| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale FlexTimer Module (FTM) alarm device driver. |
| * |
| * Copyright 2014 Freescale Semiconductor, Inc. |
| * Copyright 2019 NXP |
| * |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/module.h> |
| #include <linux/fsl/ftm.h> |
| #include <linux/rtc.h> |
| #include <linux/time.h> |
| |
| #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT) |
| |
| /* |
| * Select Fixed frequency clock (32KHz) as clock source |
| * of FlexTimer Module |
| */ |
| #define FTM_SC_CLKS_FIXED_FREQ 0x02 |
| #define FIXED_FREQ_CLK 32000 |
| |
| /* Select 128 (2^7) as divider factor */ |
| #define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK) |
| |
| /* Maximum counter value in FlexTimer's CNT registers */ |
| #define MAX_COUNT_VAL 0xffff |
| |
| struct ftm_rtc { |
| struct rtc_device *rtc_dev; |
| void __iomem *base; |
| bool big_endian; |
| u32 alarm_freq; |
| }; |
| |
| static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg) |
| { |
| if (dev->big_endian) |
| return ioread32be(dev->base + reg); |
| else |
| return ioread32(dev->base + reg); |
| } |
| |
| static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val) |
| { |
| if (dev->big_endian) |
| iowrite32be(val, dev->base + reg); |
| else |
| iowrite32(val, dev->base + reg); |
| } |
| |
| static inline void ftm_counter_enable(struct ftm_rtc *rtc) |
| { |
| u32 val; |
| |
| /* select and enable counter clock source */ |
| val = rtc_readl(rtc, FTM_SC); |
| val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); |
| val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ)); |
| rtc_writel(rtc, FTM_SC, val); |
| } |
| |
| static inline void ftm_counter_disable(struct ftm_rtc *rtc) |
| { |
| u32 val; |
| |
| /* disable counter clock source */ |
| val = rtc_readl(rtc, FTM_SC); |
| val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); |
| rtc_writel(rtc, FTM_SC, val); |
| } |
| |
| static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc) |
| { |
| unsigned int timeout = 100; |
| |
| /* |
| *Fix errata A-007728 for flextimer |
| * If the FTM counter reaches the FTM_MOD value between |
| * the reading of the TOF bit and the writing of 0 to |
| * the TOF bit, the process of clearing the TOF bit |
| * does not work as expected when FTMx_CONF[NUMTOF] != 0 |
| * and the current TOF count is less than FTMx_CONF[NUMTOF]. |
| * If the above condition is met, the TOF bit remains set. |
| * If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the |
| * TOF interrupt also remains asserted. |
| * |
| * Above is the errata discription |
| * |
| * In one word: software clearing TOF bit not works when |
| * FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter |
| * reaches the FTM_MOD value. |
| * |
| * The workaround is clearing TOF bit until it works |
| * (FTM counter doesn't always reache the FTM_MOD anyway), |
| * which may cost some cycles. |
| */ |
| while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--) |
| rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF)); |
| } |
| |
| static inline void ftm_irq_enable(struct ftm_rtc *rtc) |
| { |
| u32 val; |
| |
| val = rtc_readl(rtc, FTM_SC); |
| val |= FTM_SC_TOIE; |
| rtc_writel(rtc, FTM_SC, val); |
| } |
| |
| static inline void ftm_irq_disable(struct ftm_rtc *rtc) |
| { |
| u32 val; |
| |
| val = rtc_readl(rtc, FTM_SC); |
| val &= ~FTM_SC_TOIE; |
| rtc_writel(rtc, FTM_SC, val); |
| } |
| |
| static inline void ftm_reset_counter(struct ftm_rtc *rtc) |
| { |
| /* |
| * The CNT register contains the FTM counter value. |
| * Reset clears the CNT register. Writing any value to COUNT |
| * updates the counter with its initial value, CNTIN. |
| */ |
| rtc_writel(rtc, FTM_CNT, 0x00); |
| } |
| |
| static void ftm_clean_alarm(struct ftm_rtc *rtc) |
| { |
| ftm_counter_disable(rtc); |
| |
| rtc_writel(rtc, FTM_CNTIN, 0x00); |
| rtc_writel(rtc, FTM_MOD, ~0U); |
| |
| ftm_reset_counter(rtc); |
| } |
| |
| static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev) |
| { |
| struct ftm_rtc *rtc = dev; |
| |
| ftm_irq_acknowledge(rtc); |
| ftm_irq_disable(rtc); |
| ftm_clean_alarm(rtc); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int ftm_rtc_alarm_irq_enable(struct device *dev, |
| unsigned int enabled) |
| { |
| struct ftm_rtc *rtc = dev_get_drvdata(dev); |
| |
| if (enabled) |
| ftm_irq_enable(rtc); |
| else |
| ftm_irq_disable(rtc); |
| |
| return 0; |
| } |
| |
| /* |
| * Note: |
| * The function is not really getting time from the RTC |
