blob: 7ebfa3c8cdc78f657b84ae9413ed0849dc31f3cf [file] [log] [blame]
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/circ_buf.h>
#include <linux/device.h>
#include <scsi/sas.h>
#include "host.h"
#include "isci.h"
#include "port.h"
#include "probe_roms.h"
#include "remote_device.h"
#include "request.h"
#include "scu_completion_codes.h"
#include "scu_event_codes.h"
#include "registers.h"
#include "scu_remote_node_context.h"
#include "scu_task_context.h"
#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
#define smu_max_ports(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
)
#define smu_max_task_contexts(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
)
#define smu_max_rncs(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
)
#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
/**
*
*
* The number of milliseconds to wait while a given phy is consuming power
* before allowing another set of phys to consume power. Ultimately, this will
* be specified by OEM parameter.
*/
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
/**
* NORMALIZE_PUT_POINTER() -
*
* This macro will normalize the completion queue put pointer so its value can
* be used as an array inde
*/
#define NORMALIZE_PUT_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
/**
* NORMALIZE_EVENT_POINTER() -
*
* This macro will normalize the completion queue event entry so its value can
* be used as an index.
*/
#define NORMALIZE_EVENT_POINTER(x) \
(\
((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
)
/**
* NORMALIZE_GET_POINTER() -
*
* This macro will normalize the completion queue get pointer so its value can
* be used as an index into an array
*/
#define NORMALIZE_GET_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
/**
* NORMALIZE_GET_POINTER_CYCLE_BIT() -
*
* This macro will normalize the completion queue cycle pointer so it matches
* the completion queue cycle bit
*/
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
/**
* COMPLETION_QUEUE_CYCLE_BIT() -
*
* This macro will return the cycle bit of the completion queue entry
*/
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
/* Init the state machine and call the state entry function (if any) */
void sci_init_sm(struct sci_base_state_machine *sm,
const struct sci_base_state *state_table, u32 initial_state)
{
sci_state_transition_t handler;
sm->initial_state_id = initial_state;
sm->previous_state_id = initial_state;
sm->current_state_id = initial_state;
sm->state_table = state_table;
handler = sm->state_table[initial_state].enter_state;
if (handler)
handler(sm);
}
/* Call the state exit fn, update the current state, call the state entry fn */
void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
{
sci_state_transition_t handler;
handler = sm->state_table[sm->current_state_id].exit_state;
if (handler)
handler(sm);
sm->previous_state_id = sm->current_state_id;
sm->current_state_id = next_state;
handler = sm->state_table[sm->current_state_id].enter_state;
if (handler)
handler(sm);
}
static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
{
u32 get_value = ihost->completion_queue_get;
u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
return true;
return false;
}
static bool sci_controller_isr(struct isci_host *ihost)
{
if (sci_controller_completion_queue_has_entries(ihost))
return true;
/* we have a spurious interrupt it could be that we have already
* emptied the completion queue from a previous interrupt
* FIXME: really!?
*/
writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
/* There is a race in the hardware that could cause us not to be
* notified of an interrupt completion if we do not take this
* step. We will mask then unmask the interrupts so if there is
* another interrupt pending the clearing of the interrupt
* source we get the next interrupt message.
*/
spin_lock(&ihost->scic_lock);
if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
writel(0, &ihost->smu_registers->interrupt_mask);
}
spin_unlock(&ihost->scic_lock);
return false;
}
irqreturn_t isci_msix_isr(int vec, void *data)
{
struct isci_host *ihost = data;
if (sci_controller_isr(ihost))
tasklet_schedule(&ihost->completion_tasklet);
return IRQ_HANDLED;
}
static bool sci_controller_error_isr(struct isci_host *ihost)
{
u32 interrupt_status;
interrupt_status =
readl(&ihost->smu_registers->interrupt_status);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if (interrupt_status != 0) {
/*
* There is an error interrupt pending so let it through and handle
* in the callback */
return true;
}
/*
* There is a race in the hardware that could cause us not to be notified
* of an interrupt completion if we do not take this step. We will mask
* then unmask the error interrupts so if there was another interrupt
* pending we will be notified.
* Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
writel(0xff, &ihost->smu_registers->interrupt_mask);
writel(0, &ihost->smu_registers->interrupt_mask);
return false;
}
static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
{
u32 index = SCU_GET_COMPLETION_INDEX(ent);
struct isci_request *ireq = ihost->reqs[index];
/* Make sure that we really want to process this IO request */
if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
/* Yep this is a valid io request pass it along to the
* io request handler
*/
sci_io_request_tc_completion(ireq, ent);
}
static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
{
u32 index;
struct isci_request *ireq;
struct isci_remote_device *idev;
index = SCU_GET_COMPLETION_INDEX(ent);
switch (scu_get_command_request_type(ent)) {
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
ireq = ihost->reqs[index];
dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
__func__, ent, ireq);
/* @todo For a post TC operation we need to fail the IO
* request
*/
break;
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
idev = ihost->device_table[index];
dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
__func__, ent, idev);
/* @todo For a port RNC operation we need to fail the
* device
*/
break;
default:
dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
__func__, ent);
break;
}
}
static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
{
u32 index;
u32 frame_index;
struct scu_unsolicited_frame_header *frame_header;
struct isci_phy *iphy;
struct isci_remote_device *idev;
enum sci_status result = SCI_FAILURE;
frame_index = SCU_GET_FRAME_INDEX(ent);
frame_header = ihost->uf_control.buffers.array[frame_index].header;
ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
if (SCU_GET_FRAME_ERROR(ent)) {
/*
* / @todo If the IAF frame or SIGNATURE FIS frame has an error will
* / this cause a problem? We expect the phy initialization will
* / fail if there is an error in the frame. */
sci_controller_release_frame(ihost, frame_index);
return;
}
if (frame_header->is_address_frame) {
index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
iphy = &ihost->phys[index];
result = sci_phy_frame_handler(iphy, frame_index);
} else {
index = SCU_GET_COMPLETION_INDEX(ent);
if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
/*
* This is a signature fis or a frame from a direct attached SATA
* device that has not yet been created. In either case forwared
* the frame to the PE and let it take care of the frame data. */
index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
iphy = &ihost->phys[index];
result = sci_phy_frame_handler(iphy, frame_index);
} else {
if (index < ihost->remote_node_entries)
idev = ihost->device_table[index];
else
idev = NULL;
if (idev != NULL)
result = sci_remote_device_frame_handler(idev, frame_index);
else
sci_controller_release_frame(ihost, frame_index);
}
}
if (result != SCI_SUCCESS) {
/*
* / @todo Is there any reason to report some additional error message
* / when we get this failure notifiction? */
}
}
static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
{
struct isci_remote_device *idev;
struct isci_request *ireq;
struct isci_phy *iphy;
u32 index;
index = SCU_GET_COMPLETION_INDEX(ent);
switch (scu_get_event_type(ent)) {
case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
/* / @todo The driver did something wrong and we need to fix the condtion. */
dev_err(&ihost->pdev->dev,
"%s: SCIC Controller 0x%p received SMU command error "
"0x%x\n",
__func__,
ihost,
ent);
break;
case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
case SCU_EVENT_TYPE_SMU_ERROR:
