| /* |
| * Copyright (C) 2015 Netronome Systems, Inc. |
| * |
| * This software is dual licensed under the GNU General License Version 2, |
| * June 1991 as shown in the file COPYING in the top-level directory of this |
| * source tree or the BSD 2-Clause License provided below. You have the |
| * option to license this software under the complete terms of either license. |
| * |
| * The BSD 2-Clause License: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| /* |
| * nfp_net_common.c |
| * Netronome network device driver: Common functions between PF and VF |
| * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> |
| * Jason McMullan <jason.mcmullan@netronome.com> |
| * Rolf Neugebauer <rolf.neugebauer@netronome.com> |
| * Brad Petrus <brad.petrus@netronome.com> |
| * Chris Telfer <chris.telfer@netronome.com> |
| */ |
| |
| #include <linux/version.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/pci.h> |
| #include <linux/pci_regs.h> |
| #include <linux/msi.h> |
| #include <linux/ethtool.h> |
| #include <linux/log2.h> |
| #include <linux/if_vlan.h> |
| #include <linux/random.h> |
| |
| #include <linux/ktime.h> |
| |
| #include <net/vxlan.h> |
| |
| #include "nfp_net_ctrl.h" |
| #include "nfp_net.h" |
| |
| /** |
| * nfp_net_get_fw_version() - Read and parse the FW version |
| * @fw_ver: Output fw_version structure to read to |
| * @ctrl_bar: Mapped address of the control BAR |
| */ |
| void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, |
| void __iomem *ctrl_bar) |
| { |
| u32 reg; |
| |
| reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); |
| put_unaligned_le32(reg, fw_ver); |
| } |
| |
| /** |
| * nfp_net_reconfig() - Reconfigure the firmware |
| * @nn: NFP Net device to reconfigure |
| * @update: The value for the update field in the BAR config |
| * |
| * Write the update word to the BAR and ping the reconfig queue. The |
| * poll until the firmware has acknowledged the update by zeroing the |
| * update word. |
| * |
| * Return: Negative errno on error, 0 on success |
| */ |
| int nfp_net_reconfig(struct nfp_net *nn, u32 update) |
| { |
| int cnt, ret = 0; |
| u32 new; |
| |
| spin_lock_bh(&nn->reconfig_lock); |
| |
| nn_writel(nn, NFP_NET_CFG_UPDATE, update); |
| /* ensure update is written before pinging HW */ |
| nn_pci_flush(nn); |
| nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); |
| |
| /* Poll update field, waiting for NFP to ack the config */ |
| for (cnt = 0; ; cnt++) { |
| new = nn_readl(nn, NFP_NET_CFG_UPDATE); |
| if (new == 0) |
| break; |
| if (new & NFP_NET_CFG_UPDATE_ERR) { |
| nn_err(nn, "Reconfig error: 0x%08x\n", new); |
| ret = -EIO; |
| break; |
| } else if (cnt >= NFP_NET_POLL_TIMEOUT) { |
| nn_err(nn, "Reconfig timeout for 0x%08x after %dms\n", |
| update, cnt); |
| ret = -EIO; |
| break; |
| } |
| mdelay(1); |
| } |
| |
| spin_unlock_bh(&nn->reconfig_lock); |
| return ret; |
| } |
| |
| /* Interrupt configuration and handling |
| */ |
| |
| /** |
| * nfp_net_irq_unmask_msix() - Unmask MSI-X after automasking |
| * @nn: NFP Network structure |
| * @entry_nr: MSI-X table entry |
| * |
| * Clear the MSI-X table mask bit for the given entry bypassing Linux irq |
| * handling subsystem. Use *only* to reenable automasked vectors. |
| */ |
| static void nfp_net_irq_unmask_msix(struct nfp_net *nn, unsigned int entry_nr) |
| { |
| struct list_head *msi_head = &nn->pdev->dev.msi_list; |
| struct msi_desc *entry; |
| u32 off; |
| |
| /* All MSI-Xs have the same mask_base */ |
| entry = list_first_entry(msi_head, struct msi_desc, list); |
| |
| off = (PCI_MSIX_ENTRY_SIZE * entry_nr) + |
| PCI_MSIX_ENTRY_VECTOR_CTRL; |
| writel(0, entry->mask_base + off); |
| readl(entry->mask_base); |
| } |
| |
| /** |
| * nfp_net_irq_unmask() - Unmask automasked interrupt |
| * @nn: NFP Network structure |
| * @entry_nr: MSI-X table entry |
| * |
| * If MSI-X auto-masking is enabled clear the mask bit, otherwise |
| * clear the ICR for the entry. |
| */ |
| static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) |
| { |
| if (nn->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) { |
| nfp_net_irq_unmask_msix(nn, entry_nr); |
| return; |
| } |
| |
| nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); |
| nn_pci_flush(nn); |
| } |
| |
| /** |
| * nfp_net_msix_alloc() - Try to allocate MSI-X irqs |
| * @nn: NFP Network structure |
| * @nr_vecs: Number of MSI-X vectors to allocate |
| * |
| * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors. |
| * |
| * Return: Number of MSI-X vectors obtained or 0 on error. |
| */ |
| static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs) |
| { |
| struct pci_dev *pdev = nn->pdev; |
| int nvecs; |
| int i; |
| |
| for (i = 0; i < nr_vecs; i++) |
| nn->irq_entries[i].entry = i; |
| |
| nvecs = pci_enable_msix_range(pdev, nn->irq_entries, |
| NFP_NET_NON_Q_VECTORS + 1, nr_vecs); |
| if (nvecs < 0) { |
| nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n", |
| NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs); |
| return 0; |
| } |
| |
| return nvecs; |
| } |
| |
| /** |
| * nfp_net_irqs_wanted() - Work out how many interrupt vectors we want |
| * @nn: NFP Network structure |
| * |
| * We want a vector per CPU (or ring), whatever is smaller plus |
| * NFP_NET_NON_Q_VECTORS for LSC etc. |
| * |
| * Return: Number of interrupts wanted |
| */ |
| static int nfp_net_irqs_wanted(struct nfp_net *nn) |
| { |
| int ncpus; |
| int vecs; |
| |
| ncpus = num_online_cpus(); |
| |
| vecs = max_t(int, nn->num_tx_rings, nn->num_rx_rings); |
| vecs = min_t(int, vecs, ncpus); |
| |
| return vecs + NFP_NET_NON_Q_VECTORS; |
| } |
| |
| /** |
| * nfp_net_irqs_alloc() - allocates MSI-X irqs |
| * @nn: NFP Network structure |
| * |
| * Return: Number of irqs obtained or 0 on error. |
| */ |
| int nfp_net_irqs_alloc(struct nfp_net *nn) |
| { |
| int wanted_irqs; |
| |
| wanted_irqs = nfp_net_irqs_wanted(nn); |
| |
| nn->num_irqs = nfp_net_msix_alloc(nn, wanted_irqs); |
| if (nn->num_irqs == 0) { |
| nn_err(nn, "Failed to allocate MSI-X IRQs\n"); |
| return 0; |
| } |
| |
| nn->num_r_vecs = nn->num_irqs - NFP_NET_NON_Q_VECTORS; |
| |
| if (nn->num_irqs < wanted_irqs) |
| nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n", |
| wanted_irqs, nn->num_irqs); |
| |
| return nn->num_irqs; |
| } |
| |
| /** |
| * nfp_net_irqs_disable() - Disable interrupts |
| * @nn: NFP Network structure |
| * |
| * Undoes what @nfp_net_irqs_alloc() does. |
| */ |
| void nfp_net_irqs_disable(struct nfp_net *nn) |
| { |
| pci_disable_msix(nn->pdev); |
| } |
| |
| /** |
| * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. |
| * @irq: Interrupt |
| * @data: Opaque data structure |
| * |
| * Return: Indicate if the interrupt has been handled. |
| */ |
| static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) |
| { |
| struct nfp_net_r_vector *r_vec = data; |
| |
| napi_schedule_irqoff(&r_vec->napi); |
| |
| /* The FW auto-masks any interrupt, either via the MASK bit in |
| * the MSI-X table or via the per entry ICR field. So there |
| * is no need to disable interrupts here. |
| */ |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * nfp_net_read_link_status() - Reread link status from control BAR |
| * @nn: NFP Network structure |
| */ |
| static void nfp_net_read_link_status(struct nfp_net *nn) |
| { |
| unsigned long flags; |
| bool link_up; |
| u32 sts; |
| |
| spin_lock_irqsave(&nn->link_status_lock, flags); |
| |
| sts = nn_readl(nn, NFP_NET_CFG_STS); |
| link_up = !!(sts & NFP_NET_CFG_STS_LINK); |
| |
| if (nn->link_up == link_up) |
| goto out; |
| |
| nn->link_up = link_up; |
| |
| if (nn->link_up) { |
| netif_carrier_on(nn->netdev); |
| netdev_info(nn->netdev, "NIC Link is Up\n"); |
| } else { |
| netif_carrier_off(nn->netdev); |
| netdev_info(nn->netdev, "NIC Link is Down\n"); |
| } |
| out: |
| spin_unlock_irqrestore(&nn->link_status_lock, flags); |
| } |
| |
| /** |
| * nfp_net_irq_lsc() - Interrupt service routine for link state changes |
| * @irq: Interrupt |
| * @data: Opaque data structure |
| * |
| * Return: Indicate if the interrupt has been handled. |
| */ |
| static irqreturn_t nfp_net_irq_lsc(int irq, void *data) |
| { |
| struct nfp_net *nn = data; |
| |
| nfp_net_read_link_status(nn); |
| |
| nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * nfp_net_irq_exn() - Interrupt service routine for exceptions |
| * @irq: Interrupt |
| * @data: Opaque data structure |
| * |
| * Return: Indicate if the interrupt has been handled. |
| */ |
| static irqreturn_t nfp_net_irq_exn(int irq, void *data) |
| { |
| struct nfp_net *nn = data; |
| |
| nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); |
| /* XXX TO BE IMPLEMENTED */ |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring |
| * @tx_ring: TX ring structure |
| */ |
| static void nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| |
| tx_ring->qcidx = tx_ring->idx * nn->stride_tx; |
| tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); |
| } |
| |
| /** |
| * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring |
| * @rx_ring: RX ring structure |
| */ |
| static void nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = rx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| |
| rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; |
| rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1); |
| |
| rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); |
| rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx); |
| } |
| |
| /** |
| * nfp_net_irqs_assign() - Assign IRQs and setup rvecs. |
| * @netdev: netdev structure |
| */ |
| static void nfp_net_irqs_assign(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| struct nfp_net_r_vector *r_vec; |
| int r; |
| |
| /* Assumes nn->num_tx_rings == nn->num_rx_rings */ |
| if (nn->num_tx_rings > nn->num_r_vecs) { |
| nn_warn(nn, "More rings (%d) than vectors (%d).\n", |
| nn->num_tx_rings, nn->num_r_vecs); |
| nn->num_tx_rings = nn->num_r_vecs; |
| nn->num_rx_rings = nn->num_r_vecs; |
| } |
| |
| nn->lsc_handler = nfp_net_irq_lsc; |
| nn->exn_handler = nfp_net_irq_exn; |
| |
| for (r = 0; r < nn->num_r_vecs; r++) { |
| r_vec = &nn->r_vecs[r]; |
| r_vec->nfp_net = nn; |
| r_vec->handler = nfp_net_irq_rxtx; |
| r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r; |
| |
| cpumask_set_cpu(r, &r_vec->affinity_mask); |
| |
| r_vec->tx_ring = &nn->tx_rings[r]; |
| nn->tx_rings[r].idx = r; |
| nn->tx_rings[r].r_vec = r_vec; |
| nfp_net_tx_ring_init(r_vec->tx_ring); |
| |
| r_vec->rx_ring = &nn->rx_rings[r]; |
| nn->rx_rings[r].idx = r; |
| nn->rx_rings[r].r_vec = r_vec; |
| nfp_net_rx_ring_init(r_vec->rx_ring); |
| } |
| } |
| |
| /** |
| * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) |
| * @nn: NFP Network structure |
| * @ctrl_offset: Control BAR offset where IRQ configuration should be written |
| * @format: printf-style format to construct the interrupt name |
| * @name: Pointer to allocated space for interrupt name |
| * @name_sz: Size of space for interrupt name |
| * @vector_idx: Index of MSI-X vector used for this interrupt |
| * @handler: IRQ handler to register for this interrupt |
| */ |
| static int |
| nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, |
| const char *format, char *name, size_t name_sz, |
| unsigned int vector_idx, irq_handler_t handler) |
| { |
| struct msix_entry *entry; |
| int err; |
| |
| entry = &nn->irq_entries[vector_idx]; |
| |
| snprintf(name, name_sz, format, netdev_name(nn->netdev)); |
| err = request_irq(entry->vector, handler, 0, name, nn); |
| if (err) { |
| nn_err(nn, "Failed to request IRQ %d (err=%d).\n", |
| entry->vector, err); |
| return err; |
| } |
| nn_writeb(nn, ctrl_offset, vector_idx); |
| |
| return 0; |
| } |
| |
| /** |
| * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) |
| * @nn: NFP Network structure |
| * @ctrl_offset: Control BAR offset where IRQ configuration should be written |
| * @vector_idx: Index of MSI-X vector used for this interrupt |
| */ |
| static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, |
| unsigned int vector_idx) |
| { |
| nn_writeb(nn, ctrl_offset, 0xff); |
| free_irq(nn->irq_entries[vector_idx].vector, nn); |
| } |
| |
| /* Transmit |
| * |
| * One queue controller peripheral queue is used for transmit. The |
| * driver en-queues packets for transmit by advancing the write |
| * pointer. The device indicates that packets have transmitted by |
| * advancing the read pointer. The driver maintains a local copy of |
| * the read and write pointer in @struct nfp_net_tx_ring. The driver |
| * keeps @wr_p in sync with the queue controller write pointer and can |
| * determine how many packets have been transmitted by comparing its |
| * copy of the read pointer @rd_p with the read pointer maintained by |
| * the queue controller peripheral. |
| */ |
| |
| /** |
| * nfp_net_tx_full() - Check if the TX ring is full |
| * @tx_ring: TX ring to check |
| * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) |
| * |
| * This function checks, based on the *host copy* of read/write |
| * pointer if a given TX ring is full. The real TX queue may have |
| * some newly made available slots. |
| * |
| * Return: True if the ring is full. |
| */ |
| static inline int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) |
| { |
| return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); |
| } |
| |
| /* Wrappers for deciding when to stop and restart TX queues */ |
| static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) |
| { |
| return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); |
| } |
| |
| static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) |
| { |
| return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); |
| } |
| |
| /** |
| * nfp_net_tx_ring_stop() - stop tx ring |
| * @nd_q: netdev queue |
| * @tx_ring: driver tx queue structure |
| * |
| * Safely stop TX ring. Remember that while we are running .start_xmit() |
| * someone else may be cleaning the TX ring completions so we need to be |
| * extra careful here. |
| */ |
| static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, |
| struct nfp_net_tx_ring *tx_ring) |
| { |
| netif_tx_stop_queue(nd_q); |
| |
| /* We can race with the TX completion out of NAPI so recheck */ |
| smp_mb(); |
| if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) |
| netif_tx_start_queue(nd_q); |
| } |
| |
| /** |
| * nfp_net_tx_tso() - Set up Tx descriptor for LSO |
| * @nn: NFP Net device |
| * @r_vec: per-ring structure |
| * @txbuf: Pointer to driver soft TX descriptor |
| * @txd: Pointer to HW TX descriptor |
| * @skb: Pointer to SKB |
| * |
| * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. |
| * Return error on packet header greater than maximum supported LSO header size. |
| */ |
| static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, |
| struct nfp_net_tx_buf *txbuf, |
| struct nfp_net_tx_desc *txd, struct sk_buff *skb) |
| { |
| u32 hdrlen; |
| u16 mss; |
| |
| if (!skb_is_gso(skb)) |
| return; |
| |
| if (!skb->encapsulation) |
| hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| else |
| hdrlen = skb_inner_transport_header(skb) - skb->data + |
| inner_tcp_hdrlen(skb); |
| |
| txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; |
| txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); |
| |
| mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; |
| txd->l4_offset = hdrlen; |
| txd->mss = cpu_to_le16(mss); |
| txd->flags |= PCIE_DESC_TX_LSO; |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_lso++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| } |
| |
| /** |
| * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor |
| * @nn: NFP Net device |
| * @r_vec: per-ring structure |
| * @txbuf: Pointer to driver soft TX descriptor |
| * @txd: Pointer to TX descriptor |
| * @skb: Pointer to SKB |
| * |
| * This function sets the TX checksum flags in the TX descriptor based |
| * on the configuration and the protocol of the packet to be transmitted. |
| */ |
| static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, |
| struct nfp_net_tx_buf *txbuf, |
| struct nfp_net_tx_desc *txd, struct sk_buff *skb) |
| { |
| struct ipv6hdr *ipv6h; |
| struct iphdr *iph; |
| u8 l4_hdr; |
| |
| if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) |
| return; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return; |
| |
| txd->flags |= PCIE_DESC_TX_CSUM; |
| if (skb->encapsulation) |
| txd->flags |= PCIE_DESC_TX_ENCAP; |
| |
| iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); |
| ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); |
| |
| if (iph->version == 4) { |
| txd->flags |= PCIE_DESC_TX_IP4_CSUM; |
| l4_hdr = iph->protocol; |
| } else if (ipv6h->version == 6) { |
| l4_hdr = ipv6h->nexthdr; |
| } else { |
| nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n", |
| iph->version); |
| return; |
| } |
| |
| switch (l4_hdr) { |
| case IPPROTO_TCP: |
| txd->flags |= PCIE_DESC_TX_TCP_CSUM; |
| break; |
| case IPPROTO_UDP: |
| txd->flags |= PCIE_DESC_TX_UDP_CSUM; |
| break; |
| default: |
| nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n", |
| l4_hdr); |
| return; |
| } |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| if (skb->encapsulation) |
| r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; |
| else |
| r_vec->hw_csum_tx += txbuf->pkt_cnt; |
| u64_stats_update_end(&r_vec->tx_sync); |
| } |
| |
| /** |
| * nfp_net_tx() - Main transmit entry point |
