |
| /* Currently a no-op */ |
| } |
| |
| /* |
| * Wait at most 2 seconds for flexport arbitration to succeed. |
| */ |
| static int |
| ahd_wait_flexport(struct ahd_softc *ahd) |
| { |
| int cnt; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| cnt = 1000000 * 2 / 5; |
| while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt) |
| ahd_delay(5); |
| |
| if (cnt == 0) |
| return (ETIMEDOUT); |
| return (0); |
| } |
| |
| int |
| ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value) |
| { |
| int error; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| if (addr > 7) |
| panic("ahd_write_flexport: address out of range"); |
| ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3)); |
| error = ahd_wait_flexport(ahd); |
| if (error != 0) |
| return (error); |
| ahd_outb(ahd, BRDDAT, value); |
| ahd_flush_device_writes(ahd); |
| ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3)); |
| ahd_flush_device_writes(ahd); |
| ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3)); |
| ahd_flush_device_writes(ahd); |
| ahd_outb(ahd, BRDCTL, 0); |
| ahd_flush_device_writes(ahd); |
| return (0); |
| } |
| |
| int |
| ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value) |
| { |
| int error; |
| |
| AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); |
| if (addr > 7) |
| panic("ahd_read_flexport: address out of range"); |
| ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3)); |
| error = ahd_wait_flexport(ahd); |
| if (error != 0) |
| return (error); |
| *value = ahd_inb(ahd, BRDDAT); |
| ahd_outb(ahd, BRDCTL, 0); |
| ahd_flush_device_writes(ahd); |
| return (0); |
| } |
| |
| /************************* Target Mode ****************************************/ |
| #ifdef AHD_TARGET_MODE |
| cam_status |
| ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb, |
| struct ahd_tmode_tstate **tstate, |
| struct ahd_tmode_lstate **lstate, |
| int notfound_failure) |
| { |
| |
| if ((ahd->features & AHD_TARGETMODE) == 0) |
| return (CAM_REQ_INVALID); |
| |
| /* |
| * Handle the 'black hole' device that sucks up |
| * requests to unattached luns on enabled targets. |
| */ |
| if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD |
| && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) { |
| *tstate = NULL; |
| *lstate = ahd->black_hole; |
| } else { |
| u_int max_id; |
| |
| max_id = (ahd->features & AHD_WIDE) ? 16 : 8; |
| if (ccb->ccb_h.target_id >= max_id) |
| return (CAM_TID_INVALID); |
| |
| if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS) |
| return (CAM_LUN_INVALID); |
| |
| *tstate = ahd->enabled_targets[ccb->ccb_h.target_id]; |
| *lstate = NULL; |
| if (*tstate != NULL) |
| *lstate = |
| (*tstate)->enabled_luns[ccb->ccb_h.target_lun]; |
| } |
| |
| if (notfound_failure != 0 && *lstate == NULL) |
| return (CAM_PATH_INVALID); |
| |
| return (CAM_REQ_CMP); |
| } |
| |
| void |
| ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb) |
| { |
| #if NOT_YET |
| struct ahd_tmode_tstate *tstate; |
| struct ahd_tmode_lstate *lstate; |
| struct ccb_en_lun *cel; |
| cam_status status; |
| u_int target; |
| u_int lun; |
| u_int target_mask; |
| u_long s; |
| char channel; |
| |
