| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * mm/mprotect.c |
| * |
| * (C) Copyright 1994 Linus Torvalds |
| * (C) Copyright 2002 Christoph Hellwig |
| * |
| * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
| * (C) Copyright 2002 Red Hat Inc, All Rights Reserved |
| */ |
| |
| #include <linux/pagewalk.h> |
| #include <linux/hugetlb.h> |
| #include <linux/shm.h> |
| #include <linux/mman.h> |
| #include <linux/fs.h> |
| #include <linux/highmem.h> |
| #include <linux/security.h> |
| #include <linux/mempolicy.h> |
| #include <linux/personality.h> |
| #include <linux/syscalls.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/migrate.h> |
| #include <linux/perf_event.h> |
| #include <linux/pkeys.h> |
| #include <linux/ksm.h> |
| #include <linux/uaccess.h> |
| #include <linux/mm_inline.h> |
| #include <linux/pgtable.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlbflush.h> |
| |
| #include "internal.h" |
| |
| static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
| unsigned long addr, unsigned long end, pgprot_t newprot, |
| unsigned long cp_flags) |
| { |
| pte_t *pte, oldpte; |
| spinlock_t *ptl; |
| unsigned long pages = 0; |
| int target_node = NUMA_NO_NODE; |
| bool dirty_accountable = cp_flags & MM_CP_DIRTY_ACCT; |
| bool prot_numa = cp_flags & MM_CP_PROT_NUMA; |
| bool uffd_wp = cp_flags & MM_CP_UFFD_WP; |
| bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; |
| |
| /* |
| * Can be called with only the mmap_lock for reading by |
| * prot_numa so we must check the pmd isn't constantly |
| * changing from under us from pmd_none to pmd_trans_huge |
| * and/or the other way around. |
| */ |
| if (pmd_trans_unstable(pmd)) |
| return 0; |
| |
| /* |
| * The pmd points to a regular pte so the pmd can't change |
| * from under us even if the mmap_lock is only hold for |
| * reading. |
| */ |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| |
| /* Get target node for single threaded private VMAs */ |
| if (prot_numa && !(vma->vm_flags & VM_SHARED) && |
| atomic_read(&vma->vm_mm->mm_users) == 1) |
| target_node = numa_node_id(); |
| |
| flush_tlb_batched_pending(vma->vm_mm); |
| arch_enter_lazy_mmu_mode(); |
| do { |
| oldpte = *pte; |
| if (pte_present(oldpte)) { |
| pte_t ptent; |
| bool preserve_write = prot_numa && pte_write(oldpte); |
| |
| /* |
| * Avoid trapping faults against the zero or KSM |
| * pages. See similar comment in change_huge_pmd. |
| */ |
| if (prot_numa) { |
| struct page *page; |
| |
| /* Avoid TLB flush if possible */ |
| if (pte_protnone(oldpte)) |
| continue; |
| |
| page = vm_normal_page(vma, addr, oldpte); |
| if (!page || PageKsm(page)) |
| continue; |
| |
| /* Also skip shared copy-on-write pages */ |
| if (is_cow_mapping(vma->vm_flags) && |
| page_mapcount(page) != 1) |
| continue; |
| |
| /* |
| * While migration can move some dirty pages, |
| * it cannot move them all from MIGRATE_ASYNC |
| * context. |
| */ |
| if (page_is_file_lru(page) && PageDirty(page)) |
| continue; |
| |
| /* |
| * Don't mess with PTEs if page is already on the node |
| * a single-threaded process is running on. |
| */ |
| if (target_node == page_to_nid(page)) |
| continue; |
| } |
| |
| oldpte = ptep_modify_prot_start(vma, addr, pte); |
| ptent = pte_modify(oldpte, newprot); |
| if (preserve_write) |
| ptent = pte_mk_savedwrite(ptent); |
| |
| if (uffd_wp) { |
| ptent = pte_wrprotect(ptent); |
| ptent = pte_mkuffd_wp(ptent); |
| } else if (uffd_wp_resolve) { |
| /* |
| * Leave the write bit to be handled |
| * by PF interrupt handler, then |
| * things like COW could be properly |
| * handled. |
| */ |
| ptent = pte_clear_uffd_wp(ptent); |
| } |
| |
| /* Avoid taking write faults for known dirty pages */ |
| if (dirty_accountable && pte_dirty(ptent) && |