case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
/*
* / @todo This is a hardware failure and its likely that we want to
* / reset the controller. */
dev_err(&ihost->pdev->dev,
"%s: SCIC Controller 0x%p received fatal controller "
"event 0x%x\n",
__func__,
ihost,
ent);
break;
case SCU_EVENT_TYPE_TRANSPORT_ERROR:
ireq = ihost->reqs[index];
sci_io_request_event_handler(ireq, ent);
break;
case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
switch (scu_get_event_specifier(ent)) {
case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
ireq = ihost->reqs[index];
if (ireq != NULL)
sci_io_request_event_handler(ireq, ent);
else
dev_warn(&ihost->pdev->dev,
"%s: SCIC Controller 0x%p received "
"event 0x%x for io request object "
"that doesnt exist.\n",
__func__,
ihost,
ent);
break;
case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
idev = ihost->device_table[index];
if (idev != NULL)
sci_remote_device_event_handler(idev, ent);
else
dev_warn(&ihost->pdev->dev,
"%s: SCIC Controller 0x%p received "
"event 0x%x for remote device object "
"that doesnt exist.\n",
__func__,
ihost,
ent);
break;
}
break;
case SCU_EVENT_TYPE_BROADCAST_CHANGE:
/*
* direct the broadcast change event to the phy first and then let
* the phy redirect the broadcast change to the port object */
case SCU_EVENT_TYPE_ERR_CNT_EVENT:
/*
* direct error counter event to the phy object since that is where
* we get the event notification. This is a type 4 event. */
case SCU_EVENT_TYPE_OSSP_EVENT:
index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
iphy = &ihost->phys[index];
sci_phy_event_handler(iphy, ent);
break;
case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
case SCU_EVENT_TYPE_RNC_OPS_MISC:
if (index < ihost->remote_node_entries) {
idev = ihost->device_table[index];
if (idev != NULL)
sci_remote_device_event_handler(idev, ent);
} else
dev_err(&ihost->pdev->dev,
"%s: SCIC Controller 0x%p received event 0x%x "
"for remote device object 0x%0x that doesnt "
"exist.\n",
__func__,
ihost,
ent,
index);
break;
default:
dev_warn(&ihost->pdev->dev,
"%s: SCIC Controller received unknown event code %x\n",
__func__,
ent);
break;
}
}
static void sci_controller_process_completions(struct isci_host *ihost)
{
u32 completion_count = 0;
u32 ent;
u32 get_index;
u32 get_cycle;
u32 event_get;
u32 event_cycle;
dev_dbg(&ihost->pdev->dev,
"%s: completion queue beginning get:0x%08x\n",
__func__,
ihost->completion_queue_get);
/* Get the component parts of the completion queue */
get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
while (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
) {
completion_count++;
ent = ihost->completion_queue[get_index];
/* increment the get pointer and check for rollover to toggle the cycle bit */
get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
(SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
dev_dbg(&ihost->pdev->dev,
"%s: completion queue entry:0x%08x\n",
__func__,
ent);
switch (SCU_GET_COMPLETION_TYPE(ent)) {
case SCU_COMPLETION_TYPE_TASK:
sci_controller_task_completion(ihost, ent);
break;
case SCU_COMPLETION_TYPE_SDMA:
sci_controller_sdma_completion(ihost, ent);
break;
case SCU_COMPLETION_TYPE_UFI:
sci_controller_unsolicited_frame(ihost, ent);
break;
case SCU_COMPLETION_TYPE_EVENT:
sci_controller_event_completion(ihost, ent);
break;
case SCU_COMPLETION_TYPE_NOTIFY: {
event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
(SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
sci_controller_event_completion(ihost, ent);
break;
}
default:
dev_warn(&ihost->pdev->dev,
"%s: SCIC Controller received unknown "
"completion type %x\n",
__func__,
ent);
break;
}
}
/* Update the get register if we completed one or more entries */
if (completion_count > 0) {
ihost->completion_queue_get =
SMU_CQGR_GEN_BIT(ENABLE) |
SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
event_cycle |
SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
get_cycle |
SMU_CQGR_GEN_VAL(POINTER, get_index);
writel(ihost->completion_queue_get,
&ihost->smu_registers->completion_queue_get);
}
dev_dbg(&ihost->pdev->dev,
"%s: completion queue ending get:0x%08x\n",
__func__,
ihost->completion_queue_get);
}
static void sci_controller_error_handler(struct isci_host *ihost)
{
u32 interrupt_status;
interrupt_status =
readl(&ihost->smu_registers->interrupt_status);
if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
sci_controller_completion_queue_has_entries(ihost)) {
sci_controller_process_completions(ihost);
writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
} else {
dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
interrupt_status);
sci_change_state(&ihost->sm, SCIC_FAILED);
return;
}
/* If we dont process any completions I am not sure that we want to do this.
* We are in the middle of a hardware fault and should probably be reset.
*/
writel(0, &ihost->smu_registers->interrupt_mask);
}
irqreturn_t isci_intx_isr(int vec, void *data)
{
irqreturn_t ret = IRQ_NONE;
struct isci_host *ihost = data;
if (sci_controller_isr(ihost)) {
writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
tasklet_schedule(&ihost->completion_tasklet);
ret = IRQ_HANDLED;
} else if (sci_controller_error_isr(ihost)) {
spin_lock(&ihost->scic_lock);
sci_controller_error_handler(ihost);
spin_unlock(&ihost->scic_lock);
ret = IRQ_HANDLED;
}
return ret;
}
irqreturn_t isci_error_isr(int vec, void *data)
{
struct isci_host *ihost = data;
if (sci_controller_error_isr(ihost))
sci_controller_error_handler(ihost);
return IRQ_HANDLED;
}
/**
* isci_host_start_complete() - This function is called by the core library,
* through the ISCI Module, to indicate controller start status.
* @isci_host: This parameter specifies the ISCI host object
* @completion_status: This parameter specifies the completion status from the
* core library.
*
*/
static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
{
if (completion_status != SCI_SUCCESS)
dev_info(&ihost->pdev->dev,
"controller start timed out, continuing...\n");
clear_bit(IHOST_START_PENDING, &ihost->flags);
wake_up(&ihost->eventq);
}
int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
struct isci_host *ihost = ha->lldd_ha;
if (test_bit(IHOST_START_PENDING, &ihost->flags))
return 0;
sas_drain_work(ha);
return 1;
}
/**
* sci_controller_get_suggested_start_timeout() - This method returns the
* suggested sci_controller_start() timeout amount. The user is free to
* use any timeout value, but this method provides the suggested minimum
* start timeout value. The returned value is based upon empirical
* information determined as a result of interoperability testing.
* @controller: the handle to the controller object for which to return the
* suggested start timeout.
*
* This method returns the number of milliseconds for the suggested start
* operation timeout.
*/
static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
{
/* Validate the user supplied parameters. */
if (!ihost)
return 0;
/*
* The suggested minimum timeout value for a controller start operation:
*
* Signature FIS Timeout
* + Phy Start Timeout
* + Number of Phy Spin Up Intervals
* ---------------------------------
* Number of milliseconds for the controller start operation.
*
* NOTE: The number of phy spin up intervals will be equivalent
* to the number of phys divided by the number phys allowed
* per interval - 1 (once OEM parameters are supported).
* Currently we assume only 1 phy per interval. */
return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
}
static void sci_controller_enable_interrupts(struct isci_host *ihost)
{
set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
writel(0, &ihost->smu_registers->interrupt_mask);
}
void sci_controller_disable_interrupts(struct isci_host *ihost)
{
clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
readl(&ihost->smu_registers->interrupt_mask); /* flush */
}
static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
{
u32 port_task_scheduler_value;
port_task_scheduler_value =
readl(&ihost->scu_registers->peg0.ptsg.control);
port_task_scheduler_value |=
(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
writel(port_task_scheduler_value,
&ihost->scu_registers->peg0.ptsg.control);
}
static void sci_controller_assign_task_entries(struct isci_host *ihost)
{
u32 task_assignment;
/*
* Assign all the TCs to function 0
* TODO: Do we actually need to read this register to write it back?