| status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate, |
| /*notfound_failure*/FALSE); |
| |
| if (status != CAM_REQ_CMP) { |
| ccb->ccb_h.status = status; |
| return; |
| } |
| |
| if ((ahd->features & AHD_MULTIROLE) != 0) { |
| u_int our_id; |
| |
| our_id = ahd->our_id; |
| if (ccb->ccb_h.target_id != our_id) { |
| if ((ahd->features & AHD_MULTI_TID) != 0 |
| && (ahd->flags & AHD_INITIATORROLE) != 0) { |
| /* |
| * Only allow additional targets if |
| * the initiator role is disabled. |
| * The hardware cannot handle a re-select-in |
| * on the initiator id during a re-select-out |
| * on a different target id. |
| */ |
| status = CAM_TID_INVALID; |
| } else if ((ahd->flags & AHD_INITIATORROLE) != 0 |
| || ahd->enabled_luns > 0) { |
| /* |
| * Only allow our target id to change |
| * if the initiator role is not configured |
| * and there are no enabled luns which |
| * are attached to the currently registered |
| * scsi id. |
| */ |
| status = CAM_TID_INVALID; |
| } |
| } |
| } |
| |
| if (status != CAM_REQ_CMP) { |
| ccb->ccb_h.status = status; |
| return; |
| } |
| |
| /* |
| * We now have an id that is valid. |
| * If we aren't in target mode, switch modes. |
| */ |
| if ((ahd->flags & AHD_TARGETROLE) == 0 |
| && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) { |
| u_long s; |
| |
| printk("Configuring Target Mode\n"); |
| ahd_lock(ahd, &s); |
| if (LIST_FIRST(&ahd->pending_scbs) != NULL) { |
| ccb->ccb_h.status = CAM_BUSY; |
| ahd_unlock(ahd, &s); |
| return; |
| } |
| ahd->flags |= AHD_TARGETROLE; |
| if ((ahd->features & AHD_MULTIROLE) == 0) |
| ahd->flags &= ~AHD_INITIATORROLE; |
| ahd_pause(ahd); |
| ahd_loadseq(ahd); |
| ahd_restart(ahd); |
| ahd_unlock(ahd, &s); |
| } |
| cel = &ccb->cel; |
| target = ccb->ccb_h.target_id; |
| lun = ccb->ccb_h.target_lun; |
| channel = SIM_CHANNEL(ahd, sim); |
| target_mask = 0x01 << target; |
| if (channel == 'B') |
| target_mask <<= 8; |
| |
| if (cel->enable != 0) { |
| u_int scsiseq1; |
| |
| /* Are we already enabled?? */ |
| if (lstate != NULL) { |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Lun already enabled\n"); |
| ccb->ccb_h.status = CAM_LUN_ALRDY_ENA; |
| return; |
| } |
| |
| if (cel->grp6_len != 0 |
| || cel->grp7_len != 0) { |
| /* |
| * Don't (yet?) support vendor |
| * specific commands. |
| */ |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| printk("Non-zero Group Codes\n"); |
| return; |
| } |
| |
| /* |
| * Seems to be okay. |
| * Setup our data structures. |
| */ |
| if (target != CAM_TARGET_WILDCARD && tstate == NULL) { |
| tstate = ahd_alloc_tstate(ahd, target, channel); |
| if (tstate == NULL) { |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Couldn't allocate tstate\n"); |
| ccb->ccb_h.status = CAM_RESRC_UNAVAIL; |
| return; |
| } |
| } |
| lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC); |
| if (lstate == NULL) { |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Couldn't allocate lstate\n"); |
| ccb->ccb_h.status = CAM_RESRC_UNAVAIL; |
| return; |
| } |
| status = xpt_create_path(&lstate->path, /*periph*/NULL, |
| xpt_path_path_id(ccb->ccb_h.path), |
| xpt_path_target_id(ccb->ccb_h.path), |
| xpt_path_lun_id(ccb->ccb_h.path)); |