| (pte_soft_dirty(ptent) || |
| !(vma->vm_flags & VM_SOFTDIRTY))) { |
| ptent = pte_mkwrite(ptent); |
| } |
| ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent); |
| pages++; |
| } else if (is_swap_pte(oldpte)) { |
| swp_entry_t entry = pte_to_swp_entry(oldpte); |
| pte_t newpte; |
| |
| if (is_write_migration_entry(entry)) { |
| /* |
| * A protection check is difficult so |
| * just be safe and disable write |
| */ |
| make_migration_entry_read(&entry); |
| newpte = swp_entry_to_pte(entry); |
| if (pte_swp_soft_dirty(oldpte)) |
| newpte = pte_swp_mksoft_dirty(newpte); |
| if (pte_swp_uffd_wp(oldpte)) |
| newpte = pte_swp_mkuffd_wp(newpte); |
| } else if (is_write_device_private_entry(entry)) { |
| /* |
| * We do not preserve soft-dirtiness. See |
| * copy_one_pte() for explanation. |
| */ |
| make_device_private_entry_read(&entry); |
| newpte = swp_entry_to_pte(entry); |
| if (pte_swp_uffd_wp(oldpte)) |
| newpte = pte_swp_mkuffd_wp(newpte); |
| } else { |
| newpte = oldpte; |
| } |
| |
| if (uffd_wp) |
| newpte = pte_swp_mkuffd_wp(newpte); |
| else if (uffd_wp_resolve) |
| newpte = pte_swp_clear_uffd_wp(newpte); |
| |
| if (!pte_same(oldpte, newpte)) { |
| set_pte_at(vma->vm_mm, addr, pte, newpte); |
| pages++; |
| } |
| } |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| arch_leave_lazy_mmu_mode(); |
| pte_unmap_unlock(pte - 1, ptl); |
| |
| return pages; |
| } |
| |
| /* |
| * Used when setting automatic NUMA hinting protection where it is |
| * critical that a numa hinting PMD is not confused with a bad PMD. |
| */ |
| static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd) |
| { |
| pmd_t pmdval = pmd_read_atomic(pmd); |
| |
| /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */ |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| barrier(); |
| #endif |
| |
| if (pmd_none(pmdval)) |
| return 1; |
| if (pmd_trans_huge(pmdval)) |
| return 0; |
| if (unlikely(pmd_bad(pmdval))) { |
| pmd_clear_bad(pmd); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static inline unsigned long change_pmd_range(struct vm_area_struct *vma, |
| pud_t *pud, unsigned long addr, unsigned long end, |
| pgprot_t newprot, unsigned long cp_flags) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| unsigned long pages = 0; |
| unsigned long nr_huge_updates = 0; |
| struct mmu_notifier_range range; |
| |
| range.start = 0; |
| |
| pmd = pmd_offset(pud, addr); |
| do { |
| unsigned long this_pages; |
| |
| next = pmd_addr_end(addr, end); |
| |
| /* |
| * Automatic NUMA balancing walks the tables with mmap_lock |
| * held for read. It's possible a parallel update to occur |
| * between pmd_trans_huge() and a pmd_none_or_clear_bad() |
| * check leading to a false positive and clearing. |
| * Hence, it's necessary to atomically read the PMD value |
| * for all the checks. |
| */ |
| if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) && |
| pmd_none_or_clear_bad_unless_trans_huge(pmd)) |
| goto next; |
| |
| /* invoke the mmu notifier if the pmd is populated */ |
| if (!range.start) { |
| mmu_notifier_range_init(&range, |
| MMU_NOTIFY_PROTECTION_VMA, 0, |
| vma, vma->vm_mm, addr, end); |
| mmu_notifier_invalidate_range_start(&range); |
| } |
| |
| if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
| if (next - addr != HPAGE_PMD_SIZE) { |
| __split_huge_pmd(vma, pmd, addr, false, NULL); |
| } else { |
| int nr_ptes = change_huge_pmd(vma, pmd, addr, |
| newprot, cp_flags); |
| |
| if (nr_ptes) { |
| if (nr_ptes == HPAGE_PMD_NR) { |
| pages += HPAGE_PMD_NR; |
| nr_huge_updates++; |
| } |
| |
| /* huge pmd was handled */ |
| goto next; |
| } |
| } |
| /* fall through, the trans huge pmd just split */ |
| } |
| this_pages = change_pte_range(vma, pmd, addr, next, newprot, |