*/
task_assignment =
readl(&ihost->smu_registers->task_context_assignment[0]);
task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
(SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
writel(task_assignment,
&ihost->smu_registers->task_context_assignment[0]);
}
static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
{
u32 index;
u32 completion_queue_control_value;
u32 completion_queue_get_value;
u32 completion_queue_put_value;
ihost->completion_queue_get = 0;
completion_queue_control_value =
(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
writel(completion_queue_control_value,
&ihost->smu_registers->completion_queue_control);
/* Set the completion queue get pointer and enable the queue */
completion_queue_get_value = (
(SMU_CQGR_GEN_VAL(POINTER, 0))
| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
| (SMU_CQGR_GEN_BIT(ENABLE))
| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
);
writel(completion_queue_get_value,
&ihost->smu_registers->completion_queue_get);
/* Set the completion queue put pointer */
completion_queue_put_value = (
(SMU_CQPR_GEN_VAL(POINTER, 0))
| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
);
writel(completion_queue_put_value,
&ihost->smu_registers->completion_queue_put);
/* Initialize the cycle bit of the completion queue entries */
for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
/*
* If get.cycle_bit != completion_queue.cycle_bit
* its not a valid completion queue entry
* so at system start all entries are invalid */
ihost->completion_queue[index] = 0x80000000;
}
}
static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
{
u32 frame_queue_control_value;
u32 frame_queue_get_value;
u32 frame_queue_put_value;
/* Write the queue size */
frame_queue_control_value =
SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
writel(frame_queue_control_value,
&ihost->scu_registers->sdma.unsolicited_frame_queue_control);
/* Setup the get pointer for the unsolicited frame queue */
frame_queue_get_value = (
SCU_UFQGP_GEN_VAL(POINTER, 0)
| SCU_UFQGP_GEN_BIT(ENABLE_BIT)
);
writel(frame_queue_get_value,
&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
/* Setup the put pointer for the unsolicited frame queue */
frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
writel(frame_queue_put_value,
&ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
}
void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
{
if (ihost->sm.current_state_id == SCIC_STARTING) {
/*
* We move into the ready state, because some of the phys/ports
* may be up and operational.
*/
sci_change_state(&ihost->sm, SCIC_READY);
isci_host_start_complete(ihost, status);
}
}
static bool is_phy_starting(struct isci_phy *iphy)
{
enum sci_phy_states state;
state = iphy->sm.current_state_id;
switch (state) {
case SCI_PHY_STARTING:
case SCI_PHY_SUB_INITIAL:
case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
case SCI_PHY_SUB_AWAIT_IAF_UF:
case SCI_PHY_SUB_AWAIT_SAS_POWER:
case SCI_PHY_SUB_AWAIT_SATA_POWER:
case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
case SCI_PHY_SUB_AWAIT_OSSP_EN:
case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
case SCI_PHY_SUB_FINAL:
return true;
default:
return false;
}
}
bool is_controller_start_complete(struct isci_host *ihost)
{
int i;
for (i = 0; i < SCI_MAX_PHYS; i++) {
struct isci_phy *iphy = &ihost->phys[i];
u32 state = iphy->sm.current_state_id;
/* in apc mode we need to check every phy, in
* mpc mode we only need to check phys that have
* been configured into a port
*/
if (is_port_config_apc(ihost))
/* pass */;
else if (!phy_get_non_dummy_port(iphy))
continue;
/* The controller start operation is complete iff:
* - all links have been given an opportunity to start
* - have no indication of a connected device
* - have an indication of a connected device and it has
* finished the link training process.
*/
if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
(iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
(iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
(ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
return false;
}
return true;
}
/**
* sci_controller_start_next_phy - start phy
* @scic: controller
*
* If all the phys have been started, then attempt to transition the
* controller to the READY state and inform the user
* (sci_cb_controller_start_complete()).
*/
static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
{
struct sci_oem_params *oem = &ihost->oem_parameters;
struct isci_phy *iphy;
enum sci_status status;
status = SCI_SUCCESS;
if (ihost->phy_startup_timer_pending)
return status;
if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
if (is_controller_start_complete(ihost)) {
sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
sci_del_timer(&ihost->phy_timer);
ihost->phy_startup_timer_pending = false;
}
} else {
iphy = &ihost->phys[ihost->next_phy_to_start];
if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
if (phy_get_non_dummy_port(iphy) == NULL) {
ihost->next_phy_to_start++;
/* Caution recursion ahead be forwarned
*
* The PHY was never added to a PORT in MPC mode
* so start the next phy in sequence This phy
* will never go link up and will not draw power
* the OEM parameters either configured the phy
* incorrectly for the PORT or it was never
* assigned to a PORT
*/
return sci_controller_start_next_phy(ihost);
}
}
status = sci_phy_start(iphy);
if (status == SCI_SUCCESS) {
sci_mod_timer(&ihost->phy_timer,
SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
ihost->phy_startup_timer_pending = true;
} else {
dev_warn(&ihost->pdev->dev,
"%s: Controller stop operation failed "
"to stop phy %d because of status "
"%d.\n",
__func__,
ihost->phys[ihost->next_phy_to_start].phy_index,
status);
}
ihost->next_phy_to_start++;
}
return status;
}
static void phy_startup_timeout(struct timer_list *t)
{
struct sci_timer *tmr = from_timer(tmr, t, timer);
struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
unsigned long flags;
enum sci_status status;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
ihost->phy_startup_timer_pending = false;
do {
status = sci_controller_start_next_phy(ihost);
} while (status != SCI_SUCCESS);
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
static u16 isci_tci_active(struct isci_host *ihost)
{
return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}
static enum sci_status sci_controller_start(struct isci_host *ihost,
u32 timeout)
{
enum sci_status result;
u16 index;
if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
/* Build the TCi free pool */
BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
ihost->tci_head = 0;
ihost->tci_tail = 0;
for (index = 0; index < ihost->task_context_entries; index++)
isci_tci_free(ihost, index);
/* Build the RNi free pool */
sci_remote_node_table_initialize(&ihost->available_remote_nodes,
ihost->remote_node_entries);
/*
* Before anything else lets make sure we will not be
* interrupted by the hardware.
*/
sci_controller_disable_interrupts(ihost);
/* Enable the port task scheduler */
sci_controller_enable_port_task_scheduler(ihost);
/* Assign all the task entries to ihost physical function */
sci_controller_assign_task_entries(ihost);
/* Now initialize the completion queue */
sci_controller_initialize_completion_queue(ihost);
/* Initialize the unsolicited frame queue for use */
sci_controller_initialize_unsolicited_frame_queue(ihost);
/* Start all of the ports on this controller */
for (index = 0; index < ihost->logical_port_entries; index++) {
struct isci_port *iport = &ihost->ports[index];
result = sci_port_start(iport);
if (result)
return result;
}
sci_controller_start_next_phy(ihost);
sci_mod_timer(&ihost->timer, timeout);
sci_change_state(&ihost->sm, SCIC_STARTING);
return SCI_SUCCESS;
}
void isci_host_start(struct Scsi_Host *shost)
{
struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
set_bit(IHOST_START_PENDING, &ihost->flags);
spin_lock_irq(&ihost->scic_lock);
sci_controller_start(ihost, tmo);
sci_controller_enable_interrupts(ihost);
spin_unlock_irq(&ihost->scic_lock);
}
static void isci_host_stop_complete(struct isci_host *ihost)
{
sci_controller_disable_interrupts(ihost);
clear_bit(IHOST_STOP_PENDING, &ihost->flags);
wake_up(&ihost->eventq);
}
static void sci_controller_completion_handler(struct isci_host *ihost)
{
/* Empty out the completion queue */
if (sci_controller_completion_queue_has_entries(ihost))
sci_controller_process_completions(ihost);
/* Clear the interrupt and enable all interrupts again */
writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
/* Could we write the value of SMU_ISR_COMPLETION? */
writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
writel(0, &ihost->smu_registers->interrupt_mask);
}
void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
{
if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
/* Normal notification (task_done) */
dev_dbg(&ihost->pdev->dev,
"%s: Normal - ireq/task = %p/%p\n",
__func__, ireq, task);
task->lldd_task = NULL;
task->task_done(task);
} else {
dev_dbg(&ihost->pdev->dev,
"%s: Error - ireq/task = %p/%p\n",
__func__, ireq, task);
if (sas_protocol_ata(task->task_proto))
task->lldd_task = NULL;
sas_task_abort(task);
}
} else
task->lldd_task = NULL;
if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
wake_up_all(&ihost->eventq);
if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
isci_free_tag(ihost, ireq->io_tag);
}
/**
* isci_host_completion_routine() - This function is the delayed service
* routine that calls the sci core library's completion handler. It's
* scheduled as a tasklet from the interrupt service routine when interrupts
* in use, or set as the timeout function in polled mode.
