| /* |
| * Copyright (C) 2012-2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/compiler.h> |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/kvm_host.h> |
| |
| #include <asm/kvm_mmu.h> |
| |
| #include "hyp.h" |
| |
| #define vtr_to_max_lr_idx(v) ((v) & 0xf) |
| #define vtr_to_nr_pri_bits(v) (((u32)(v) >> 29) + 1) |
| |
| #define read_gicreg(r) \ |
| ({ \ |
| u64 reg; \ |
| asm volatile("mrs_s %0, " __stringify(r) : "=r" (reg)); \ |
| reg; \ |
| }) |
| |
| #define write_gicreg(v,r) \ |
| do { \ |
| u64 __val = (v); \ |
| asm volatile("msr_s " __stringify(r) ", %0" : : "r" (__val));\ |
| } while (0) |
| |
| /* vcpu is already in the HYP VA space */ |
| void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| u64 val; |
| u32 max_lr_idx, nr_pri_bits; |
| |
| /* |
| * Make sure stores to the GIC via the memory mapped interface |
| * are now visible to the system register interface. |
| */ |
| dsb(st); |
| |
| cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2); |
| cpu_if->vgic_misr = read_gicreg(ICH_MISR_EL2); |
| cpu_if->vgic_eisr = read_gicreg(ICH_EISR_EL2); |
| cpu_if->vgic_elrsr = read_gicreg(ICH_ELSR_EL2); |
| |
| write_gicreg(0, ICH_HCR_EL2); |
| val = read_gicreg(ICH_VTR_EL2); |
| max_lr_idx = vtr_to_max_lr_idx(val); |
| nr_pri_bits = vtr_to_nr_pri_bits(val); |
| |
| switch (max_lr_idx) { |
| case 15: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)] = read_gicreg(ICH_LR15_EL2); |
| case 14: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)] = read_gicreg(ICH_LR14_EL2); |
| case 13: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)] = read_gicreg(ICH_LR13_EL2); |
| case 12: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)] = read_gicreg(ICH_LR12_EL2); |
| case 11: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)] = read_gicreg(ICH_LR11_EL2); |
| case 10: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)] = read_gicreg(ICH_LR10_EL2); |
| case 9: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)] = read_gicreg(ICH_LR9_EL2); |
| case 8: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)] = read_gicreg(ICH_LR8_EL2); |
| case 7: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)] = read_gicreg(ICH_LR7_EL2); |
| case 6: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)] = read_gicreg(ICH_LR6_EL2); |
| case 5: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)] = read_gicreg(ICH_LR5_EL2); |
| case 4: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)] = read_gicreg(ICH_LR4_EL2); |
| case 3: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)] = read_gicreg(ICH_LR3_EL2); |
| case 2: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)] = read_gicreg(ICH_LR2_EL2); |
| case 1: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)] = read_gicreg(ICH_LR1_EL2); |
| case 0: |
| cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)] = read_gicreg(ICH_LR0_EL2); |
| } |
| |
| switch (nr_pri_bits) { |
| case 7: |
| cpu_if->vgic_ap0r[3] = read_gicreg(ICH_AP0R3_EL2); |
| cpu_if->vgic_ap0r[2] = read_gicreg(ICH_AP0R2_EL2); |
| case 6: |
| cpu_if->vgic_ap0r[1] = read_gicreg(ICH_AP0R1_EL2); |
| default: |
| cpu_if->vgic_ap0r[0] = read_gicreg(ICH_AP0R0_EL2); |
| } |
| |
| switch (nr_pri_bits) { |
| case 7: |
| cpu_if->vgic_ap1r[3] = read_gicreg(ICH_AP1R3_EL2); |
| cpu_if->vgic_ap1r[2] = read_gicreg(ICH_AP1R2_EL2); |
| case 6: |
| cpu_if->vgic_ap1r[1] = read_gicreg(ICH_AP1R1_EL2); |
| default: |
| cpu_if->vgic_ap1r[0] = read_gicreg(ICH_AP1R0_EL2); |
| } |
| |
| val = read_gicreg(ICC_SRE_EL2); |
| write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2); |