| * @skb: SKB to transmit |
| * @netdev: netdev structure |
| * |
| * Return: NETDEV_TX_OK on success. |
| */ |
| static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| const struct skb_frag_struct *frag; |
| struct nfp_net_r_vector *r_vec; |
| struct nfp_net_tx_desc *txd, txdg; |
| struct nfp_net_tx_buf *txbuf; |
| struct nfp_net_tx_ring *tx_ring; |
| struct netdev_queue *nd_q; |
| dma_addr_t dma_addr; |
| unsigned int fsize; |
| int f, nr_frags; |
| int wr_idx; |
| u16 qidx; |
| |
| qidx = skb_get_queue_mapping(skb); |
| tx_ring = &nn->tx_rings[qidx]; |
| r_vec = tx_ring->r_vec; |
| nd_q = netdev_get_tx_queue(nn->netdev, qidx); |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| |
| if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { |
| nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n", |
| qidx, tx_ring->wr_p, tx_ring->rd_p); |
| netif_tx_stop_queue(nd_q); |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_busy++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* Start with the head skbuf */ |
| dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb), |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&nn->pdev->dev, dma_addr)) |
| goto err_free; |
| |
| wr_idx = tx_ring->wr_p % tx_ring->cnt; |
| |
| /* Stash the soft descriptor of the head then initialize it */ |
| txbuf = &tx_ring->txbufs[wr_idx]; |
| txbuf->skb = skb; |
| txbuf->dma_addr = dma_addr; |
| txbuf->fidx = -1; |
| txbuf->pkt_cnt = 1; |
| txbuf->real_len = skb->len; |
| |
| /* Build TX descriptor */ |
| txd = &tx_ring->txds[wr_idx]; |
| txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0; |
| txd->dma_len = cpu_to_le16(skb_headlen(skb)); |
| nfp_desc_set_dma_addr(txd, dma_addr); |
| txd->data_len = cpu_to_le16(skb->len); |
| |
| txd->flags = 0; |
| txd->mss = 0; |
| txd->l4_offset = 0; |
| |
| nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb); |
| |
| nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb); |
| |
| if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { |
| txd->flags |= PCIE_DESC_TX_VLAN; |
| txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); |
| } |
| |
| /* Gather DMA */ |
| if (nr_frags > 0) { |
| /* all descs must match except for in addr, length and eop */ |
| txdg = *txd; |
| |
| for (f = 0; f < nr_frags; f++) { |
| frag = &skb_shinfo(skb)->frags[f]; |
| fsize = skb_frag_size(frag); |
| |
| dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0, |
| fsize, DMA_TO_DEVICE); |
| if (dma_mapping_error(&nn->pdev->dev, dma_addr)) |
| goto err_unmap; |
| |
| wr_idx = (wr_idx + 1) % tx_ring->cnt; |
| tx_ring->txbufs[wr_idx].skb = skb; |
| tx_ring->txbufs[wr_idx].dma_addr = dma_addr; |
| tx_ring->txbufs[wr_idx].fidx = f; |
| |
| txd = &tx_ring->txds[wr_idx]; |
| *txd = txdg; |
| txd->dma_len = cpu_to_le16(fsize); |
| nfp_desc_set_dma_addr(txd, dma_addr); |
| txd->offset_eop = |
| (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; |
| } |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_gather++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| } |
| |
| netdev_tx_sent_queue(nd_q, txbuf->real_len); |
| |
| tx_ring->wr_p += nr_frags + 1; |
| if (nfp_net_tx_ring_should_stop(tx_ring)) |
| nfp_net_tx_ring_stop(nd_q, tx_ring); |
| |
| tx_ring->wr_ptr_add += nr_frags + 1; |
| if (!skb->xmit_more || netif_xmit_stopped(nd_q)) { |
| /* force memory write before we let HW know */ |
| wmb(); |
| nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); |
| tx_ring->wr_ptr_add = 0; |
| } |
| |
| skb_tx_timestamp(skb); |
| |
| return NETDEV_TX_OK; |
| |
| err_unmap: |
| --f; |
| while (f >= 0) { |
| frag = &skb_shinfo(skb)->frags[f]; |
| dma_unmap_page(&nn->pdev->dev, |
| tx_ring->txbufs[wr_idx].dma_addr, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| tx_ring->txbufs[wr_idx].skb = NULL; |
| tx_ring->txbufs[wr_idx].dma_addr = 0; |
| tx_ring->txbufs[wr_idx].fidx = -2; |
| wr_idx = wr_idx - 1; |
| if (wr_idx < 0) |
| wr_idx += tx_ring->cnt; |
| } |
| dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| tx_ring->txbufs[wr_idx].skb = NULL; |
| tx_ring->txbufs[wr_idx].dma_addr = 0; |
| tx_ring->txbufs[wr_idx].fidx = -2; |
| err_free: |
| nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n"); |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_errors++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * nfp_net_tx_complete() - Handled completed TX packets |
| * @tx_ring: TX ring structure |
| * |
| * Return: Number of completed TX descriptors |
| */ |
| static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| const struct skb_frag_struct *frag; |
| struct netdev_queue *nd_q; |
| u32 done_pkts = 0, done_bytes = 0; |
| struct sk_buff *skb; |
| int todo, nr_frags; |
| u32 qcp_rd_p; |
| int fidx; |
| int idx; |
| |
| /* Work out how many descriptors have been transmitted */ |
| qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); |
| |
| if (qcp_rd_p == tx_ring->qcp_rd_p) |
| return; |
| |
| if (qcp_rd_p > tx_ring->qcp_rd_p) |
| todo = qcp_rd_p - tx_ring->qcp_rd_p; |
| else |
| todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; |
| |
| while (todo--) { |
| idx = tx_ring->rd_p % tx_ring->cnt; |
| tx_ring->rd_p++; |
| |
| skb = tx_ring->txbufs[idx].skb; |
| if (!skb) |
| continue; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| fidx = tx_ring->txbufs[idx].fidx; |
| |
| if (fidx == -1) { |
| /* unmap head */ |
| dma_unmap_single(&nn->pdev->dev, |
| tx_ring->txbufs[idx].dma_addr, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| |
| done_pkts += tx_ring->txbufs[idx].pkt_cnt; |
| done_bytes += tx_ring->txbufs[idx].real_len; |
| } else { |
| /* unmap fragment */ |
| frag = &skb_shinfo(skb)->frags[fidx]; |
| dma_unmap_page(&nn->pdev->dev, |
| tx_ring->txbufs[idx].dma_addr, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| } |
| |
| /* check for last gather fragment */ |
| if (fidx == nr_frags - 1) |
| dev_kfree_skb_any(skb); |
| |
| tx_ring->txbufs[idx].dma_addr = 0; |
| tx_ring->txbufs[idx].skb = NULL; |
| tx_ring->txbufs[idx].fidx = -2; |
| } |
| |
| tx_ring->qcp_rd_p = qcp_rd_p; |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_bytes += done_bytes; |
| r_vec->tx_pkts += done_pkts; |
| u64_stats_update_end(&r_vec->tx_sync); |
| |
| nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); |
| netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); |
| if (nfp_net_tx_ring_should_wake(tx_ring)) { |
| /* Make sure TX thread will see updated tx_ring->rd_p */ |
| smp_mb(); |
| |
| if (unlikely(netif_tx_queue_stopped(nd_q))) |
| netif_tx_wake_queue(nd_q); |
| } |
| |
| WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, |
| "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", |
| tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); |
| } |
| |
| /** |
| * nfp_net_tx_flush() - Free any untransmitted buffers currently on the TX ring |
| * @tx_ring: TX ring structure |
| * |
| * Assumes that the device is stopped |
| */ |
| static void nfp_net_tx_flush(struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| struct pci_dev *pdev = nn->pdev; |
| const struct skb_frag_struct *frag; |
| struct netdev_queue *nd_q; |
| struct sk_buff *skb; |
| int nr_frags; |
| int fidx; |
| int idx; |
| |
| while (tx_ring->rd_p != tx_ring->wr_p) { |
| idx = tx_ring->rd_p % tx_ring->cnt; |
| |
| skb = tx_ring->txbufs[idx].skb; |
| if (skb) { |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| fidx = tx_ring->txbufs[idx].fidx; |
| |
| if (fidx == -1) { |
| /* unmap head */ |
| dma_unmap_single(&pdev->dev, |
| tx_ring->txbufs[idx].dma_addr, |
| skb_headlen(skb), |
| DMA_TO_DEVICE); |
| } else { |
| /* unmap fragment */ |
| frag = &skb_shinfo(skb)->frags[fidx]; |
| dma_unmap_page(&pdev->dev, |
| tx_ring->txbufs[idx].dma_addr, |
| skb_frag_size(frag), |
| DMA_TO_DEVICE); |
| } |
| |
| /* check for last gather fragment */ |
| if (fidx == nr_frags - 1) |
| dev_kfree_skb_any(skb); |
| |
| tx_ring->txbufs[idx].dma_addr = 0; |
| tx_ring->txbufs[idx].skb = NULL; |
| tx_ring->txbufs[idx].fidx = -2; |
| } |
| |
| memset(&tx_ring->txds[idx], 0, sizeof(tx_ring->txds[idx])); |
| |
| tx_ring->qcp_rd_p++; |
| tx_ring->rd_p++; |
| } |
| |
| nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); |
| netdev_tx_reset_queue(nd_q); |
| } |
| |
| static void nfp_net_tx_timeout(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int i; |
| |
| for (i = 0; i < nn->num_tx_rings; i++) { |
| if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) |
| continue; |
| nn_warn(nn, "TX timeout on ring: %d\n", i); |
| } |
| nn_warn(nn, "TX watchdog timeout\n"); |
| } |
| |
| /* Receive processing |
| */ |
| |
| /** |
| * nfp_net_rx_space() - return the number of free slots on the RX ring |
| * @rx_ring: RX ring structure |