| cp_flags); |
| pages += this_pages; |
| next: |
| cond_resched(); |
| } while (pmd++, addr = next, addr != end); |
| |
| if (range.start) |
| mmu_notifier_invalidate_range_end(&range); |
| |
| if (nr_huge_updates) |
| count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); |
| return pages; |
| } |
| |
| static inline unsigned long change_pud_range(struct vm_area_struct *vma, |
| p4d_t *p4d, unsigned long addr, unsigned long end, |
| pgprot_t newprot, unsigned long cp_flags) |
| { |
| pud_t *pud; |
| unsigned long next; |
| unsigned long pages = 0; |
| |
| pud = pud_offset(p4d, addr); |
| do { |
| next = pud_addr_end(addr, end); |
| if (pud_none_or_clear_bad(pud)) |
| continue; |
| pages += change_pmd_range(vma, pud, addr, next, newprot, |
| cp_flags); |
| } while (pud++, addr = next, addr != end); |
| |
| return pages; |
| } |
| |
| static inline unsigned long change_p4d_range(struct vm_area_struct *vma, |
| pgd_t *pgd, unsigned long addr, unsigned long end, |
| pgprot_t newprot, unsigned long cp_flags) |
| { |
| p4d_t *p4d; |
| unsigned long next; |
| unsigned long pages = 0; |
| |
| p4d = p4d_offset(pgd, addr); |
| do { |
| next = p4d_addr_end(addr, end); |
| if (p4d_none_or_clear_bad(p4d)) |
| continue; |
| pages += change_pud_range(vma, p4d, addr, next, newprot, |
| cp_flags); |
| } while (p4d++, addr = next, addr != end); |
| |
| return pages; |
| } |
| |
| static unsigned long change_protection_range(struct vm_area_struct *vma, |
| unsigned long addr, unsigned long end, pgprot_t newprot, |
| unsigned long cp_flags) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| pgd_t *pgd; |
| unsigned long next; |
| unsigned long start = addr; |
| unsigned long pages = 0; |
| |
| BUG_ON(addr >= end); |
| pgd = pgd_offset(mm, addr); |
| flush_cache_range(vma, addr, end); |
| inc_tlb_flush_pending(mm); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (pgd_none_or_clear_bad(pgd)) |
| continue; |
| pages += change_p4d_range(vma, pgd, addr, next, newprot, |
| cp_flags); |
| } while (pgd++, addr = next, addr != end); |
| |
| /* Only flush the TLB if we actually modified any entries: */ |
| if (pages) |
| flush_tlb_range(vma, start, end); |
| dec_tlb_flush_pending(mm); |
| |
| return pages; |
| } |
| |
| unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, pgprot_t newprot, |
| unsigned long cp_flags) |
| { |
| unsigned long pages; |
| |
| BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL); |
| |
| if (is_vm_hugetlb_page(vma)) |
| pages = hugetlb_change_protection(vma, start, end, newprot); |
| else |
| pages = change_protection_range(vma, start, end, newprot, |
| cp_flags); |
| |
| return pages; |
| } |
| |
| static int prot_none_pte_entry(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? |
| 0 : -EACCES; |
| } |
| |
| static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long next, |
| struct mm_walk *walk) |
| { |
| return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? |
| 0 : -EACCES; |
| } |
| |
| static int prot_none_test(unsigned long addr, unsigned long next, |
| struct mm_walk *walk) |
| { |
| return 0; |
| } |
| |
| static const struct mm_walk_ops prot_none_walk_ops = { |
| .pte_entry = prot_none_pte_entry, |
| .hugetlb_entry = prot_none_hugetlb_entry, |
| .test_walk = prot_none_test, |
| }; |
| |
| int |
| mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, |
| unsigned long start, unsigned long end, unsigned long newflags) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long oldflags = vma->vm_flags; |
| long nrpages = (end - start) >> PAGE_SHIFT; |
| unsigned long charged = 0; |
| pgoff_t pgoff; |
| int error; |
| int dirty_accountable = 0; |
| |
| if (newflags == oldflags) { |
| *pprev = vma; |
| return 0; |
| } |
| |
| /* |