| * since FlexTimer is not a RTC device, but we need to |
| * get time to setup alarm, so we are using system time |
| * for now. |
| */ |
| static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct timespec64 ts64; |
| |
| ktime_get_real_ts64(&ts64); |
| rtc_time_to_tm(ts64.tv_sec, tm); |
| |
| return 0; |
| } |
| |
| static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) |
| { |
| return 0; |
| } |
| |
| /* |
| * 1. Select fixed frequency clock (32KHz) as clock source; |
| * 2. Select 128 (2^7) as divider factor; |
| * So clock is 250 Hz (32KHz/128). |
| * |
| * 3. FlexTimer's CNT register is a 32bit register, |
| * but the register's 16 bit as counter value,it's other 16 bit |
| * is reserved.So minimum counter value is 0x0,maximum counter |
| * value is 0xffff. |
| * So max alarm value is 262 (65536 / 250) seconds |
| */ |
| static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) |
| { |
| struct rtc_time tm; |
| unsigned long now, alm_time, cycle; |
| struct ftm_rtc *rtc = dev_get_drvdata(dev); |
| |
| ftm_rtc_read_time(dev, &tm); |
| rtc_tm_to_time(&tm, &now); |
| rtc_tm_to_time(&alm->time, &alm_time); |
| |
| ftm_clean_alarm(rtc); |
| cycle = (alm_time - now) * rtc->alarm_freq; |
| if (cycle > MAX_COUNT_VAL) { |
| pr_err("Out of alarm range {0~262} seconds.\n"); |
| return -ERANGE; |
| } |
| |
| ftm_irq_disable(rtc); |
| |
| /* |
| * The counter increments until the value of MOD is reached, |
| * at which point the counter is reloaded with the value of CNTIN. |
| * The TOF (the overflow flag) bit is set when the FTM counter |
| * changes from MOD to CNTIN. So we should using the cycle - 1. |
| */ |
| rtc_writel(rtc, FTM_MOD, cycle - 1); |
| |
| ftm_counter_enable(rtc); |
| ftm_irq_enable(rtc); |
| |
| return 0; |
| |
| } |
| |
| static const struct rtc_class_ops ftm_rtc_ops = { |
| .read_time = ftm_rtc_read_time, |
| .read_alarm = ftm_rtc_read_alarm, |
| .set_alarm = ftm_rtc_set_alarm, |
| .alarm_irq_enable = ftm_rtc_alarm_irq_enable, |
| }; |
| |
| static int ftm_rtc_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct resource *r; |
| int irq; |
| int ret; |
| struct ftm_rtc *rtc; |
| |
| rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); |
| if (unlikely(!rtc)) { |
| dev_err(&pdev->dev, "cannot alloc memory for rtc\n"); |
| return -ENOMEM; |
| } |
| |
| platform_set_drvdata(pdev, rtc); |
| |
| rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev); |
| if (IS_ERR(rtc->rtc_dev)) |
| return PTR_ERR(rtc->rtc_dev); |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!r) { |
| dev_err(&pdev->dev, "cannot get resource for rtc\n"); |
| return -ENODEV; |
| } |
| |
| rtc->base = devm_ioremap_resource(&pdev->dev, r); |
| if (IS_ERR(rtc->base)) { |
| dev_err(&pdev->dev, "cannot ioremap resource for rtc\n"); |
| return PTR_ERR(rtc->base); |
| } |
| |
| irq = irq_of_parse_and_map(np, 0); |
| if (irq <= 0) { |
| dev_err(&pdev->dev, "unable to get IRQ from DT, %d\n", irq); |
| return -EINVAL; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt, |
| IRQF_NO_SUSPEND, dev_name(&pdev->dev), rtc); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to request irq\n"); |
| return ret; |
| } |
| |
| rtc->big_endian = of_property_read_bool(np, "big-endian"); |
| rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV; |
| rtc->rtc_dev->ops = &ftm_rtc_ops; |
| |
| device_init_wakeup(&pdev->dev, true); |
| |
| ret = rtc_register_device(rtc->rtc_dev); |
| if (ret) { |
| dev_err(&pdev->dev, "can't register rtc device\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id ftm_rtc_match[] = { |
| { .compatible = "fsl,ls1012a-ftm-alarm", }, |
| { .compatible = "fsl,ls1021a-ftm-alarm", }, |
| { .compatible = "fsl,ls1028a-ftm-alarm", }, |
| { .compatible = "fsl,ls1043a-ftm-alarm", }, |
| { .compatible = "fsl,ls1046a-ftm-alarm", }, |
| { .compatible = "fsl,ls1088a-ftm-alarm", }, |
| { .compatible = "fsl,ls208xa-ftm-alarm", }, |
| { .compatible = "fsl,lx2160a-ftm-alarm", }, |
| { }, |
| }; |
| |
| static struct platform_driver ftm_rtc_driver = { |
| .probe = ftm_rtc_probe, |
| .driver = { |
| .name = "ftm-alarm", |
| .of_match_table = ftm_rtc_match, |
| }, |
| }; |
| |
| static int __init ftm_alarm_init(void) |
| { |
| return platform_driver_register(&ftm_rtc_driver); |
| } |
| |
| device_initcall(ftm_alarm_init); |
| |
| MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver"); |
| MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>"); |
| MODULE_LICENSE("GPL"); |