| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019 Facebook */ |
| #include <linux/rculist.h> |
| #include <linux/list.h> |
| #include <linux/hash.h> |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/bpf.h> |
| #include <net/bpf_sk_storage.h> |
| #include <net/sock.h> |
| #include <uapi/linux/btf.h> |
| |
| static atomic_t cache_idx; |
| |
| struct bucket { |
| struct hlist_head list; |
| raw_spinlock_t lock; |
| }; |
| |
| /* Thp map is not the primary owner of a bpf_sk_storage_elem. |
| * Instead, the sk->sk_bpf_storage is. |
| * |
| * The map (bpf_sk_storage_map) is for two purposes |
| * 1. Define the size of the "sk local storage". It is |
| * the map's value_size. |
| * |
| * 2. Maintain a list to keep track of all elems such |
| * that they can be cleaned up during the map destruction. |
| * |
| * When a bpf local storage is being looked up for a |
| * particular sk, the "bpf_map" pointer is actually used |
| * as the "key" to search in the list of elem in |
| * sk->sk_bpf_storage. |
| * |
| * Hence, consider sk->sk_bpf_storage is the mini-map |
| * with the "bpf_map" pointer as the searching key. |
| */ |
| struct bpf_sk_storage_map { |
| struct bpf_map map; |
| /* Lookup elem does not require accessing the map. |
| * |
| * Updating/Deleting requires a bucket lock to |
| * link/unlink the elem from the map. Having |
| * multiple buckets to improve contention. |
| */ |
| struct bucket *buckets; |
| u32 bucket_log; |
| u16 elem_size; |
| u16 cache_idx; |
| }; |
| |
| struct bpf_sk_storage_data { |
| /* smap is used as the searching key when looking up |
| * from sk->sk_bpf_storage. |
| * |
| * Put it in the same cacheline as the data to minimize |
| * the number of cachelines access during the cache hit case. |
| */ |
| struct bpf_sk_storage_map __rcu *smap; |
| u8 data[0] __aligned(8); |
| }; |
| |
| /* Linked to bpf_sk_storage and bpf_sk_storage_map */ |
| struct bpf_sk_storage_elem { |
| struct hlist_node map_node; /* Linked to bpf_sk_storage_map */ |
| struct hlist_node snode; /* Linked to bpf_sk_storage */ |
| struct bpf_sk_storage __rcu *sk_storage; |
| struct rcu_head rcu; |
| /* 8 bytes hole */ |
| /* The data is stored in aother cacheline to minimize |
| * the number of cachelines access during a cache hit. |
| */ |
| struct bpf_sk_storage_data sdata ____cacheline_aligned; |
| }; |
| |
| #define SELEM(_SDATA) container_of((_SDATA), struct bpf_sk_storage_elem, sdata) |
| #define SDATA(_SELEM) (&(_SELEM)->sdata) |
| #define BPF_SK_STORAGE_CACHE_SIZE 16 |
| |
| struct bpf_sk_storage { |
| struct bpf_sk_storage_data __rcu *cache[BPF_SK_STORAGE_CACHE_SIZE]; |
| struct hlist_head list; /* List of bpf_sk_storage_elem */ |
| struct sock *sk; /* The sk that owns the the above "list" of |
| * bpf_sk_storage_elem. |
| */ |
| struct rcu_head rcu; |
| raw_spinlock_t lock; /* Protect adding/removing from the "list" */ |
| }; |
| |
| static struct bucket *select_bucket(struct bpf_sk_storage_map *smap, |
| struct bpf_sk_storage_elem *selem) |
| { |
| return &smap->buckets[hash_ptr(selem, smap->bucket_log)]; |
| } |
| |
| static int omem_charge(struct sock *sk, unsigned int size) |
| { |
| /* same check as in sock_kmalloc() */ |