| * Do PROT_NONE PFN permission checks here when we can still |
| * bail out without undoing a lot of state. This is a rather |
| * uncommon case, so doesn't need to be very optimized. |
| */ |
| if (arch_has_pfn_modify_check() && |
| (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && |
| (newflags & VM_ACCESS_FLAGS) == 0) { |
| pgprot_t new_pgprot = vm_get_page_prot(newflags); |
| |
| error = walk_page_range(current->mm, start, end, |
| &prot_none_walk_ops, &new_pgprot); |
| if (error) |
| return error; |
| } |
| |
| /* |
| * If we make a private mapping writable we increase our commit; |
| * but (without finer accounting) cannot reduce our commit if we |
| * make it unwritable again. hugetlb mapping were accounted for |
| * even if read-only so there is no need to account for them here |
| */ |
| if (newflags & VM_WRITE) { |
| /* Check space limits when area turns into data. */ |
| if (!may_expand_vm(mm, newflags, nrpages) && |
| may_expand_vm(mm, oldflags, nrpages)) |
| return -ENOMEM; |
| if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| |
| VM_SHARED|VM_NORESERVE))) { |
| charged = nrpages; |
| if (security_vm_enough_memory_mm(mm, charged)) |
| return -ENOMEM; |
| newflags |= VM_ACCOUNT; |
| } |
| } |
| |
| /* |
| * First try to merge with previous and/or next vma. |
| */ |
| pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
| *pprev = vma_merge(mm, *pprev, start, end, newflags, |
| vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), |
| vma->vm_userfaultfd_ctx); |
| if (*pprev) { |
| vma = *pprev; |
| VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); |
| goto success; |
| } |
| |
| *pprev = vma; |
| |
| if (start != vma->vm_start) { |
| error = split_vma(mm, vma, start, 1); |
| if (error) |
| goto fail; |
| } |
| |
| if (end != vma->vm_end) { |
| error = split_vma(mm, vma, end, 0); |
| if (error) |
| goto fail; |
| } |
| |
| success: |
| /* |
| * vm_flags and vm_page_prot are protected by the mmap_lock |
| * held in write mode. |
| */ |
| vma->vm_flags = newflags; |
| dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot); |
| vma_set_page_prot(vma); |
| |
| change_protection(vma, start, end, vma->vm_page_prot, |
| dirty_accountable ? MM_CP_DIRTY_ACCT : 0); |
| |
| /* |
| * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major |
| * fault on access. |
| */ |
| if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && |
| (newflags & VM_WRITE)) { |
| populate_vma_page_range(vma, start, end, NULL); |
| } |
| |
| vm_stat_account(mm, oldflags, -nrpages); |
| vm_stat_account(mm, newflags, nrpages); |
| perf_event_mmap(vma); |
| return 0; |
| |
| fail: |
| vm_unacct_memory(charged); |
| return error; |
| } |
| |
| /* |
| * pkey==-1 when doing a legacy mprotect() |
| */ |
| static int do_mprotect_pkey(unsigned long start, size_t len, |
| unsigned long prot, int pkey) |
| { |
| unsigned long nstart, end, tmp, reqprot; |
| struct vm_area_struct *vma, *prev; |
| int error = -EINVAL; |
| const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); |
| const bool rier = (current->personality & READ_IMPLIES_EXEC) && |
| (prot & PROT_READ); |
| |
| start = untagged_addr(start); |
| |
| prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); |
| if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ |
| return -EINVAL; |
| |
| if (start & ~PAGE_MASK) |
| return -EINVAL; |
| if (!len) |
| return 0; |
| len = PAGE_ALIGN(len); |
| end = start + len; |
| if (end <= start) |
| return -ENOMEM; |
| if (!arch_validate_prot(prot, start)) |
| return -EINVAL; |
| |
| reqprot = prot; |
| |
| if (mmap_write_lock_killable(current->mm)) |
| return -EINTR; |
| |
| /* |
| * If userspace did not allocate the pkey, do not let |
| * them use it here. |
| */ |
| error = -EINVAL; |