| if (status != CAM_REQ_CMP) { |
| kfree(lstate); |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Couldn't allocate path\n"); |
| ccb->ccb_h.status = CAM_RESRC_UNAVAIL; |
| return; |
| } |
| SLIST_INIT(&lstate->accept_tios); |
| SLIST_INIT(&lstate->immed_notifies); |
| ahd_lock(ahd, &s); |
| ahd_pause(ahd); |
| if (target != CAM_TARGET_WILDCARD) { |
| tstate->enabled_luns[lun] = lstate; |
| ahd->enabled_luns++; |
| |
| if ((ahd->features & AHD_MULTI_TID) != 0) { |
| u_int targid_mask; |
| |
| targid_mask = ahd_inw(ahd, TARGID); |
| targid_mask |= target_mask; |
| ahd_outw(ahd, TARGID, targid_mask); |
| ahd_update_scsiid(ahd, targid_mask); |
| } else { |
| u_int our_id; |
| char channel; |
| |
| channel = SIM_CHANNEL(ahd, sim); |
| our_id = SIM_SCSI_ID(ahd, sim); |
| |
| /* |
| * This can only happen if selections |
| * are not enabled |
| */ |
| if (target != our_id) { |
| u_int sblkctl; |
| char cur_channel; |
| int swap; |
| |
| sblkctl = ahd_inb(ahd, SBLKCTL); |
| cur_channel = (sblkctl & SELBUSB) |
| ? 'B' : 'A'; |
| if ((ahd->features & AHD_TWIN) == 0) |
| cur_channel = 'A'; |
| swap = cur_channel != channel; |
| ahd->our_id = target; |
| |
| if (swap) |
| ahd_outb(ahd, SBLKCTL, |
| sblkctl ^ SELBUSB); |
| |
| ahd_outb(ahd, SCSIID, target); |
| |
| if (swap) |
| ahd_outb(ahd, SBLKCTL, sblkctl); |
| } |
| } |
| } else |
| ahd->black_hole = lstate; |
| /* Allow select-in operations */ |
| if (ahd->black_hole != NULL && ahd->enabled_luns > 0) { |
| scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE); |
| scsiseq1 |= ENSELI; |
| ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1); |
| scsiseq1 = ahd_inb(ahd, SCSISEQ1); |
| scsiseq1 |= ENSELI; |
| ahd_outb(ahd, SCSISEQ1, scsiseq1); |
| } |
| ahd_unpause(ahd); |
| ahd_unlock(ahd, &s); |
| ccb->ccb_h.status = CAM_REQ_CMP; |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Lun now enabled for target mode\n"); |
| } else { |
| struct scb *scb; |
| int i, empty; |
| |
| if (lstate == NULL) { |
| ccb->ccb_h.status = CAM_LUN_INVALID; |
| return; |
| } |
| |
| ahd_lock(ahd, &s); |
| |
| ccb->ccb_h.status = CAM_REQ_CMP; |
| LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { |
| struct ccb_hdr *ccbh; |
| |
| ccbh = &scb->io_ctx->ccb_h; |
| if (ccbh->func_code == XPT_CONT_TARGET_IO |
| && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){ |
| printk("CTIO pending\n"); |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| ahd_unlock(ahd, &s); |
| return; |
| } |
| } |
| |
| if (SLIST_FIRST(&lstate->accept_tios) != NULL) { |
| printk("ATIOs pending\n"); |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| } |
| |
| if (SLIST_FIRST(&lstate->immed_notifies) != NULL) { |
| printk("INOTs pending\n"); |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| } |
| |
| if (ccb->ccb_h.status != CAM_REQ_CMP) { |
| ahd_unlock(ahd, &s); |
| return; |
| } |
| |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Target mode disabled\n"); |
| xpt_free_path(lstate->path); |
| kfree(lstate); |
| |
| ahd_pause(ahd); |
| /* Can we clean up the target too? */ |
| if (target != CAM_TARGET_WILDCARD) { |
| tstate->enabled_luns[lun] = NULL; |
| ahd->enabled_luns--; |