| * |
| * Make sure we leave at least one slot free. |
| * |
| * Return: True if there is space on the RX ring |
| */ |
| static inline int nfp_net_rx_space(struct nfp_net_rx_ring *rx_ring) |
| { |
| return (rx_ring->cnt - 1) - (rx_ring->wr_p - rx_ring->rd_p); |
| } |
| |
| /** |
| * nfp_net_rx_alloc_one() - Allocate and map skb for RX |
| * @rx_ring: RX ring structure of the skb |
| * @dma_addr: Pointer to storage for DMA address (output param) |
| * |
| * This function will allcate a new skb, map it for DMA. |
| * |
| * Return: allocated skb or NULL on failure. |
| */ |
| static struct sk_buff * |
| nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr) |
| { |
| struct nfp_net *nn = rx_ring->r_vec->nfp_net; |
| struct sk_buff *skb; |
| |
| skb = netdev_alloc_skb(nn->netdev, nn->fl_bufsz); |
| if (!skb) { |
| nn_warn_ratelimit(nn, "Failed to alloc receive SKB\n"); |
| return NULL; |
| } |
| |
| *dma_addr = dma_map_single(&nn->pdev->dev, skb->data, |
| nn->fl_bufsz, DMA_FROM_DEVICE); |
| if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) { |
| dev_kfree_skb_any(skb); |
| nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n"); |
| return NULL; |
| } |
| |
| return skb; |
| } |
| |
| /** |
| * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings |
| * @rx_ring: RX ring structure |
| * @skb: Skb to put on rings |
| * @dma_addr: DMA address of skb mapping |
| */ |
| static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring, |
| struct sk_buff *skb, dma_addr_t dma_addr) |
| { |
| unsigned int wr_idx; |
| |
| wr_idx = rx_ring->wr_p % rx_ring->cnt; |
| |
| /* Stash SKB and DMA address away */ |
| rx_ring->rxbufs[wr_idx].skb = skb; |
| rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; |
| |
| /* Fill freelist descriptor */ |
| rx_ring->rxds[wr_idx].fld.reserved = 0; |
| rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; |
| nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr); |
| |
| rx_ring->wr_p++; |
| rx_ring->wr_ptr_add++; |
| if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) { |
| /* Update write pointer of the freelist queue. Make |
| * sure all writes are flushed before telling the hardware. |
| */ |
| wmb(); |
| nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add); |
| rx_ring->wr_ptr_add = 0; |
| } |
| } |
| |
| /** |
| * nfp_net_rx_flush() - Free any buffers currently on the RX ring |
| * @rx_ring: RX ring to remove buffers from |
| * |
| * Assumes that the device is stopped |
| */ |
| static void nfp_net_rx_flush(struct nfp_net_rx_ring *rx_ring) |
| { |
| struct nfp_net *nn = rx_ring->r_vec->nfp_net; |
| struct pci_dev *pdev = nn->pdev; |
| int idx; |
| |
| while (rx_ring->rd_p != rx_ring->wr_p) { |
| idx = rx_ring->rd_p % rx_ring->cnt; |
| |
| if (rx_ring->rxbufs[idx].skb) { |
| dma_unmap_single(&pdev->dev, |
| rx_ring->rxbufs[idx].dma_addr, |
| nn->fl_bufsz, DMA_FROM_DEVICE); |
| dev_kfree_skb_any(rx_ring->rxbufs[idx].skb); |
| rx_ring->rxbufs[idx].dma_addr = 0; |
| rx_ring->rxbufs[idx].skb = NULL; |
| } |
| |
| memset(&rx_ring->rxds[idx], 0, sizeof(rx_ring->rxds[idx])); |
| |
| rx_ring->rd_p++; |
| } |
| } |
| |
| /** |
| * nfp_net_rx_fill_freelist() - Attempt filling freelist with RX buffers |
| * @rx_ring: RX ring to fill |
| * |
| * Try to fill as many buffers as possible into freelist. Return |
| * number of buffers added. |
| * |
| * Return: Number of freelist buffers added. |
| */ |
| static int nfp_net_rx_fill_freelist(struct nfp_net_rx_ring *rx_ring) |
| { |
| struct sk_buff *skb; |
| dma_addr_t dma_addr; |
| |
| while (nfp_net_rx_space(rx_ring)) { |
| skb = nfp_net_rx_alloc_one(rx_ring, &dma_addr); |
| if (!skb) { |
| nfp_net_rx_flush(rx_ring); |
| return -ENOMEM; |
| } |
| nfp_net_rx_give_one(rx_ring, skb, dma_addr); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors |
| * @flags: RX descriptor flags field in CPU byte order |
| */ |
| static int nfp_net_rx_csum_has_errors(u16 flags) |
| { |
| u16 csum_all_checked, csum_all_ok; |
| |
| csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; |
| csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; |
| |
| return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); |
| } |
| |
| /** |
| * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags |
| * @nn: NFP Net device |
| * @r_vec: per-ring structure |
| * @rxd: Pointer to RX descriptor |
| * @skb: Pointer to SKB |
| */ |
| static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, |
| struct nfp_net_rx_desc *rxd, struct sk_buff *skb) |
| { |
| skb_checksum_none_assert(skb); |
| |
| if (!(nn->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->hw_csum_rx_error++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| return; |
| } |
| |
| /* Assume that the firmware will never report inner CSUM_OK unless outer |
| * L4 headers were successfully parsed. FW will always report zero UDP |
| * checksum as CSUM_OK. |
| */ |
| if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || |
| rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { |
| __skb_incr_checksum_unnecessary(skb); |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->hw_csum_rx_ok++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| } |
| |
| if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || |
| rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { |
| __skb_incr_checksum_unnecessary(skb); |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->hw_csum_rx_inner_ok++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| } |
| } |
| |
| /** |
| * nfp_net_set_hash() - Set SKB hash data |
| * @netdev: adapter's net_device structure |
| * @skb: SKB to set the hash data on |
| * @rxd: RX descriptor |
| * |
| * The RSS hash and hash-type are pre-pended to the packet data. |
| * Extract and decode it and set the skb fields. |
| */ |
| static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb, |
| struct nfp_net_rx_desc *rxd) |
| { |
| struct nfp_net_rx_hash *rx_hash; |
| |
| if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS) || |
| !(netdev->features & NETIF_F_RXHASH)) |
| return; |
| |
| rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash)); |
| |
| switch (be32_to_cpu(rx_hash->hash_type)) { |
| case NFP_NET_RSS_IPV4: |
| case NFP_NET_RSS_IPV6: |
| case NFP_NET_RSS_IPV6_EX: |
| skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L3); |
| break; |
| default: |
| skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L4); |
| break; |
| } |
| } |
| |
| /** |
| * nfp_net_rx() - receive up to @budget packets on @rx_ring |
| * @rx_ring: RX ring to receive from |
| * @budget: NAPI budget |
| * |
| * Note, this function is separated out from the napi poll function to |
| * more cleanly separate packet receive code from other bookkeeping |
| * functions performed in the napi poll function. |
| * |
| * There are differences between the NFP-3200 firmware and the |
| * NFP-6000 firmware. The NFP-3200 firmware uses a dedicated RX queue |
| * to indicate that new packets have arrived. The NFP-6000 does not |
| * have this queue and uses the DD bit in the RX descriptor. This |
| * method cannot be used on the NFP-3200 as it causes a race |
| * condition: The RX ring write pointer on the NFP-3200 is updated |
| * after packets (and descriptors) have been DMAed. If the DD bit is |
| * used and subsequently the read pointer is updated this may lead to |
| * the RX queue to underflow (if the firmware has not yet update the |
| * write pointer). Therefore we use slightly ugly conditional code |
| * below to handle the differences. We may, in the future update the |
| * NFP-3200 firmware to behave the same as the firmware on the |
| * NFP-6000. |
| * |
| * Return: Number of packets received. |
| */ |
| static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) |
| { |
| struct nfp_net_r_vector *r_vec = rx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| unsigned int data_len, meta_len; |
| int avail = 0, pkts_polled = 0; |
| struct sk_buff *skb, *new_skb; |
| struct nfp_net_rx_desc *rxd; |
| dma_addr_t new_dma_addr; |
| u32 qcp_wr_p; |
| int idx; |
| |
| if (nn->is_nfp3200) { |
| /* Work out how many packets arrived */ |
| qcp_wr_p = nfp_qcp_wr_ptr_read(rx_ring->qcp_rx); |
| idx = rx_ring->rd_p % rx_ring->cnt; |
| |
| if (qcp_wr_p == idx) |
| /* No new packets */ |
| return 0; |
| |
| if (qcp_wr_p > idx) |
| avail = qcp_wr_p - idx; |
| else |
| avail = qcp_wr_p + rx_ring->cnt - idx; |
| } else { |
| avail = budget + 1; |
| } |
| |
| while (avail > 0 && pkts_polled < budget) { |
| idx = rx_ring->rd_p % rx_ring->cnt; |
| |
| rxd = &rx_ring->rxds[idx]; |
| if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) { |
| if (nn->is_nfp3200) |
| nn_dbg(nn, "RX descriptor not valid (DD)%d:%u rxd[0]=%#x rxd[1]=%#x\n", |