| if (size <= sysctl_optmem_max && |
| atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { |
| atomic_add(size, &sk->sk_omem_alloc); |
| return 0; |
| } |
| |
| return -ENOMEM; |
| } |
| |
| static bool selem_linked_to_sk(const struct bpf_sk_storage_elem *selem) |
| { |
| return !hlist_unhashed(&selem->snode); |
| } |
| |
| static bool selem_linked_to_map(const struct bpf_sk_storage_elem *selem) |
| { |
| return !hlist_unhashed(&selem->map_node); |
| } |
| |
| static struct bpf_sk_storage_elem *selem_alloc(struct bpf_sk_storage_map *smap, |
| struct sock *sk, void *value, |
| bool charge_omem) |
| { |
| struct bpf_sk_storage_elem *selem; |
| |
| if (charge_omem && omem_charge(sk, smap->elem_size)) |
| return NULL; |
| |
| selem = kzalloc(smap->elem_size, GFP_ATOMIC | __GFP_NOWARN); |
| if (selem) { |
| if (value) |
| memcpy(SDATA(selem)->data, value, smap->map.value_size); |
| return selem; |
| } |
| |
| if (charge_omem) |
| atomic_sub(smap->elem_size, &sk->sk_omem_alloc); |
| |
| return NULL; |
| } |
| |
| /* sk_storage->lock must be held and selem->sk_storage == sk_storage. |
| * The caller must ensure selem->smap is still valid to be |
| * dereferenced for its smap->elem_size and smap->cache_idx. |
| */ |
| static bool __selem_unlink_sk(struct bpf_sk_storage *sk_storage, |
| struct bpf_sk_storage_elem *selem, |
| bool uncharge_omem) |
| { |
| struct bpf_sk_storage_map *smap; |
| bool free_sk_storage; |
| struct sock *sk; |
| |
| smap = rcu_dereference(SDATA(selem)->smap); |
| sk = sk_storage->sk; |
| |
| /* All uncharging on sk->sk_omem_alloc must be done first. |
| * sk may be freed once the last selem is unlinked from sk_storage. |
| */ |
| if (uncharge_omem) |
| atomic_sub(smap->elem_size, &sk->sk_omem_alloc); |
| |
| free_sk_storage = hlist_is_singular_node(&selem->snode, |
| &sk_storage->list); |
| if (free_sk_storage) { |
| atomic_sub(sizeof(struct bpf_sk_storage), &sk->sk_omem_alloc); |
| sk_storage->sk = NULL; |
| /* After this RCU_INIT, sk may be freed and cannot be used */ |
| RCU_INIT_POINTER(sk->sk_bpf_storage, NULL); |
| |
| /* sk_storage is not freed now. sk_storage->lock is |
| * still held and raw_spin_unlock_bh(&sk_storage->lock) |
| * will be done by the caller. |
| * |
| * Although the unlock will be done under |
| * rcu_read_lock(), it is more intutivie to |
| * read if kfree_rcu(sk_storage, rcu) is done |
| * after the raw_spin_unlock_bh(&sk_storage->lock). |
| * |
| * Hence, a "bool free_sk_storage" is returned |
| * to the caller which then calls the kfree_rcu() |
| * after unlock. |
| */ |
| } |
| hlist_del_init_rcu(&selem->snode); |
| if (rcu_access_pointer(sk_storage->cache[smap->cache_idx]) == |
| SDATA(selem)) |
| RCU_INIT_POINTER(sk_storage->cache[smap->cache_idx], NULL); |
| |
| kfree_rcu(selem, rcu); |
| |
| return free_sk_storage; |
| } |
| |
| static void selem_unlink_sk(struct bpf_sk_storage_elem *selem) |
| { |
| struct bpf_sk_storage *sk_storage; |
| bool free_sk_storage = false; |
| |
| if (unlikely(!selem_linked_to_sk(selem))) |
| /* selem has already been unlinked from sk */ |
| return; |
| |
| sk_storage = rcu_dereference(selem->sk_storage); |
| raw_spin_lock_bh(&sk_storage->lock); |