| for (empty = 1, i = 0; i < 8; i++) |
| if (tstate->enabled_luns[i] != NULL) { |
| empty = 0; |
| break; |
| } |
| |
| if (empty) { |
| ahd_free_tstate(ahd, target, channel, |
| /*force*/FALSE); |
| if (ahd->features & AHD_MULTI_TID) { |
| u_int targid_mask; |
| |
| targid_mask = ahd_inw(ahd, TARGID); |
| targid_mask &= ~target_mask; |
| ahd_outw(ahd, TARGID, targid_mask); |
| ahd_update_scsiid(ahd, targid_mask); |
| } |
| } |
| } else { |
| |
| ahd->black_hole = NULL; |
| |
| /* |
| * We can't allow selections without |
| * our black hole device. |
| */ |
| empty = TRUE; |
| } |
| if (ahd->enabled_luns == 0) { |
| /* Disallow select-in */ |
| u_int scsiseq1; |
| |
| scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE); |
| scsiseq1 &= ~ENSELI; |
| ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1); |
| scsiseq1 = ahd_inb(ahd, SCSISEQ1); |
| scsiseq1 &= ~ENSELI; |
| ahd_outb(ahd, SCSISEQ1, scsiseq1); |
| |
| if ((ahd->features & AHD_MULTIROLE) == 0) { |
| printk("Configuring Initiator Mode\n"); |
| ahd->flags &= ~AHD_TARGETROLE; |
| ahd->flags |= AHD_INITIATORROLE; |
| ahd_pause(ahd); |
| ahd_loadseq(ahd); |
| ahd_restart(ahd); |
| /* |
| * Unpaused. The extra unpause |
| * that follows is harmless. |
| */ |
| } |
| } |
| ahd_unpause(ahd); |
| ahd_unlock(ahd, &s); |
| } |
| #endif |
| } |
| |
| static void |
| ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask) |
| { |
| #if NOT_YET |
| u_int scsiid_mask; |
| u_int scsiid; |
| |
| if ((ahd->features & AHD_MULTI_TID) == 0) |
| panic("ahd_update_scsiid called on non-multitid unit\n"); |
| |
| /* |
| * Since we will rely on the TARGID mask |
| * for selection enables, ensure that OID |
| * in SCSIID is not set to some other ID |
| * that we don't want to allow selections on. |
| */ |
| if ((ahd->features & AHD_ULTRA2) != 0) |
| scsiid = ahd_inb(ahd, SCSIID_ULTRA2); |
| else |
| scsiid = ahd_inb(ahd, SCSIID); |
| scsiid_mask = 0x1 << (scsiid & OID); |
| if ((targid_mask & scsiid_mask) == 0) { |
| u_int our_id; |
| |
| /* ffs counts from 1 */ |
| our_id = ffs(targid_mask); |
| if (our_id == 0) |
| our_id = ahd->our_id; |
| else |
| our_id--; |
| scsiid &= TID; |
| scsiid |= our_id; |
| } |
| if ((ahd->features & AHD_ULTRA2) != 0) |
| ahd_outb(ahd, SCSIID_ULTRA2, scsiid); |
| else |
| ahd_outb(ahd, SCSIID, scsiid); |
| #endif |
| } |
| |
| static void |
| ahd_run_tqinfifo(struct ahd_softc *ahd, int paused) |
| { |
| struct target_cmd *cmd; |
| |
| ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD); |
| while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) { |
| |
| /* |
| * Only advance through the queue if we |
| * have the resources to process the command. |
| */ |
| if (ahd_handle_target_cmd(ahd, cmd) != 0) |
| break; |
| |
| cmd->cmd_valid = 0; |
| ahd_dmamap_sync(ahd, ahd->shared_data_dmat, |
| ahd->shared_data_map.dmamap, |
| ahd_targetcmd_offset(ahd, ahd->tqinfifonext), |
| sizeof(struct target_cmd), |
| BUS_DMASYNC_PREREAD); |
| ahd->tqinfifonext++; |
| |
| /* |
| * Lazily update our position in the target mode incoming |
| * command queue as seen by the sequencer. |
| */ |
| if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) { |