| rx_ring->idx, idx, |
| rxd->vals[0], rxd->vals[1]); |
| break; |
| } |
| /* Memory barrier to ensure that we won't do other reads |
| * before the DD bit. |
| */ |
| dma_rmb(); |
| |
| rx_ring->rd_p++; |
| pkts_polled++; |
| avail--; |
| |
| skb = rx_ring->rxbufs[idx].skb; |
| |
| new_skb = nfp_net_rx_alloc_one(rx_ring, &new_dma_addr); |
| if (!new_skb) { |
| nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[idx].skb, |
| rx_ring->rxbufs[idx].dma_addr); |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->rx_drops++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| continue; |
| } |
| |
| dma_unmap_single(&nn->pdev->dev, |
| rx_ring->rxbufs[idx].dma_addr, |
| nn->fl_bufsz, DMA_FROM_DEVICE); |
| |
| nfp_net_rx_give_one(rx_ring, new_skb, new_dma_addr); |
| |
| meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; |
| data_len = le16_to_cpu(rxd->rxd.data_len); |
| |
| if (WARN_ON_ONCE(data_len > nn->fl_bufsz)) { |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| |
| if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) { |
| /* The packet data starts after the metadata */ |
| skb_reserve(skb, meta_len); |
| } else { |
| /* The packet data starts at a fixed offset */ |
| skb_reserve(skb, nn->rx_offset); |
| } |
| |
| /* Adjust the SKB for the dynamic meta data pre-pended */ |
| skb_put(skb, data_len - meta_len); |
| |
| nfp_net_set_hash(nn->netdev, skb, rxd); |
| |
| /* Pad small frames to minimum */ |
| if (skb_put_padto(skb, 60)) |
| break; |
| |
| /* Stats update */ |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->rx_pkts++; |
| r_vec->rx_bytes += skb->len; |
| u64_stats_update_end(&r_vec->rx_sync); |
| |
| skb_record_rx_queue(skb, rx_ring->idx); |
| skb->protocol = eth_type_trans(skb, nn->netdev); |
| |
| nfp_net_rx_csum(nn, r_vec, rxd, skb); |
| |
| if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| le16_to_cpu(rxd->rxd.vlan)); |
| |
| napi_gro_receive(&rx_ring->r_vec->napi, skb); |
| } |
| |
| if (nn->is_nfp3200) |
| nfp_qcp_rd_ptr_add(rx_ring->qcp_rx, pkts_polled); |
| |
| return pkts_polled; |
| } |
| |
| /** |
| * nfp_net_poll() - napi poll function |
| * @napi: NAPI structure |
| * @budget: NAPI budget |
| * |
| * Return: number of packets polled. |
| */ |
| static int nfp_net_poll(struct napi_struct *napi, int budget) |
| { |
| struct nfp_net_r_vector *r_vec = |
| container_of(napi, struct nfp_net_r_vector, napi); |
| struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; |
| struct nfp_net_tx_ring *tx_ring = r_vec->tx_ring; |
| struct nfp_net *nn = r_vec->nfp_net; |
| struct netdev_queue *txq; |
| unsigned int pkts_polled; |
| |
| tx_ring = &nn->tx_rings[rx_ring->idx]; |
| txq = netdev_get_tx_queue(nn->netdev, tx_ring->idx); |
| nfp_net_tx_complete(tx_ring); |
| |
| pkts_polled = nfp_net_rx(rx_ring, budget); |
| |
| if (pkts_polled < budget) { |
| napi_complete_done(napi, pkts_polled); |
| nfp_net_irq_unmask(nn, r_vec->irq_idx); |
| } |
| |
| return pkts_polled; |
| } |
| |
| /* Setup and Configuration |
| */ |
| |
| /** |
| * nfp_net_tx_ring_free() - Free resources allocated to a TX ring |
| * @tx_ring: TX ring to free |
| */ |
| static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| struct pci_dev *pdev = nn->pdev; |
| |
| nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(tx_ring->idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_TXR_SZ(tx_ring->idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_TXR_VEC(tx_ring->idx), 0); |
| |
| kfree(tx_ring->txbufs); |
| |
| if (tx_ring->txds) |
| dma_free_coherent(&pdev->dev, tx_ring->size, |
| tx_ring->txds, tx_ring->dma); |
| |
| tx_ring->cnt = 0; |
| tx_ring->wr_p = 0; |
| tx_ring->rd_p = 0; |
| tx_ring->qcp_rd_p = 0; |
| tx_ring->wr_ptr_add = 0; |
| |
| tx_ring->txbufs = NULL; |
| tx_ring->txds = NULL; |
| tx_ring->dma = 0; |
| tx_ring->size = 0; |
| } |
| |
| /** |
| * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring |
| * @tx_ring: TX Ring structure to allocate |
| * |
| * Return: 0 on success, negative errno otherwise. |
| */ |
| static int nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| struct pci_dev *pdev = nn->pdev; |
| int sz; |
| |
| tx_ring->cnt = nn->txd_cnt; |
| |
| tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; |
| tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size, |
| &tx_ring->dma, GFP_KERNEL); |
| if (!tx_ring->txds) |
| goto err_alloc; |
| |
| sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; |
| tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); |
| if (!tx_ring->txbufs) |
| goto err_alloc; |
| |
| /* Write the DMA address, size and MSI-X info to the device */ |
| nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(tx_ring->idx), tx_ring->dma); |
| nn_writeb(nn, NFP_NET_CFG_TXR_SZ(tx_ring->idx), ilog2(tx_ring->cnt)); |
| nn_writeb(nn, NFP_NET_CFG_TXR_VEC(tx_ring->idx), r_vec->irq_idx); |
| |
| netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask, tx_ring->idx); |
| |
| nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p\n", |
| tx_ring->idx, tx_ring->qcidx, |
| tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds); |
| |
| return 0; |
| |
| err_alloc: |
| nfp_net_tx_ring_free(tx_ring); |
| return -ENOMEM; |
| } |
| |
| /** |
| * nfp_net_rx_ring_free() - Free resources allocated to a RX ring |
| * @rx_ring: RX ring to free |
| */ |
| static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = rx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| struct pci_dev *pdev = nn->pdev; |
| |
| nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(rx_ring->idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_RXR_SZ(rx_ring->idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_RXR_VEC(rx_ring->idx), 0); |
| |
| kfree(rx_ring->rxbufs); |
| |
| if (rx_ring->rxds) |
| dma_free_coherent(&pdev->dev, rx_ring->size, |
| rx_ring->rxds, rx_ring->dma); |
| |
| rx_ring->cnt = 0; |
| rx_ring->wr_p = 0; |
| rx_ring->rd_p = 0; |
| rx_ring->wr_ptr_add = 0; |
| |
| rx_ring->rxbufs = NULL; |
| rx_ring->rxds = NULL; |
| rx_ring->dma = 0; |
| rx_ring->size = 0; |
| } |
| |
| /** |
| * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring |
| * @rx_ring: RX ring to allocate |
| * |
| * Return: 0 on success, negative errno otherwise. |
| */ |
| static int nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = rx_ring->r_vec; |
| struct nfp_net *nn = r_vec->nfp_net; |
| struct pci_dev *pdev = nn->pdev; |
| int sz; |
| |
| rx_ring->cnt = nn->rxd_cnt; |
| |
| rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; |
| rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size, |
| &rx_ring->dma, GFP_KERNEL); |
| if (!rx_ring->rxds) |
| goto err_alloc; |
| |
| sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; |
| rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); |
| if (!rx_ring->rxbufs) |
| goto err_alloc; |
| |
| /* Write the DMA address, size and MSI-X info to the device */ |
| nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(rx_ring->idx), rx_ring->dma); |
| nn_writeb(nn, NFP_NET_CFG_RXR_SZ(rx_ring->idx), ilog2(rx_ring->cnt)); |
| nn_writeb(nn, NFP_NET_CFG_RXR_VEC(rx_ring->idx), r_vec->irq_idx); |
| |
| nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n", |
| rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx, |
| rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds); |
| |
| return 0; |
| |
| err_alloc: |
| nfp_net_rx_ring_free(rx_ring); |
| return -ENOMEM; |
| } |
| |
| static void __nfp_net_free_rings(struct nfp_net *nn, unsigned int n_free) |
| { |
| struct nfp_net_r_vector *r_vec; |
| struct msix_entry *entry; |
| |
| while (n_free--) { |
| r_vec = &nn->r_vecs[n_free]; |
| entry = &nn->irq_entries[r_vec->irq_idx]; |
| |
| nfp_net_rx_ring_free(r_vec->rx_ring); |
| nfp_net_tx_ring_free(r_vec->tx_ring); |
| |
| irq_set_affinity_hint(entry->vector, NULL); |
| free_irq(entry->vector, r_vec); |
| |
| netif_napi_del(&r_vec->napi); |
| } |
| } |
| |
| /** |
| * nfp_net_free_rings() - Free all ring resources |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_free_rings(struct nfp_net *nn) |
| { |
| __nfp_net_free_rings(nn, nn->num_r_vecs); |
| } |
| |
| /** |
| * nfp_net_alloc_rings() - Allocate resources for RX and TX rings |
| * @nn: NFP Net device to reconfigure |
| * |
| * Return: 0 on success or negative errno on error. |
| */ |
| static int nfp_net_alloc_rings(struct nfp_net *nn) |
| { |
| struct nfp_net_r_vector *r_vec; |
| struct msix_entry *entry; |
| int err; |
| int r; |
| |
| for (r = 0; r < nn->num_r_vecs; r++) { |
| r_vec = &nn->r_vecs[r]; |
| entry = &nn->irq_entries[r_vec->irq_idx]; |
| |
| /* Setup NAPI */ |
| netif_napi_add(nn->netdev, &r_vec->napi, |
| nfp_net_poll, NAPI_POLL_WEIGHT); |
| |