* @data: This parameter specifies the ISCI host object
*
*/
void isci_host_completion_routine(unsigned long data)
{
struct isci_host *ihost = (struct isci_host *)data;
u16 active;
spin_lock_irq(&ihost->scic_lock);
sci_controller_completion_handler(ihost);
spin_unlock_irq(&ihost->scic_lock);
/*
* we subtract SCI_MAX_PORTS to account for the number of dummy TCs
* issued for hardware issue workaround
*/
active = isci_tci_active(ihost) - SCI_MAX_PORTS;
/*
* the coalesence timeout doubles at each encoding step, so
* update it based on the ilog2 value of the outstanding requests
*/
writel(SMU_ICC_GEN_VAL(NUMBER, active) |
SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
&ihost->smu_registers->interrupt_coalesce_control);
}
/**
* sci_controller_stop() - This method will stop an individual controller
* object.This method will invoke the associated user callback upon
* completion. The completion callback is called when the following
* conditions are met: -# the method return status is SCI_SUCCESS. -# the
* controller has been quiesced. This method will ensure that all IO
* requests are quiesced, phys are stopped, and all additional operation by
* the hardware is halted.
* @controller: the handle to the controller object to stop.
* @timeout: This parameter specifies the number of milliseconds in which the
* stop operation should complete.
*
* The controller must be in the STARTED or STOPPED state. Indicate if the
* controller stop method succeeded or failed in some way. SCI_SUCCESS if the
* stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
* controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
* controller is not either in the STARTED or STOPPED states.
*/
static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
{
if (ihost->sm.current_state_id != SCIC_READY) {
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
sci_mod_timer(&ihost->timer, timeout);
sci_change_state(&ihost->sm, SCIC_STOPPING);
return SCI_SUCCESS;
}
/**
* sci_controller_reset() - This method will reset the supplied core
* controller regardless of the state of said controller. This operation is
* considered destructive. In other words, all current operations are wiped
* out. No IO completions for outstanding devices occur. Outstanding IO
* requests are not aborted or completed at the actual remote device.
* @controller: the handle to the controller object to reset.
*
* Indicate if the controller reset method succeeded or failed in some way.
* SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
* the controller reset operation is unable to complete.
*/
static enum sci_status sci_controller_reset(struct isci_host *ihost)
{
switch (ihost->sm.current_state_id) {
case SCIC_RESET:
case SCIC_READY:
case SCIC_STOPPING:
case SCIC_FAILED:
/*
* The reset operation is not a graceful cleanup, just
* perform the state transition.
*/
sci_change_state(&ihost->sm, SCIC_RESETTING);
return SCI_SUCCESS;
default:
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
}
static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
{
u32 index;
enum sci_status status;
enum sci_status phy_status;
status = SCI_SUCCESS;
for (index = 0; index < SCI_MAX_PHYS; index++) {
phy_status = sci_phy_stop(&ihost->phys[index]);
if (phy_status != SCI_SUCCESS &&
phy_status != SCI_FAILURE_INVALID_STATE) {
status = SCI_FAILURE;
dev_warn(&ihost->pdev->dev,
"%s: Controller stop operation failed to stop "
"phy %d because of status %d.\n",
__func__,
ihost->phys[index].phy_index, phy_status);
}
}
return status;
}
/**
* isci_host_deinit - shutdown frame reception and dma
* @ihost: host to take down
*
* This is called in either the driver shutdown or the suspend path. In
* the shutdown case libsas went through port teardown and normal device
* removal (i.e. physical links stayed up to service scsi_device removal
* commands). In the suspend case we disable the hardware without
* notifying libsas of the link down events since we want libsas to
* remember the domain across the suspend/resume cycle
*/
void isci_host_deinit(struct isci_host *ihost)
{
int i;
/* disable output data selects */
for (i = 0; i < isci_gpio_count(ihost); i++)
writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
set_bit(IHOST_STOP_PENDING, &ihost->flags);
spin_lock_irq(&ihost->scic_lock);
sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
spin_unlock_irq(&ihost->scic_lock);
wait_for_stop(ihost);
/* phy stop is after controller stop to allow port and device to
* go idle before shutting down the phys, but the expectation is
* that i/o has been shut off well before we reach this
* function.
*/
sci_controller_stop_phys(ihost);
/* disable sgpio: where the above wait should give time for the
* enclosure to sample the gpios going inactive
*/
writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
spin_lock_irq(&ihost->scic_lock);
sci_controller_reset(ihost);
spin_unlock_irq(&ihost->scic_lock);
/* Cancel any/all outstanding port timers */
for (i = 0; i < ihost->logical_port_entries; i++) {
struct isci_port *iport = &ihost->ports[i];
del_timer_sync(&iport->timer.timer);
}
/* Cancel any/all outstanding phy timers */
for (i = 0; i < SCI_MAX_PHYS; i++) {
struct isci_phy *iphy = &ihost->phys[i];
del_timer_sync(&iphy->sata_timer.timer);
}
del_timer_sync(&ihost->port_agent.timer.timer);
del_timer_sync(&ihost->power_control.timer.timer);
del_timer_sync(&ihost->timer.timer);
del_timer_sync(&ihost->phy_timer.timer);
}
static void __iomem *scu_base(struct isci_host *isci_host)
{
struct pci_dev *pdev = isci_host->pdev;
int id = isci_host->id;
return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
}
static void __iomem *smu_base(struct isci_host *isci_host)
{
struct pci_dev *pdev = isci_host->pdev;
int id = isci_host->id;
return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
}
static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
{
struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
sci_change_state(&ihost->sm, SCIC_RESET);
}
static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
{
struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
sci_del_timer(&ihost->timer);
}
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
#define INTERRUPT_COALESCE_NUMBER_MAX 256
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
/**
* sci_controller_set_interrupt_coalescence() - This method allows the user to
* configure the interrupt coalescence.
* @controller: This parameter represents the handle to the controller object
* for which its interrupt coalesce register is overridden.
* @coalesce_number: Used to control the number of entries in the Completion
* Queue before an interrupt is generated. If the number of entries exceed
* this number, an interrupt will be generated. The valid range of the input
* is [0, 256]. A setting of 0 results in coalescing being disabled.
* @coalesce_timeout: Timeout value in microseconds. The valid range of the
* input is [0, 2700000] . A setting of 0 is allowed and results in no
* interrupt coalescing timeout.
*
* Indicate if the user successfully set the interrupt coalesce parameters.
* SCI_SUCCESS The user successfully updated the interrutp coalescence.
* SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
*/
static enum sci_status
sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
u32 coalesce_number,
u32 coalesce_timeout)
{
u8 timeout_encode = 0;
u32 min = 0;
u32 max = 0;
/* Check if the input parameters fall in the range. */
if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
/*
* Defined encoding for interrupt coalescing timeout:
* Value Min Max Units
* ----- --- --- -----
* 0 - - Disabled
* 1 13.3 20.0 ns
* 2 26.7 40.0
* 3 53.3 80.0
* 4 106.7 160.0
* 5 213.3 320.0
* 6 426.7 640.0
* 7 853.3 1280.0
* 8 1.7 2.6 us
* 9 3.4 5.1
* 10 6.8 10.2
* 11 13.7 20.5
* 12 27.3 41.0
* 13 54.6 81.9
* 14 109.2 163.8
* 15 218.5 327.7
* 16 436.9 655.4
* 17 873.8 1310.7
* 18 1.7 2.6 ms
* 19 3.5 5.2
* 20 7.0 10.5
* 21 14.0 21.0
* 22 28.0 41.9
* 23 55.9 83.9
* 24 111.8 167.8
* 25 223.7 335.5
* 26 447.4 671.1
* 27 894.8 1342.2
* 28 1.8 2.7 s
* Others Undefined */
/*
* Use the table above to decide the encode of interrupt coalescing timeout
* value for register writing. */
if (coalesce_timeout == 0)
timeout_encode = 0;
else{
/* make the timeout value in unit of (10 ns). */
coalesce_timeout = coalesce_timeout * 100;
min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
/* get the encode of timeout for register writing. */
for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
timeout_encode++) {
if (min <= coalesce_timeout && max > coalesce_timeout)
break;
else if (coalesce_timeout >= max && coalesce_timeout < min * 2
&& coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
break;
else{
timeout_encode++;
break;
}
} else {
max = max * 2;
min = min * 2;
}
}
if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
/* the value is out of range. */
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
SMU_ICC_GEN_VAL(TIMER, timeout_encode),
&ihost->smu_registers->interrupt_coalesce_control);
ihost->interrupt_coalesce_number = (u16)coalesce_number;
ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
return SCI_SUCCESS;
}
static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
{
struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
u32 val;
/* enable clock gating for power control of the scu unit */
val = readl(&ihost->smu_registers->clock_gating_control);
val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
writel(val, &ihost->smu_registers->clock_gating_control);
/* set the default interrupt coalescence number and timeout value. */
sci_controller_set_interrupt_coalescence(ihost, 0, 0);
}
static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
{
struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
/* disable interrupt coalescence. */
sci_controller_set_interrupt_coalescence(ihost, 0, 0);
}
static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
{
u32 index;
enum sci_status port_status;
enum sci_status status = SCI_SUCCESS;
for (index = 0; index < ihost->logical_port_entries; index++) {
struct isci_port *iport = &ihost->ports[index];
port_status = sci_port_stop(iport);
if ((port_status != SCI_SUCCESS) &&
(port_status != SCI_FAILURE_INVALID_STATE)) {
status = SCI_FAILURE;
dev_warn(&ihost->pdev->dev,
"%s: Controller stop operation failed to "
"stop port %d because of status %d.\n",
__func__,
iport->logical_port_index,
port_status);
}
}
return status;
}
static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
{
u32 index;
enum sci_status status;
enum sci_status device_status;
status = SCI_SUCCESS;
for (index = 0; index < ihost->remote_node_entries; index++) {
if (ihost->device_table[index] != NULL) {
/* / @todo What timeout value do we want to provide to this request? */
device_status = sci_remote_device_stop(ihost->device_table[index], 0);
if ((device_status != SCI_SUCCESS) &&
(device_status != SCI_FAILURE_INVALID_STATE)) {
dev_warn(&ihost->pdev->dev,
"%s: Controller stop operation failed "
"to stop device 0x%p because of "
"status %d.\n",
__func__,
ihost->device_table[index], device_status);
}
}
}
return status;
}
static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
{
struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
sci_controller_stop_devices(ihost);
sci_controller_stop_ports(ihost);
if (!sci_controller_has_remote_devices_stopping(ihost))
isci_host_stop_complete(ihost);
}
static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
{
struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
sci_del_timer(&ihost->timer);
}
static void sci_controller_reset_hardware(struct isci_host *ihost)
{
/* Disable interrupts so we dont take any spurious interrupts */
sci_controller_disable_interrupts(ihost);
/* Reset the SCU */
writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
/* Delay for 1ms to before clearing the CQP and UFQPR. */
udelay(1000);
/* The write to the CQGR clears the CQP */
writel(0x00000000, &ihost->smu_registers->completion_queue_get);
/* The write to the UFQGP clears the UFQPR */
writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
/* clear all interrupts */
writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
}
static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
{
struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
sci_controller_reset_hardware(ihost);
sci_change_state(&ihost->sm, SCIC_RESET);
}
static const struct sci_base_state sci_controller_state_table[] = {
[SCIC_INITIAL] = {
.enter_state = sci_controller_initial_state_enter,
},
[SCIC_RESET] = {},
[SCIC_INITIALIZING] = {},
[SCIC_INITIALIZED] = {},
[SCIC_STARTING] = {
.exit_state = sci_controller_starting_state_exit,
},
[SCIC_READY] = {
.enter_state = sci_controller_ready_state_enter,
.exit_state = sci_controller_ready_state_exit,
},
[SCIC_RESETTING] = {
.enter_state = sci_controller_resetting_state_enter,
},
[SCIC_STOPPING] = {
.enter_state = sci_controller_stopping_state_enter,
.exit_state = sci_controller_stopping_state_exit,
},
[SCIC_FAILED] = {}
};
static void controller_timeout(struct timer_list *t)
{
struct sci_timer *tmr = from_timer(tmr, t, timer);
struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
struct sci_base_state_machine *sm = &ihost->sm;
unsigned long flags;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
if (sm->current_state_id == SCIC_STARTING)
sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
else if (sm->current_state_id == SCIC_STOPPING) {
sci_change_state(sm, SCIC_FAILED);
isci_host_stop_complete(ihost);
} else /* / @todo Now what do we want to do in this case? */
dev_err(&ihost->pdev->dev,
"%s: Controller timer fired when controller was not "
"in a state being timed.\n",
__func__);
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
static enum sci_status sci_controller_construct(struct isci_host *ihost,
void __iomem *scu_base,
void __iomem *smu_base)
{
u8 i;
sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
ihost->scu_registers = scu_base;
ihost->smu_registers = smu_base;
sci_port_configuration_agent_construct(&ihost->port_agent);
/* Construct the ports for this controller */
for (i = 0; i < SCI_MAX_PORTS; i++)
sci_port_construct(&ihost->ports[i], i, ihost);
sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
/* Construct the phys for this controller */
for (i = 0; i < SCI_MAX_PHYS; i++) {
/* Add all the PHYs to the dummy port */
sci_phy_construct(&ihost->phys[i],
&ihost->ports[SCI_MAX_PORTS], i);
}
ihost->invalid_phy_mask = 0;
sci_init_timer(&ihost->timer, controller_timeout);
return sci_controller_reset(ihost);
}
int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
{
int i;
for (i = 0; i < SCI_MAX_PORTS; i++)
if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
return -EINVAL;
for (i = 0; i < SCI_MAX_PHYS; i++)
if (oem->phys[i].sas_address.high == 0 &&
oem->phys[i].sas_address.low == 0)
return -EINVAL;
if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
for (i = 0; i < SCI_MAX_PHYS; i++)
if (oem->ports[i].phy_mask != 0)
return -EINVAL;
} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
u8 phy_mask = 0;
for (i = 0; i < SCI_MAX_PHYS; i++)
phy_mask |= oem->ports[i].phy_mask;
if (phy_mask == 0)
return -EINVAL;
} else
return -EINVAL;
if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
oem->controller.max_concurr_spin_up < 1)
return -EINVAL;
if (oem->controller.do_enable_ssc) {
if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
return -EINVAL;
if (version >= ISCI_ROM_VER_1_1) {
u8 test = oem->controller.ssc_sata_tx_spread_level;
switch (test) {
case 0:
case 2:
case 3:
case 6:
case 7:
break;
default:
return -EINVAL;
}
test = oem->controller.ssc_sas_tx_spread_level;
if (oem->controller.ssc_sas_tx_type == 0) {
switch (test) {
case 0:
case 2:
case 3:
break;
default:
return -EINVAL;
}
} else if (oem->controller.ssc_sas_tx_type == 1) {
switch (test) {
case 0:
case 3:
case 6:
break;
default:
return -EINVAL;
}
}
}
}
return 0;
}
static u8 max_spin_up(struct isci_host *ihost)
{
if (ihost->user_parameters.max_concurr_spinup)
return min_t(u8, ihost->user_parameters.max_concurr_spinup,
MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
else
return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
}
static void power_control_timeout(struct timer_list *t)
{
struct sci_timer *tmr = from_timer(tmr, t, timer);
struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
struct isci_phy *iphy;
unsigned long flags;
u8 i;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
ihost->power_control.phys_granted_power = 0;
if (ihost->power_control.phys_waiting == 0) {
ihost->power_control.timer_started = false;
goto done;
}
for (i = 0; i < SCI_MAX_PHYS; i++) {
if (ihost->power_control.phys_waiting == 0)
break;
iphy = ihost->power_control.requesters[i];
if (iphy == NULL)
continue;
if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
break;
ihost->power_control.requesters[i] = NULL;
ihost->power_control.phys_waiting--;
ihost->power_control.phys_granted_power++;
sci_phy_consume_power_handler(iphy);
if (iphy->protocol == SAS_PROTOCOL_SSP) {
u8 j;
for (j = 0; j < SCI_MAX_PHYS; j++) {
struct isci_phy *requester = ihost->power_control.requesters[j];
/*
* Search the power_control queue to see if there are other phys
* attached to the same remote device. If found, take all of
* them out of await_sas_power state.