| isb(); /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */ |
| write_gicreg(1, ICC_SRE_EL1); |
| } |
| |
| void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| u64 val; |
| u32 max_lr_idx, nr_pri_bits; |
| |
| /* |
| * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a |
| * Group0 interrupt (as generated in GICv2 mode) to be |
| * delivered as a FIQ to the guest, with potentially fatal |
| * consequences. So we must make sure that ICC_SRE_EL1 has |
| * been actually programmed with the value we want before |
| * starting to mess with the rest of the GIC. |
| */ |
| write_gicreg(cpu_if->vgic_sre, ICC_SRE_EL1); |
| isb(); |
| |
| write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2); |
| write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2); |
| |
| val = read_gicreg(ICH_VTR_EL2); |
| max_lr_idx = vtr_to_max_lr_idx(val); |
| nr_pri_bits = vtr_to_nr_pri_bits(val); |
| |
| switch (nr_pri_bits) { |
| case 7: |
| write_gicreg(cpu_if->vgic_ap1r[3], ICH_AP1R3_EL2); |
| write_gicreg(cpu_if->vgic_ap1r[2], ICH_AP1R2_EL2); |
| case 6: |
| write_gicreg(cpu_if->vgic_ap1r[1], ICH_AP1R1_EL2); |
| default: |
| write_gicreg(cpu_if->vgic_ap1r[0], ICH_AP1R0_EL2); |
| } |
| |
| switch (nr_pri_bits) { |
| case 7: |
| write_gicreg(cpu_if->vgic_ap0r[3], ICH_AP0R3_EL2); |
| write_gicreg(cpu_if->vgic_ap0r[2], ICH_AP0R2_EL2); |
| case 6: |
| write_gicreg(cpu_if->vgic_ap0r[1], ICH_AP0R1_EL2); |
| default: |
| write_gicreg(cpu_if->vgic_ap0r[0], ICH_AP0R0_EL2); |
| } |
| |
| switch (max_lr_idx) { |
| case 15: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)], ICH_LR15_EL2); |
| case 14: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)], ICH_LR14_EL2); |
| case 13: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)], ICH_LR13_EL2); |
| case 12: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)], ICH_LR12_EL2); |
| case 11: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)], ICH_LR11_EL2); |
| case 10: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)], ICH_LR10_EL2); |
| case 9: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)], ICH_LR9_EL2); |
| case 8: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)], ICH_LR8_EL2); |
| case 7: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)], ICH_LR7_EL2); |
| case 6: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)], ICH_LR6_EL2); |
| case 5: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)], ICH_LR5_EL2); |
| case 4: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)], ICH_LR4_EL2); |
| case 3: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)], ICH_LR3_EL2); |
| case 2: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)], ICH_LR2_EL2); |
| case 1: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)], ICH_LR1_EL2); |
| case 0: |
| write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)], ICH_LR0_EL2); |
| } |
| |
| /* |
| * Ensures that the above will have reached the |
| * (re)distributors. This ensure the guest will read the |
| * correct values from the memory-mapped interface. |
| */ |
| isb(); |
| dsb(sy); |
| |
| /* |
| * Prevent the guest from touching the GIC system registers if |
| * SRE isn't enabled for GICv3 emulation. |
| */ |
| if (!cpu_if->vgic_sre) { |
| write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE, |
| ICC_SRE_EL2); |
| } |
| } |
| |
| static u64 __hyp_text __vgic_v3_read_ich_vtr_el2(void) |
| { |
| return read_gicreg(ICH_VTR_EL2); |
| } |
| |
| __alias(__vgic_v3_read_ich_vtr_el2) u64 __vgic_v3_get_ich_vtr_el2(void); |