| snprintf(r_vec->name, sizeof(r_vec->name), |
| "%s-rxtx-%d", nn->netdev->name, r); |
| err = request_irq(entry->vector, r_vec->handler, 0, |
| r_vec->name, r_vec); |
| if (err) { |
| nn_dbg(nn, "Error requesting IRQ %d\n", entry->vector); |
| goto err_napi_del; |
| } |
| |
| irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask); |
| |
| nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", |
| r, entry->vector, entry->entry); |
| |
| /* Allocate TX ring resources */ |
| err = nfp_net_tx_ring_alloc(r_vec->tx_ring); |
| if (err) |
| goto err_free_irq; |
| |
| /* Allocate RX ring resources */ |
| err = nfp_net_rx_ring_alloc(r_vec->rx_ring); |
| if (err) |
| goto err_free_tx; |
| } |
| |
| return 0; |
| |
| err_free_tx: |
| nfp_net_tx_ring_free(r_vec->tx_ring); |
| err_free_irq: |
| irq_set_affinity_hint(entry->vector, NULL); |
| free_irq(entry->vector, r_vec); |
| err_napi_del: |
| netif_napi_del(&r_vec->napi); |
| __nfp_net_free_rings(nn, r); |
| return err; |
| } |
| |
| /** |
| * nfp_net_rss_write_itbl() - Write RSS indirection table to device |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_rss_write_itbl(struct nfp_net *nn) |
| { |
| int i; |
| |
| for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) |
| nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, |
| get_unaligned_le32(nn->rss_itbl + i)); |
| } |
| |
| /** |
| * nfp_net_rss_write_key() - Write RSS hash key to device |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_rss_write_key(struct nfp_net *nn) |
| { |
| int i; |
| |
| for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4) |
| nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, |
| get_unaligned_le32(nn->rss_key + i)); |
| } |
| |
| /** |
| * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_coalesce_write_cfg(struct nfp_net *nn) |
| { |
| u8 i; |
| u32 factor; |
| u32 value; |
| |
| /* Compute factor used to convert coalesce '_usecs' parameters to |
| * ME timestamp ticks. There are 16 ME clock cycles for each timestamp |
| * count. |
| */ |
| factor = nn->me_freq_mhz / 16; |
| |
| /* copy RX interrupt coalesce parameters */ |
| value = (nn->rx_coalesce_max_frames << 16) | |
| (factor * nn->rx_coalesce_usecs); |
| for (i = 0; i < nn->num_r_vecs; i++) |
| nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); |
| |
| /* copy TX interrupt coalesce parameters */ |
| value = (nn->tx_coalesce_max_frames << 16) | |
| (factor * nn->tx_coalesce_usecs); |
| for (i = 0; i < nn->num_r_vecs; i++) |
| nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); |
| } |
| |
| /** |
| * nfp_net_write_mac_addr() - Write mac address to device registers |
| * @nn: NFP Net device to reconfigure |
| * @mac: Six-byte MAC address to be written |
| * |
| * We do a bit of byte swapping dance because firmware is LE. |
| */ |
| static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *mac) |
| { |
| nn_writel(nn, NFP_NET_CFG_MACADDR + 0, |
| get_unaligned_be32(nn->netdev->dev_addr)); |
| /* We can't do writew for NFP-3200 compatibility */ |
| nn_writel(nn, NFP_NET_CFG_MACADDR + 4, |
| get_unaligned_be16(nn->netdev->dev_addr + 4) << 16); |
| } |
| |
| /** |
| * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_clear_config_and_disable(struct nfp_net *nn) |
| { |
| u32 new_ctrl, update; |
| int err; |
| |
| new_ctrl = nn->ctrl; |
| new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; |
| update = NFP_NET_CFG_UPDATE_GEN; |
| update |= NFP_NET_CFG_UPDATE_MSIX; |
| update |= NFP_NET_CFG_UPDATE_RING; |
| |
| if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) |
| new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; |
| |
| nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); |
| nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); |
| |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| err = nfp_net_reconfig(nn, update); |
| if (err) { |
| nn_err(nn, "Could not disable device: %d\n", err); |
| return; |
| } |
| |
| nn->ctrl = new_ctrl; |
| } |
| |
| /** |
| * nfp_net_start_vec() - Start ring vector |
| * @nn: NFP Net device structure |
| * @r_vec: Ring vector to be started |
| */ |
| static int nfp_net_start_vec(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) |
| { |
| unsigned int irq_vec; |
| int err = 0; |
| |
| irq_vec = nn->irq_entries[r_vec->irq_idx].vector; |
| |
| disable_irq(irq_vec); |
| |
| err = nfp_net_rx_fill_freelist(r_vec->rx_ring); |
| if (err) { |
| nn_err(nn, "RV%02d: couldn't allocate enough buffers\n", |
| r_vec->irq_idx); |
| goto out; |
| } |
| |
| napi_enable(&r_vec->napi); |
| out: |
| enable_irq(irq_vec); |
| |
| return err; |
| } |
| |
| static int nfp_net_netdev_open(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int err, r; |
| u32 update = 0; |
| u32 new_ctrl; |
| |
| if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) { |
| nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl); |
| return -EBUSY; |
| } |
| |
| new_ctrl = nn->ctrl; |
| |
| /* Step 1: Allocate resources for rings and the like |
| * - Request interrupts |
| * - Allocate RX and TX ring resources |
| * - Setup initial RSS table |
| */ |
| err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", |
| nn->exn_name, sizeof(nn->exn_name), |
| NFP_NET_IRQ_EXN_IDX, nn->exn_handler); |
| if (err) |
| return err; |
| |
| err = nfp_net_alloc_rings(nn); |
| if (err) |
| goto err_free_exn; |
| |
| err = netif_set_real_num_tx_queues(netdev, nn->num_tx_rings); |
| if (err) |
| goto err_free_rings; |
| |
| err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings); |
| if (err) |
| goto err_free_rings; |
| |
| if (nn->cap & NFP_NET_CFG_CTRL_RSS) { |
| nfp_net_rss_write_key(nn); |
| nfp_net_rss_write_itbl(nn); |
| nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); |
| update |= NFP_NET_CFG_UPDATE_RSS; |
| } |
| |
| if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { |
| nfp_net_coalesce_write_cfg(nn); |
| |
| new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD; |
| update |= NFP_NET_CFG_UPDATE_IRQMOD; |
| } |
| |
| /* Step 2: Configure the NFP |
| * - Enable rings from 0 to tx_rings/rx_rings - 1. |
| * - Write MAC address (in case it changed) |
| * - Set the MTU |
| * - Set the Freelist buffer size |
| * - Enable the FW |
| */ |
| nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ? |
| 0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1); |
| |
| nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ? |
| 0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1); |
| |
| nfp_net_write_mac_addr(nn, netdev->dev_addr); |
| |
| nn_writel(nn, NFP_NET_CFG_MTU, netdev->mtu); |
| nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz); |
| |
| /* Enable device */ |
| new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; |
| update |= NFP_NET_CFG_UPDATE_GEN; |
| update |= NFP_NET_CFG_UPDATE_MSIX; |
| update |= NFP_NET_CFG_UPDATE_RING; |
| if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) |
| new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; |
| |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| err = nfp_net_reconfig(nn, update); |
| if (err) |
| goto err_clear_config; |
| |
| nn->ctrl = new_ctrl; |
| |
| /* Since reconfiguration requests while NFP is down are ignored we |
| * have to wipe the entire VXLAN configuration and reinitialize it. |
| */ |
| if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) { |
| memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); |
| memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); |
| vxlan_get_rx_port(netdev); |
| } |
| |
| /* Step 3: Enable for kernel |
| * - put some freelist descriptors on each RX ring |
| * - enable NAPI on each ring |
| * - enable all TX queues |
| * - set link state |
| */ |
| for (r = 0; r < nn->num_r_vecs; r++) { |
| err = nfp_net_start_vec(nn, &nn->r_vecs[r]); |
| if (err) |
| goto err_disable_napi; |
| } |
| |
| netif_tx_wake_all_queues(netdev); |
| |
| err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", |
| nn->lsc_name, sizeof(nn->lsc_name), |
| NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); |
| if (err) |
| goto err_stop_tx; |
| nfp_net_read_link_status(nn); |
| |
| return 0; |
| |
| err_stop_tx: |
| netif_tx_disable(netdev); |
| for (r = 0; r < nn->num_r_vecs; r++) |
| nfp_net_tx_flush(nn->r_vecs[r].tx_ring); |
| err_disable_napi: |
| while (r--) { |
| napi_disable(&nn->r_vecs[r].napi); |
| nfp_net_rx_flush(nn->r_vecs[r].rx_ring); |
| } |
| err_clear_config: |
| nfp_net_clear_config_and_disable(nn); |
| err_free_rings: |
| nfp_net_free_rings(nn); |
| err_free_exn: |
| nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); |
| return err; |
| } |
| |
| /** |
| * nfp_net_netdev_close() - Called when the device is downed |
| * @netdev: netdev structure |
| */ |