*/
if (requester != NULL && requester != iphy) {
u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
iphy->frame_rcvd.iaf.sas_addr,
sizeof(requester->frame_rcvd.iaf.sas_addr));
if (other == 0) {
ihost->power_control.requesters[j] = NULL;
ihost->power_control.phys_waiting--;
sci_phy_consume_power_handler(requester);
}
}
}
}
}
/*
* It doesn't matter if the power list is empty, we need to start the
* timer in case another phy becomes ready.
*/
sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
ihost->power_control.timer_started = true;
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
void sci_controller_power_control_queue_insert(struct isci_host *ihost,
struct isci_phy *iphy)
{
BUG_ON(iphy == NULL);
if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
ihost->power_control.phys_granted_power++;
sci_phy_consume_power_handler(iphy);
/*
* stop and start the power_control timer. When the timer fires, the
* no_of_phys_granted_power will be set to 0
*/
if (ihost->power_control.timer_started)
sci_del_timer(&ihost->power_control.timer);
sci_mod_timer(&ihost->power_control.timer,
SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
ihost->power_control.timer_started = true;
} else {
/*
* There are phys, attached to the same sas address as this phy, are
* already in READY state, this phy don't need wait.
*/
u8 i;
struct isci_phy *current_phy;
for (i = 0; i < SCI_MAX_PHYS; i++) {
u8 other;
current_phy = &ihost->phys[i];
other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
iphy->frame_rcvd.iaf.sas_addr,
sizeof(current_phy->frame_rcvd.iaf.sas_addr));
if (current_phy->sm.current_state_id == SCI_PHY_READY &&
current_phy->protocol == SAS_PROTOCOL_SSP &&
other == 0) {
sci_phy_consume_power_handler(iphy);
break;
}
}
if (i == SCI_MAX_PHYS) {
/* Add the phy in the waiting list */
ihost->power_control.requesters[iphy->phy_index] = iphy;
ihost->power_control.phys_waiting++;
}
}
}
void sci_controller_power_control_queue_remove(struct isci_host *ihost,
struct isci_phy *iphy)
{
BUG_ON(iphy == NULL);
if (ihost->power_control.requesters[iphy->phy_index])
ihost->power_control.phys_waiting--;
ihost->power_control.requesters[iphy->phy_index] = NULL;
}
static int is_long_cable(int phy, unsigned char selection_byte)
{
return !!(selection_byte & (1 << phy));
}
static int is_medium_cable(int phy, unsigned char selection_byte)
{
return !!(selection_byte & (1 << (phy + 4)));
}
static enum cable_selections decode_selection_byte(
int phy,
unsigned char selection_byte)
{
return ((selection_byte & (1 << phy)) ? 1 : 0)
+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
}
static unsigned char *to_cable_select(struct isci_host *ihost)
{
if (is_cable_select_overridden())
return ((unsigned char *)&cable_selection_override)
+ ihost->id;
else
return &ihost->oem_parameters.controller.cable_selection_mask;
}
enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
{
return decode_selection_byte(phy, *to_cable_select(ihost));
}
char *lookup_cable_names(enum cable_selections selection)
{
static char *cable_names[] = {
[short_cable] = "short",
[long_cable] = "long",
[medium_cable] = "medium",
[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
};
return (selection <= undefined_cable) ? cable_names[selection]
: cable_names[undefined_cable];
}
#define AFE_REGISTER_WRITE_DELAY 10
static void sci_controller_afe_initialization(struct isci_host *ihost)
{
struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
const struct sci_oem_params *oem = &ihost->oem_parameters;
struct pci_dev *pdev = ihost->pdev;
u32 afe_status;
u32 phy_id;
unsigned char cable_selection_mask = *to_cable_select(ihost);
/* Clear DFX Status registers */
writel(0x0081000f, &afe->afe_dfx_master_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
* Timer, PM Stagger Timer
*/
writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
udelay(AFE_REGISTER_WRITE_DELAY);
}
/* Configure bias currents to normal */
if (is_a2(pdev))
writel(0x00005A00, &afe->afe_bias_control);
else if (is_b0(pdev) || is_c0(pdev))
writel(0x00005F00, &afe->afe_bias_control);
else if (is_c1(pdev))
writel(0x00005500, &afe->afe_bias_control);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Enable PLL */
if (is_a2(pdev))
writel(0x80040908, &afe->afe_pll_control0);
else if (is_b0(pdev) || is_c0(pdev))
writel(0x80040A08, &afe->afe_pll_control0);
else if (is_c1(pdev)) {
writel(0x80000B08, &afe->afe_pll_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x00000B08, &afe->afe_pll_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x80000B08, &afe->afe_pll_control0);
}
udelay(AFE_REGISTER_WRITE_DELAY);
/* Wait for the PLL to lock */
do {
afe_status = readl(&afe->afe_common_block_status);
udelay(AFE_REGISTER_WRITE_DELAY);
} while ((afe_status & 0x00001000) == 0);
if (is_a2(pdev)) {
/* Shorten SAS SNW lock time (RxLock timer value from 76
* us to 50 us)
*/
writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
}
for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
int cable_length_long =
is_long_cable(phy_id, cable_selection_mask);
int cable_length_medium =
is_medium_cable(phy_id, cable_selection_mask);
if (is_a2(pdev)) {
/* All defaults, except the Receive Word
* Alignament/Comma Detect Enable....(0xe800)
*/
writel(0x00004512, &xcvr->afe_xcvr_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x0050100F, &xcvr->afe_xcvr_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
} else if (is_b0(pdev)) {
/* Configure transmitter SSC parameters */
writel(0x00030000, &xcvr->afe_tx_ssc_control);
udelay(AFE_REGISTER_WRITE_DELAY);
} else if (is_c0(pdev)) {
/* Configure transmitter SSC parameters */
writel(0x00010202, &xcvr->afe_tx_ssc_control);
udelay(AFE_REGISTER_WRITE_DELAY);
/* All defaults, except the Receive Word
* Alignament/Comma Detect Enable....(0xe800)
*/
writel(0x00014500, &xcvr->afe_xcvr_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
} else if (is_c1(pdev)) {
/* Configure transmitter SSC parameters */
writel(0x00010202, &xcvr->afe_tx_ssc_control);
udelay(AFE_REGISTER_WRITE_DELAY);
/* All defaults, except the Receive Word
* Alignament/Comma Detect Enable....(0xe800)
*/
writel(0x0001C500, &xcvr->afe_xcvr_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
}
/* Power up TX and RX out from power down (PWRDNTX and
* PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
*/
if (is_a2(pdev))
writel(0x000003F0, &xcvr->afe_channel_control);
else if (is_b0(pdev)) {
writel(0x000003D7, &xcvr->afe_channel_control);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x000003D4, &xcvr->afe_channel_control);
} else if (is_c0(pdev)) {
writel(0x000001E7, &xcvr->afe_channel_control);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x000001E4, &xcvr->afe_channel_control);
} else if (is_c1(pdev)) {
writel(cable_length_long ? 0x000002F7 : 0x000001F7,
&xcvr->afe_channel_control);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(cable_length_long ? 0x000002F4 : 0x000001F4,
&xcvr->afe_channel_control);
}
udelay(AFE_REGISTER_WRITE_DELAY);
if (is_a2(pdev)) {
/* Enable TX equalization (0xe824) */
writel(0x00040000, &xcvr->afe_tx_control);
udelay(AFE_REGISTER_WRITE_DELAY);
}
if (is_a2(pdev) || is_b0(pdev))
/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
* TPD=0x0(TX Power On), RDD=0x0(RX Detect
* Enabled) ....(0xe800)
*/
writel(0x00004100, &xcvr->afe_xcvr_control0);
else if (is_c0(pdev))
writel(0x00014100, &xcvr->afe_xcvr_control0);
else if (is_c1(pdev))
writel(0x0001C100, &xcvr->afe_xcvr_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Leave DFE/FFE on */
if (is_a2(pdev))
writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
else if (is_b0(pdev)) {
writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Enable TX equalization (0xe824) */
writel(0x00040000, &xcvr->afe_tx_control);
} else if (is_c0(pdev)) {
writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Enable TX equalization (0xe824) */
writel(0x00040000, &xcvr->afe_tx_control);
} else if (is_c1(pdev)) {
writel(cable_length_long ? 0x01500C0C :
cable_length_medium ? 0x01400C0D : 0x02400C0D,
&xcvr->afe_xcvr_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(cable_length_long ? 0x33091C1F :
cable_length_medium ? 0x3315181F : 0x2B17161F,
&xcvr->afe_rx_ssc_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Enable TX equalization (0xe824) */
writel(0x00040000, &xcvr->afe_tx_control);
}
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
udelay(AFE_REGISTER_WRITE_DELAY);
}
/* Transfer control to the PEs */
writel(0x00010f00, &afe->afe_dfx_master_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
}
static void sci_controller_initialize_power_control(struct isci_host *ihost)
{
sci_init_timer(&ihost->power_control.timer, power_control_timeout);
memset(ihost->power_control.requesters, 0,
sizeof(ihost->power_control.requesters));
ihost->power_control.phys_waiting = 0;
ihost->power_control.phys_granted_power = 0;
}
static enum sci_status sci_controller_initialize(struct isci_host *ihost)
{
struct sci_base_state_machine *sm = &ihost->sm;
enum sci_status result = SCI_FAILURE;
unsigned long i, state, val;
if (ihost->sm.current_state_id != SCIC_RESET) {
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
sci_change_state(sm, SCIC_INITIALIZING);
sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
ihost->next_phy_to_start = 0;
ihost->phy_startup_timer_pending = false;
sci_controller_initialize_power_control(ihost);
/*
* There is nothing to do here for B0 since we do not have to
* program the AFE registers.