| u_int hs_mailbox; |
| |
| hs_mailbox = ahd_inb(ahd, HS_MAILBOX); |
| hs_mailbox &= ~HOST_TQINPOS; |
| hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS; |
| ahd_outb(ahd, HS_MAILBOX, hs_mailbox); |
| } |
| } |
| } |
| |
| static int |
| ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd) |
| { |
| struct ahd_tmode_tstate *tstate; |
| struct ahd_tmode_lstate *lstate; |
| struct ccb_accept_tio *atio; |
| uint8_t *byte; |
| int initiator; |
| int target; |
| int lun; |
| |
| initiator = SCSIID_TARGET(ahd, cmd->scsiid); |
| target = SCSIID_OUR_ID(cmd->scsiid); |
| lun = (cmd->identify & MSG_IDENTIFY_LUNMASK); |
| |
| byte = cmd->bytes; |
| tstate = ahd->enabled_targets[target]; |
| lstate = NULL; |
| if (tstate != NULL) |
| lstate = tstate->enabled_luns[lun]; |
| |
| /* |
| * Commands for disabled luns go to the black hole driver. |
| */ |
| if (lstate == NULL) |
| lstate = ahd->black_hole; |
| |
| atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios); |
| if (atio == NULL) { |
| ahd->flags |= AHD_TQINFIFO_BLOCKED; |
| /* |
| * Wait for more ATIOs from the peripheral driver for this lun. |
| */ |
| return (1); |
| } else |
| ahd->flags &= ~AHD_TQINFIFO_BLOCKED; |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_TQIN) != 0) |
| printk("Incoming command from %d for %d:%d%s\n", |
| initiator, target, lun, |
| lstate == ahd->black_hole ? "(Black Holed)" : ""); |
| #endif |
| SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle); |
| |
| if (lstate == ahd->black_hole) { |
| /* Fill in the wildcards */ |
| atio->ccb_h.target_id = target; |
| atio->ccb_h.target_lun = lun; |
| } |
| |
| /* |
| * Package it up and send it off to |
| * whomever has this lun enabled. |
| */ |
| atio->sense_len = 0; |
| atio->init_id = initiator; |
| if (byte[0] != 0xFF) { |
| /* Tag was included */ |
| atio->tag_action = *byte++; |
| atio->tag_id = *byte++; |
| atio->ccb_h.flags = CAM_TAG_ACTION_VALID; |
| } else { |
| atio->ccb_h.flags = 0; |
| } |
| byte++; |
| |
| /* Okay. Now determine the cdb size based on the command code */ |
| switch (*byte >> CMD_GROUP_CODE_SHIFT) { |
| case 0: |
| atio->cdb_len = 6; |
| break; |
| case 1: |
| case 2: |
| atio->cdb_len = 10; |
| break; |
| case 4: |
| atio->cdb_len = 16; |
| break; |
| case 5: |
| atio->cdb_len = 12; |
| break; |
| case 3: |
| default: |
| /* Only copy the opcode. */ |
| atio->cdb_len = 1; |
| printk("Reserved or VU command code type encountered\n"); |
| break; |
| } |
| |
| memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len); |
| |
| atio->ccb_h.status |= CAM_CDB_RECVD; |
| |
| if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) { |
| /* |
| * We weren't allowed to disconnect. |
| * We're hanging on the bus until a |
| * continue target I/O comes in response |
| * to this accept tio. |
| */ |
| #ifdef AHD_DEBUG |
| if ((ahd_debug & AHD_SHOW_TQIN) != 0) |
| printk("Received Immediate Command %d:%d:%d - %p\n", |
| initiator, target, lun, ahd->pending_device); |
| #endif |
| ahd->pending_device = lstate; |
| ahd_freeze_ccb((union ccb *)atio); |
| atio->ccb_h.flags |= CAM_DIS_DISCONNECT; |
| } |
| xpt_done((union ccb*)atio); |
| return (0); |
| } |
| |
| #endif |