| static int nfp_net_netdev_close(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int r; |
| |
| if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) { |
| nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl); |
| return 0; |
| } |
| |
| /* Step 1: Disable RX and TX rings from the Linux kernel perspective |
| */ |
| nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); |
| netif_carrier_off(netdev); |
| nn->link_up = false; |
| |
| for (r = 0; r < nn->num_r_vecs; r++) |
| napi_disable(&nn->r_vecs[r].napi); |
| |
| netif_tx_disable(netdev); |
| |
| /* Step 2: Tell NFP |
| */ |
| nfp_net_clear_config_and_disable(nn); |
| |
| /* Step 3: Free resources |
| */ |
| for (r = 0; r < nn->num_r_vecs; r++) { |
| nfp_net_rx_flush(nn->r_vecs[r].rx_ring); |
| nfp_net_tx_flush(nn->r_vecs[r].tx_ring); |
| } |
| |
| nfp_net_free_rings(nn); |
| nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); |
| |
| nn_dbg(nn, "%s down", netdev->name); |
| return 0; |
| } |
| |
| static void nfp_net_set_rx_mode(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| u32 new_ctrl; |
| |
| new_ctrl = nn->ctrl; |
| |
| if (netdev->flags & IFF_PROMISC) { |
| if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) |
| new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; |
| else |
| nn_warn(nn, "FW does not support promiscuous mode\n"); |
| } else { |
| new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; |
| } |
| |
| if (new_ctrl == nn->ctrl) |
| return; |
| |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| if (nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN)) |
| return; |
| |
| nn->ctrl = new_ctrl; |
| } |
| |
| static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| u32 tmp; |
| |
| nn_dbg(nn, "New MTU = %d\n", new_mtu); |
| |
| if (new_mtu < 68 || new_mtu > nn->max_mtu) { |
| nn_err(nn, "New MTU (%d) is not valid\n", new_mtu); |
| return -EINVAL; |
| } |
| |
| netdev->mtu = new_mtu; |
| |
| /* Freelist buffer size rounded up to the nearest 1K */ |
| tmp = new_mtu + ETH_HLEN + VLAN_HLEN + NFP_NET_MAX_PREPEND; |
| nn->fl_bufsz = roundup(tmp, 1024); |
| |
| /* restart if running */ |
| if (netif_running(netdev)) { |
| nfp_net_netdev_close(netdev); |
| nfp_net_netdev_open(netdev); |
| } |
| |
| return 0; |
| } |
| |
| static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int r; |
| |
| for (r = 0; r < nn->num_r_vecs; r++) { |
| struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; |
| u64 data[3]; |
| unsigned int start; |
| |
| do { |
| start = u64_stats_fetch_begin(&r_vec->rx_sync); |
| data[0] = r_vec->rx_pkts; |
| data[1] = r_vec->rx_bytes; |
| data[2] = r_vec->rx_drops; |
| } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); |
| stats->rx_packets += data[0]; |
| stats->rx_bytes += data[1]; |
| stats->rx_dropped += data[2]; |
| |
| do { |
| start = u64_stats_fetch_begin(&r_vec->tx_sync); |
| data[0] = r_vec->tx_pkts; |
| data[1] = r_vec->tx_bytes; |
| data[2] = r_vec->tx_errors; |
| } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); |
| stats->tx_packets += data[0]; |
| stats->tx_bytes += data[1]; |
| stats->tx_errors += data[2]; |
| } |
| |
| return stats; |
| } |
| |
| static int nfp_net_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| netdev_features_t changed = netdev->features ^ features; |
| struct nfp_net *nn = netdev_priv(netdev); |
| u32 new_ctrl; |
| int err; |
| |
| /* Assume this is not called with features we have not advertised */ |
| |
| new_ctrl = nn->ctrl; |
| |
| if (changed & NETIF_F_RXCSUM) { |
| if (features & NETIF_F_RXCSUM) |
| new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM; |
| } |
| |
| if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { |
| if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) |
| new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; |
| } |
| |
| if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { |
| if (features & (NETIF_F_TSO | NETIF_F_TSO6)) |
| new_ctrl |= NFP_NET_CFG_CTRL_LSO; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_LSO; |
| } |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_RX) { |
| if (features & NETIF_F_HW_VLAN_CTAG_RX) |
| new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; |
| } |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_TX) { |
| if (features & NETIF_F_HW_VLAN_CTAG_TX) |
| new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; |
| } |
| |
| if (changed & NETIF_F_SG) { |
| if (features & NETIF_F_SG) |
| new_ctrl |= NFP_NET_CFG_CTRL_GATHER; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; |
| } |
| |
| nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", |
| netdev->features, features, changed); |
| |
| if (new_ctrl == nn->ctrl) |
| return 0; |
| |
| nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl); |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); |
| if (err) |
| return err; |
| |
| nn->ctrl = new_ctrl; |
| |
| return 0; |
| } |
| |
| static netdev_features_t |
| nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, |
| netdev_features_t features) |
| { |
| u8 l4_hdr; |
| |
| /* We can't do TSO over double tagged packets (802.1AD) */ |
| features &= vlan_features_check(skb, features); |
| |
| if (!skb->encapsulation) |
| return features; |
| |
| /* Ensure that inner L4 header offset fits into TX descriptor field */ |
| if (skb_is_gso(skb)) { |
| u32 hdrlen; |
| |
| hdrlen = skb_inner_transport_header(skb) - skb->data + |
| inner_tcp_hdrlen(skb); |
| |
| if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) |
| features &= ~NETIF_F_GSO_MASK; |
| } |
| |
| /* VXLAN/GRE check */ |
| switch (vlan_get_protocol(skb)) { |
| case htons(ETH_P_IP): |
| l4_hdr = ip_hdr(skb)->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| l4_hdr = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| } |
| |
| if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || |
| skb->inner_protocol != htons(ETH_P_TEB) || |
| (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || |
| (l4_hdr == IPPROTO_UDP && |
| (skb_inner_mac_header(skb) - skb_transport_header(skb) != |
| sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) |
| return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| |
| return features; |
| } |
| |
| /** |
| * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW |
| * @nn: NFP Net device to reconfigure |
| * @idx: Index into the port table where new port should be written |
| * @port: UDP port to configure (pass zero to remove VXLAN port) |
| */ |
| static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) |
| { |
| int i; |
| |
| nn->vxlan_ports[idx] = port; |
| |
| if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN)) |
| return; |
| |
| BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); |
| for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) |
| nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), |
| be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | |
| be16_to_cpu(nn->vxlan_ports[i])); |
| |
| nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); |
| } |
| |
| /** |
| * nfp_net_find_vxlan_idx() - find table entry of the port or a free one |
| * @nn: NFP Network structure |
| * @port: UDP port to look for |
| * |
| * Return: if the port is already in the table -- it's position; |
| * if the port is not in the table -- free position to use; |
| * if the table is full -- -ENOSPC. |
| */ |
| static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) |
| { |
| int i, free_idx = -ENOSPC; |
| |
| for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { |
| if (nn->vxlan_ports[i] == port) |
| return i; |
| if (!nn->vxlan_usecnt[i]) |
| free_idx = i; |
| } |
| |
| return free_idx; |
| } |
| |
| static void nfp_net_add_vxlan_port(struct net_device *netdev, |
| sa_family_t sa_family, __be16 port) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int idx; |
| |
| idx = nfp_net_find_vxlan_idx(nn, port); |
| if (idx == -ENOSPC) |
| return; |
| |
| if (!nn->vxlan_usecnt[idx]++) |
| nfp_net_set_vxlan_port(nn, idx, port); |
| } |
| |
| static void nfp_net_del_vxlan_port(struct net_device *netdev, |
| sa_family_t sa_family, __be16 port) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int idx; |
| |
| idx = nfp_net_find_vxlan_idx(nn, port); |
| if (!nn->vxlan_usecnt[idx] || idx == -ENOSPC) |
| return; |
| |
| if (!--nn->vxlan_usecnt[idx]) |
| nfp_net_set_vxlan_port(nn, idx, 0); |
| } |
| |
| static const struct net_device_ops nfp_net_netdev_ops = { |
| .ndo_open = nfp_net_netdev_open, |
| .ndo_stop = nfp_net_netdev_close, |
| .ndo_start_xmit = nfp_net_tx, |
| .ndo_get_stats64 = nfp_net_stat64, |
| .ndo_tx_timeout = nfp_net_tx_timeout, |
| .ndo_set_rx_mode = nfp_net_set_rx_mode, |
| .ndo_change_mtu = nfp_net_change_mtu, |