* / @todo The AFE settings are supposed to be correct for the B0 but
* / presently they seem to be wrong. */
sci_controller_afe_initialization(ihost);
/* Take the hardware out of reset */
writel(0, &ihost->smu_registers->soft_reset_control);
/*
* / @todo Provide meaningfull error code for hardware failure
* result = SCI_FAILURE_CONTROLLER_HARDWARE; */
for (i = 100; i >= 1; i--) {
u32 status;
/* Loop until the hardware reports success */
udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
status = readl(&ihost->smu_registers->control_status);
if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
break;
}
if (i == 0)
goto out;
/*
* Determine what are the actaul device capacities that the
* hardware will support */
val = readl(&ihost->smu_registers->device_context_capacity);
/* Record the smaller of the two capacity values */
ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
/*
* Make all PEs that are unassigned match up with the
* logical ports
*/
for (i = 0; i < ihost->logical_port_entries; i++) {
struct scu_port_task_scheduler_group_registers __iomem
*ptsg = &ihost->scu_registers->peg0.ptsg;
writel(i, &ptsg->protocol_engine[i]);
}
/* Initialize hardware PCI Relaxed ordering in DMA engines */
val = readl(&ihost->scu_registers->sdma.pdma_configuration);
val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
writel(val, &ihost->scu_registers->sdma.pdma_configuration);
val = readl(&ihost->scu_registers->sdma.cdma_configuration);
val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
writel(val, &ihost->scu_registers->sdma.cdma_configuration);
/*
* Initialize the PHYs before the PORTs because the PHY registers
* are accessed during the port initialization.
*/
for (i = 0; i < SCI_MAX_PHYS; i++) {
result = sci_phy_initialize(&ihost->phys[i],
&ihost->scu_registers->peg0.pe[i].tl,
&ihost->scu_registers->peg0.pe[i].ll);
if (result != SCI_SUCCESS)
goto out;
}
for (i = 0; i < ihost->logical_port_entries; i++) {
struct isci_port *iport = &ihost->ports[i];
iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
}
result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
out:
/* Advance the controller state machine */
if (result == SCI_SUCCESS)
state = SCIC_INITIALIZED;
else
state = SCIC_FAILED;
sci_change_state(sm, state);
return result;
}
static int sci_controller_dma_alloc(struct isci_host *ihost)
{
struct device *dev = &ihost->pdev->dev;
size_t size;
int i;
/* detect re-initialization */
if (ihost->completion_queue)
return 0;
size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
GFP_KERNEL);
if (!ihost->completion_queue)
return -ENOMEM;
size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
GFP_KERNEL);
if (!ihost->remote_node_context_table)
return -ENOMEM;
size = ihost->task_context_entries * sizeof(struct scu_task_context),
ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
GFP_KERNEL);
if (!ihost->task_context_table)
return -ENOMEM;
size = SCI_UFI_TOTAL_SIZE;
ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
if (!ihost->ufi_buf)
return -ENOMEM;
for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
struct isci_request *ireq;
dma_addr_t dma;
ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
if (!ireq)
return -ENOMEM;
ireq->tc = &ihost->task_context_table[i];
ireq->owning_controller = ihost;
ireq->request_daddr = dma;
ireq->isci_host = ihost;
ihost->reqs[i] = ireq;
}
return 0;
}
static int sci_controller_mem_init(struct isci_host *ihost)
{
int err = sci_controller_dma_alloc(ihost);
if (err)
return err;
writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
sci_unsolicited_frame_control_construct(ihost);
/*
* Inform the silicon as to the location of the UF headers and
* address table.
*/
writel(lower_32_bits(ihost->uf_control.headers.physical_address),
&ihost->scu_registers->sdma.uf_header_base_address_lower);
writel(upper_32_bits(ihost->uf_control.headers.physical_address),
&ihost->scu_registers->sdma.uf_header_base_address_upper);
writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
&ihost->scu_registers->sdma.uf_address_table_lower);
writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
&ihost->scu_registers->sdma.uf_address_table_upper);
return 0;
}
/**
* isci_host_init - (re-)initialize hardware and internal (private) state
* @ihost: host to init
*
* Any public facing objects (like asd_sas_port, and asd_sas_phys), or
* one-time initialization objects like locks and waitqueues, are
* not touched (they are initialized in isci_host_alloc)
*/
int isci_host_init(struct isci_host *ihost)
{
int i, err;
enum sci_status status;
spin_lock_irq(&ihost->scic_lock);
status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
spin_unlock_irq(&ihost->scic_lock);
if (status != SCI_SUCCESS) {
dev_err(&ihost->pdev->dev,
"%s: sci_controller_construct failed - status = %x\n",
__func__,
status);
return -ENODEV;
}
spin_lock_irq(&ihost->scic_lock);
status = sci_controller_initialize(ihost);
spin_unlock_irq(&ihost->scic_lock);
if (status != SCI_SUCCESS) {
dev_warn(&ihost->pdev->dev,
"%s: sci_controller_initialize failed -"
" status = 0x%x\n",
__func__, status);
return -ENODEV;
}
err = sci_controller_mem_init(ihost);
if (err)
return err;
/* enable sgpio */
writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
for (i = 0; i < isci_gpio_count(ihost); i++)
writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
return 0;
}
void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
struct isci_phy *iphy)
{
switch (ihost->sm.current_state_id) {
case SCIC_STARTING:
sci_del_timer(&ihost->phy_timer);
ihost->phy_startup_timer_pending = false;
ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
iport, iphy);
sci_controller_start_next_phy(ihost);
break;
case SCIC_READY:
ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
iport, iphy);
break;
default:
dev_dbg(&ihost->pdev->dev,
"%s: SCIC Controller linkup event from phy %d in "
"unexpected state %d\n", __func__, iphy->phy_index,
ihost->sm.current_state_id);
}
}
void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
struct isci_phy *iphy)
{
switch (ihost->sm.current_state_id) {
case SCIC_STARTING:
case SCIC_READY:
ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
iport, iphy);
break;
default:
dev_dbg(&ihost->pdev->dev,
"%s: SCIC Controller linkdown event from phy %d in "
"unexpected state %d\n",
__func__,
iphy->phy_index,
ihost->sm.current_state_id);
}
}
bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
{
u32 index;
for (index = 0; index < ihost->remote_node_entries; index++) {
if ((ihost->device_table[index] != NULL) &&
(ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
return true;
}
return false;
}
void sci_controller_remote_device_stopped(struct isci_host *ihost,
struct isci_remote_device *idev)
{
if (ihost->sm.current_state_id != SCIC_STOPPING) {
dev_dbg(&ihost->pdev->dev,
"SCIC Controller 0x%p remote device stopped event "
"from device 0x%p in unexpected state %d\n",
ihost, idev,
ihost->sm.current_state_id);
return;
}
if (!sci_controller_has_remote_devices_stopping(ihost))
isci_host_stop_complete(ihost);
}
void sci_controller_post_request(struct isci_host *ihost, u32 request)
{
dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
__func__, ihost->id, request);
writel(request, &ihost->smu_registers->post_context_port);
}
struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
{
u16 task_index;
u16 task_sequence;
task_index = ISCI_TAG_TCI(io_tag);
if (task_index < ihost->task_context_entries) {
struct isci_request *ireq = ihost->reqs[task_index];
if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
task_sequence = ISCI_TAG_SEQ(io_tag);
if (task_sequence == ihost->io_request_sequence[task_index])
return ireq;
}
}
return NULL;
}
/**
* This method allocates remote node index and the reserves the remote node
* context space for use. This method can fail if there are no more remote
* node index available.