| if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) |
| goto out; |
| |
| vma = find_vma(current->mm, start); |
| error = -ENOMEM; |
| if (!vma) |
| goto out; |
| prev = vma->vm_prev; |
| if (unlikely(grows & PROT_GROWSDOWN)) { |
| if (vma->vm_start >= end) |
| goto out; |
| start = vma->vm_start; |
| error = -EINVAL; |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| goto out; |
| } else { |
| if (vma->vm_start > start) |
| goto out; |
| if (unlikely(grows & PROT_GROWSUP)) { |
| end = vma->vm_end; |
| error = -EINVAL; |
| if (!(vma->vm_flags & VM_GROWSUP)) |
| goto out; |
| } |
| } |
| if (start > vma->vm_start) |
| prev = vma; |
| |
| for (nstart = start ; ; ) { |
| unsigned long mask_off_old_flags; |
| unsigned long newflags; |
| int new_vma_pkey; |
| |
| /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ |
| |
| /* Does the application expect PROT_READ to imply PROT_EXEC */ |
| if (rier && (vma->vm_flags & VM_MAYEXEC)) |
| prot |= PROT_EXEC; |
| |
| /* |
| * Each mprotect() call explicitly passes r/w/x permissions. |
| * If a permission is not passed to mprotect(), it must be |
| * cleared from the VMA. |
| */ |
| mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | |
| VM_FLAGS_CLEAR; |
| |
| new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); |
| newflags = calc_vm_prot_bits(prot, new_vma_pkey); |
| newflags |= (vma->vm_flags & ~mask_off_old_flags); |
| |
| /* newflags >> 4 shift VM_MAY% in place of VM_% */ |
| if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) { |
| error = -EACCES; |
| goto out; |
| } |
| |
| /* Allow architectures to sanity-check the new flags */ |
| if (!arch_validate_flags(newflags)) { |
| error = -EINVAL; |
| goto out; |
| } |
| |
| error = security_file_mprotect(vma, reqprot, prot); |
| if (error) |
| goto out; |
| |
| tmp = vma->vm_end; |
| if (tmp > end) |
| tmp = end; |
| |
| if (vma->vm_ops && vma->vm_ops->mprotect) { |
| error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags); |
| if (error) |
| goto out; |
| } |
| |
| error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); |
| if (error) |
| goto out; |
| |
| nstart = tmp; |
| |
| if (nstart < prev->vm_end) |
| nstart = prev->vm_end; |
| if (nstart >= end) |
| goto out; |
| |
| vma = prev->vm_next; |
| if (!vma || vma->vm_start != nstart) { |
| error = -ENOMEM; |
| goto out; |
| } |
| prot = reqprot; |
| } |
| out: |
| mmap_write_unlock(current->mm); |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, |
| unsigned long, prot) |
| { |
| return do_mprotect_pkey(start, len, prot, -1); |
| } |
| |
| #ifdef CONFIG_ARCH_HAS_PKEYS |
| |
| SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, |
| unsigned long, prot, int, pkey) |
| { |
| return do_mprotect_pkey(start, len, prot, pkey); |
| } |
| |
| SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) |
| { |
| int pkey; |
| int ret; |
| |
| /* No flags supported yet. */ |
| if (flags) |
| return -EINVAL; |
| /* check for unsupported init values */ |
| if (init_val & ~PKEY_ACCESS_MASK) |
| return -EINVAL; |
| |
| mmap_write_lock(current->mm); |
| pkey = mm_pkey_alloc(current->mm); |
| |
| ret = -ENOSPC; |
| if (pkey == -1) |
| goto out; |
| |
| ret = arch_set_user_pkey_access(current, pkey, init_val); |
| if (ret) { |
| mm_pkey_free(current->mm, pkey); |
| goto out; |
| } |
| ret = pkey; |
| out: |
| mmap_write_unlock(current->mm); |
| return ret; |
| } |
| |
| SYSCALL_DEFINE1(pkey_free, int, pkey) |
| { |
| int ret; |
| |
| mmap_write_lock(current->mm); |
| ret = mm_pkey_free(current->mm, pkey); |
| mmap_write_unlock(current->mm); |
| |
| /* |
| * We could provie warnings or errors if any VMA still |
| * has the pkey set here. |
| */ |
| return ret; |
| } |
| |
| #endif /* CONFIG_ARCH_HAS_PKEYS */ |