| .ndo_set_mac_address = eth_mac_addr, |
| .ndo_set_features = nfp_net_set_features, |
| .ndo_features_check = nfp_net_features_check, |
| .ndo_add_vxlan_port = nfp_net_add_vxlan_port, |
| .ndo_del_vxlan_port = nfp_net_del_vxlan_port, |
| }; |
| |
| /** |
| * nfp_net_info() - Print general info about the NIC |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_info(struct nfp_net *nn) |
| { |
| nn_info(nn, "Netronome %s %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", |
| nn->is_nfp3200 ? "NFP-32xx" : "NFP-6xxx", |
| nn->is_vf ? "VF " : "", |
| nn->num_tx_rings, nn->max_tx_rings, |
| nn->num_rx_rings, nn->max_rx_rings); |
| nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", |
| nn->fw_ver.resv, nn->fw_ver.class, |
| nn->fw_ver.major, nn->fw_ver.minor, |
| nn->max_mtu); |
| nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", |
| nn->cap, |
| nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", |
| nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", |
| nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", |
| nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", |
| nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", |
| nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", |
| nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", |
| nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", |
| nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", |
| nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "", |
| nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "", |
| nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", |
| nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", |
| nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", |
| nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", |
| nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : ""); |
| } |
| |
| /** |
| * nfp_net_netdev_alloc() - Allocate netdev and related structure |
| * @pdev: PCI device |
| * @max_tx_rings: Maximum number of TX rings supported by device |
| * @max_rx_rings: Maximum number of RX rings supported by device |
| * |
| * This function allocates a netdev device and fills in the initial |
| * part of the @struct nfp_net structure. |
| * |
| * Return: NFP Net device structure, or ERR_PTR on error. |
| */ |
| struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev, |
| int max_tx_rings, int max_rx_rings) |
| { |
| struct net_device *netdev; |
| struct nfp_net *nn; |
| int nqs; |
| |
| netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), |
| max_tx_rings, max_rx_rings); |
| if (!netdev) |
| return ERR_PTR(-ENOMEM); |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| nn = netdev_priv(netdev); |
| |
| nn->netdev = netdev; |
| nn->pdev = pdev; |
| |
| nn->max_tx_rings = max_tx_rings; |
| nn->max_rx_rings = max_rx_rings; |
| |
| nqs = netif_get_num_default_rss_queues(); |
| nn->num_tx_rings = min_t(int, nqs, max_tx_rings); |
| nn->num_rx_rings = min_t(int, nqs, max_rx_rings); |
| |
| nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT; |
| nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; |
| |
| spin_lock_init(&nn->reconfig_lock); |
| spin_lock_init(&nn->link_status_lock); |
| |
| return nn; |
| } |
| |
| /** |
| * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_netdev_free(struct nfp_net *nn) |
| { |
| free_netdev(nn->netdev); |
| } |
| |
| /** |
| * nfp_net_rss_init() - Set the initial RSS parameters |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_rss_init(struct nfp_net *nn) |
| { |
| int i; |
| |
| netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ); |
| |
| for (i = 0; i < sizeof(nn->rss_itbl); i++) |
| nn->rss_itbl[i] = |
| ethtool_rxfh_indir_default(i, nn->num_rx_rings); |
| |
| /* Enable IPv4/IPv6 TCP by default */ |
| nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | |
| NFP_NET_CFG_RSS_IPV6_TCP | |
| NFP_NET_CFG_RSS_TOEPLITZ | |
| NFP_NET_CFG_RSS_MASK; |
| } |
| |
| /** |
| * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_irqmod_init(struct nfp_net *nn) |
| { |
| nn->rx_coalesce_usecs = 50; |
| nn->rx_coalesce_max_frames = 64; |
| nn->tx_coalesce_usecs = 50; |
| nn->tx_coalesce_max_frames = 64; |
| } |
| |
| /** |
| * nfp_net_netdev_init() - Initialise/finalise the netdev structure |
| * @netdev: netdev structure |
| * |
| * Return: 0 on success or negative errno on error. |
| */ |
| int nfp_net_netdev_init(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int err; |
| |
| /* Get some of the read-only fields from the BAR */ |
| nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); |
| nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); |
| |
| nfp_net_write_mac_addr(nn, nn->netdev->dev_addr); |
| |
| /* Set default MTU and Freelist buffer size */ |
| if (nn->max_mtu < NFP_NET_DEFAULT_MTU) |
| netdev->mtu = nn->max_mtu; |
| else |
| netdev->mtu = NFP_NET_DEFAULT_MTU; |
| nn->fl_bufsz = NFP_NET_DEFAULT_RX_BUFSZ; |
| |
| /* Advertise/enable offloads based on capabilities |
| * |
| * Note: netdev->features show the currently enabled features |
| * and netdev->hw_features advertises which features are |
| * supported. By default we enable most features. |
| */ |
| netdev->hw_features = NETIF_F_HIGHDMA; |
| if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) { |
| netdev->hw_features |= NETIF_F_RXCSUM; |
| nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { |
| netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; |
| nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { |
| netdev->hw_features |= NETIF_F_SG; |
| nn->ctrl |= NFP_NET_CFG_CTRL_GATHER; |
| } |
| if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) { |
| netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; |
| nn->ctrl |= NFP_NET_CFG_CTRL_LSO; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_RSS) { |
| netdev->hw_features |= NETIF_F_RXHASH; |
| nfp_net_rss_init(nn); |
| nn->ctrl |= NFP_NET_CFG_CTRL_RSS; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && |
| nn->cap & NFP_NET_CFG_CTRL_NVGRE) { |
| if (nn->cap & NFP_NET_CFG_CTRL_LSO) |
| netdev->hw_features |= NETIF_F_GSO_GRE | |
| NETIF_F_GSO_UDP_TUNNEL; |
| nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; |
| |
| netdev->hw_enc_features = netdev->hw_features; |
| } |
| |
| netdev->vlan_features = netdev->hw_features; |
| |
| if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { |
| netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; |
| nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { |
| netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; |
| nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN; |
| } |
| |
| netdev->features = netdev->hw_features; |
| |
| /* Advertise but disable TSO by default. */ |
| netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); |
| |
| /* Allow L2 Broadcast and Multicast through by default, if supported */ |
| if (nn->cap & NFP_NET_CFG_CTRL_L2BC) |
| nn->ctrl |= NFP_NET_CFG_CTRL_L2BC; |
| if (nn->cap & NFP_NET_CFG_CTRL_L2MC) |
| nn->ctrl |= NFP_NET_CFG_CTRL_L2MC; |
| |
| /* Allow IRQ moderation, if supported */ |
| if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { |
| nfp_net_irqmod_init(nn); |
| nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD; |
| } |
| |
| /* On NFP-3200 enable MSI-X auto-masking, if supported and the |
| * interrupts are not shared. |
| */ |
| if (nn->is_nfp3200 && nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO) |
| nn->ctrl |= NFP_NET_CFG_CTRL_MSIXAUTO; |
| |
| /* On NFP4000/NFP6000, determine RX packet/metadata boundary offset */ |
| if (nn->fw_ver.major >= 2) |
| nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); |
| else |
| nn->rx_offset = NFP_NET_RX_OFFSET; |
| |
| /* Stash the re-configuration queue away. First odd queue in TX Bar */ |
| nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; |
| |
| /* Make sure the FW knows the netdev is supposed to be disabled here */ |
| nn_writel(nn, NFP_NET_CFG_CTRL, 0); |
| nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); |
| nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); |
| err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | |
| NFP_NET_CFG_UPDATE_GEN); |
| if (err) |
| return err; |
| |
| /* Finalise the netdev setup */ |
| ether_setup(netdev); |
| netdev->netdev_ops = &nfp_net_netdev_ops; |
| netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); |
| netif_carrier_off(netdev); |
| |
| nfp_net_set_ethtool_ops(netdev); |
| nfp_net_irqs_assign(netdev); |
| |
| return register_netdev(netdev); |
| } |
| |
| /** |
| * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did. |
| * @netdev: netdev structure |
| */ |
| void nfp_net_netdev_clean(struct net_device *netdev) |
| { |
| unregister_netdev(netdev); |
| } |