* @scic: This is the controller object which contains the set of
* free remote node ids
* @sci_dev: This is the device object which is requesting the a remote node
* id
* @node_id: This is the remote node id that is assinged to the device if one
* is available
*
* enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
* node index available.
*/
enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
struct isci_remote_device *idev,
u16 *node_id)
{
u16 node_index;
u32 remote_node_count = sci_remote_device_node_count(idev);
node_index = sci_remote_node_table_allocate_remote_node(
&ihost->available_remote_nodes, remote_node_count
);
if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
ihost->device_table[node_index] = idev;
*node_id = node_index;
return SCI_SUCCESS;
}
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
void sci_controller_free_remote_node_context(struct isci_host *ihost,
struct isci_remote_device *idev,
u16 node_id)
{
u32 remote_node_count = sci_remote_device_node_count(idev);
if (ihost->device_table[node_id] == idev) {
ihost->device_table[node_id] = NULL;
sci_remote_node_table_release_remote_node_index(
&ihost->available_remote_nodes, remote_node_count, node_id
);
}
}
void sci_controller_copy_sata_response(void *response_buffer,
void *frame_header,
void *frame_buffer)
{
/* XXX type safety? */
memcpy(response_buffer, frame_header, sizeof(u32));
memcpy(response_buffer + sizeof(u32),
frame_buffer,
sizeof(struct dev_to_host_fis) - sizeof(u32));
}
void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
{
if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
writel(ihost->uf_control.get,
&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
}
void isci_tci_free(struct isci_host *ihost, u16 tci)
{
u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
ihost->tci_pool[tail] = tci;
ihost->tci_tail = tail + 1;
}
static u16 isci_tci_alloc(struct isci_host *ihost)
{
u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
u16 tci = ihost->tci_pool[head];
ihost->tci_head = head + 1;
return tci;
}
static u16 isci_tci_space(struct isci_host *ihost)
{
return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}
u16 isci_alloc_tag(struct isci_host *ihost)
{
if (isci_tci_space(ihost)) {
u16 tci = isci_tci_alloc(ihost);
u8 seq = ihost->io_request_sequence[tci];
return ISCI_TAG(seq, tci);
}
return SCI_CONTROLLER_INVALID_IO_TAG;
}
enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
{
u16 tci = ISCI_TAG_TCI(io_tag);
u16 seq = ISCI_TAG_SEQ(io_tag);
/* prevent tail from passing head */
if (isci_tci_active(ihost) == 0)
return SCI_FAILURE_INVALID_IO_TAG;
if (seq == ihost->io_request_sequence[tci]) {
ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
isci_tci_free(ihost, tci);
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_IO_TAG;
}
enum sci_status sci_controller_start_io(struct isci_host *ihost,
struct isci_remote_device *idev,
struct isci_request *ireq)
{
enum sci_status status;
if (ihost->sm.current_state_id != SCIC_READY) {
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
status = sci_remote_device_start_io(ihost, idev, ireq);
if (status != SCI_SUCCESS)
return status;
set_bit(IREQ_ACTIVE, &ireq->flags);
sci_controller_post_request(ihost, ireq->post_context);
return SCI_SUCCESS;
}
enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
struct isci_remote_device *idev,
struct isci_request *ireq)
{
/* terminate an ongoing (i.e. started) core IO request. This does not
* abort the IO request at the target, but rather removes the IO
* request from the host controller.
*/
enum sci_status status;
if (ihost->sm.current_state_id != SCIC_READY) {
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
status = sci_io_request_terminate(ireq);
dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
__func__, status, ireq, ireq->flags);
if ((status == SCI_SUCCESS) &&
!test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
!test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
/* Utilize the original post context command and or in the
* POST_TC_ABORT request sub-type.
*/
sci_controller_post_request(
ihost, ireq->post_context |
SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
}
return status;
}
/**
* sci_controller_complete_io() - This method will perform core specific
* completion operations for an IO request. After this method is invoked,
* the user should consider the IO request as invalid until it is properly
* reused (i.e. re-constructed).
* @ihost: The handle to the controller object for which to complete the
* IO request.
* @idev: The handle to the remote device object for which to complete
* the IO request.
* @ireq: the handle to the io request object to complete.
*/
enum sci_status sci_controller_complete_io(struct isci_host *ihost,
struct isci_remote_device *idev,
struct isci_request *ireq)
{
enum sci_status status;
switch (ihost->sm.current_state_id) {
case SCIC_STOPPING:
/* XXX: Implement this function */
return SCI_FAILURE;
case SCIC_READY:
status = sci_remote_device_complete_io(ihost, idev, ireq);
if (status != SCI_SUCCESS)
return status;
clear_bit(IREQ_ACTIVE, &ireq->flags);
return SCI_SUCCESS;
default:
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
}
enum sci_status sci_controller_continue_io(struct isci_request *ireq)
{
struct isci_host *ihost = ireq->owning_controller;
if (ihost->sm.current_state_id != SCIC_READY) {
dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
__func__, ihost->sm.current_state_id);
return SCI_FAILURE_INVALID_STATE;
}
set_bit(IREQ_ACTIVE, &ireq->flags);
sci_controller_post_request(ihost, ireq->post_context);
return SCI_SUCCESS;
}
/**
* sci_controller_start_task() - This method is called by the SCIC user to
* send/start a framework task management request.
* @controller: the handle to the controller object for which to start the task
* management request.
* @remote_device: the handle to the remote device object for which to start
* the task management request.
* @task_request: the handle to the task request object to start.
*/
enum sci_status sci_controller_start_task(struct isci_host *ihost,
struct isci_remote_device *idev,
struct isci_request *ireq)
{
enum sci_status status;
if (ihost->sm.current_state_id != SCIC_READY) {
dev_warn(&ihost->pdev->dev,
"%s: SCIC Controller starting task from invalid "
"state\n",
__func__);
return SCI_FAILURE_INVALID_STATE;
}
status = sci_remote_device_start_task(ihost, idev, ireq);
switch (status) {
case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
set_bit(IREQ_ACTIVE, &ireq->flags);
/*
* We will let framework know this task request started successfully,
* although core is still woring on starting the request (to post tc when
* RNC is resumed.)
*/
return SCI_SUCCESS;
case SCI_SUCCESS:
set_bit(IREQ_ACTIVE, &ireq->flags);
sci_controller_post_request(ihost, ireq->post_context);
break;
default:
break;
}
return status;
}
static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
{
int d;
/* no support for TX_GP_CFG */
if (reg_index == 0)
return -EINVAL;
for (d = 0; d < isci_gpio_count(ihost); d++) {
u32 val = 0x444; /* all ODx.n clear */
int i;
for (i = 0; i < 3; i++) {
int bit;
bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
write_data, reg_index,
reg_count);
if (bit < 0)
break;
/* if od is set, clear the 'invert' bit */
val &= ~(bit << ((i << 2) + 2));
}
if (i < 3)
break;
writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
}
/* unless reg_index is > 1, we should always be able to write at
* least one register
*/
return d > 0;
}
int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
u8 reg_count, u8 *write_data)
{
struct isci_host *ihost = sas_ha->lldd_ha;
int written;
switch (reg_type) {
case SAS_GPIO_REG_TX_GP:
written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
break;
default:
written = -EINVAL;
}
return written;
}