| if (likely(selem_linked_to_sk(selem))) |
| free_sk_storage = __selem_unlink_sk(sk_storage, selem, true); |
| raw_spin_unlock_bh(&sk_storage->lock); |
| |
| if (free_sk_storage) |
| kfree_rcu(sk_storage, rcu); |
| } |
| |
| /* sk_storage->lock must be held and sk_storage->list cannot be empty */ |
| static void __selem_link_sk(struct bpf_sk_storage *sk_storage, |
| struct bpf_sk_storage_elem *selem) |
| { |
| RCU_INIT_POINTER(selem->sk_storage, sk_storage); |
| hlist_add_head(&selem->snode, &sk_storage->list); |
| } |
| |
| static void selem_unlink_map(struct bpf_sk_storage_elem *selem) |
| { |
| struct bpf_sk_storage_map *smap; |
| struct bucket *b; |
| |
| if (unlikely(!selem_linked_to_map(selem))) |
| /* selem has already be unlinked from smap */ |
| return; |
| |
| smap = rcu_dereference(SDATA(selem)->smap); |
| b = select_bucket(smap, selem); |
| raw_spin_lock_bh(&b->lock); |
| if (likely(selem_linked_to_map(selem))) |
| hlist_del_init_rcu(&selem->map_node); |
| raw_spin_unlock_bh(&b->lock); |
| } |
| |
| static void selem_link_map(struct bpf_sk_storage_map *smap, |
| struct bpf_sk_storage_elem *selem) |
| { |
| struct bucket *b = select_bucket(smap, selem); |
| |
| raw_spin_lock_bh(&b->lock); |
| RCU_INIT_POINTER(SDATA(selem)->smap, smap); |
| hlist_add_head_rcu(&selem->map_node, &b->list); |
| raw_spin_unlock_bh(&b->lock); |
| } |
| |
| static void selem_unlink(struct bpf_sk_storage_elem *selem) |
| { |
| /* Always unlink from map before unlinking from sk_storage |
| * because selem will be freed after successfully unlinked from |
| * the sk_storage. |
| */ |
| selem_unlink_map(selem); |
| selem_unlink_sk(selem); |
| } |
| |
| static struct bpf_sk_storage_data * |
| __sk_storage_lookup(struct bpf_sk_storage *sk_storage, |
| struct bpf_sk_storage_map *smap, |
| bool cacheit_lockit) |
| { |
| struct bpf_sk_storage_data *sdata; |
| struct bpf_sk_storage_elem *selem; |
| |
| /* Fast path (cache hit) */ |
| sdata = rcu_dereference(sk_storage->cache[smap->cache_idx]); |
| if (sdata && rcu_access_pointer(sdata->smap) == smap) |
| return sdata; |
| |
| /* Slow path (cache miss) */ |
| hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) |
| if (rcu_access_pointer(SDATA(selem)->smap) == smap) |
| break; |
| |
| if (!selem) |
| return NULL; |
| |
| sdata = SDATA(selem); |
| if (cacheit_lockit) { |
| /* spinlock is needed to avoid racing with the |
| * parallel delete. Otherwise, publishing an already |
| * deleted sdata to the cache will become a use-after-free |
| * problem in the next __sk_storage_lookup(). |
| */ |
| raw_spin_lock_bh(&sk_storage->lock); |
| if (selem_linked_to_sk(selem)) |
| rcu_assign_pointer(sk_storage->cache[smap->cache_idx], |
| sdata); |
| raw_spin_unlock_bh(&sk_storage->lock); |
| } |
| |
| return sdata; |
| } |
| |
| static struct bpf_sk_storage_data * |
| sk_storage_lookup(struct sock *sk, struct bpf_map *map, bool cacheit_lockit) |
| { |
| struct bpf_sk_storage *sk_storage; |
| struct bpf_sk_storage_map *smap; |
| |
| sk_storage = rcu_dereference(sk->sk_bpf_storage); |
| if (!sk_storage) |
| return NULL; |
| |
| smap = (struct bpf_sk_storage_map *)map; |
| return __sk_storage_lookup(sk_storage, smap, cacheit_lockit); |
| } |
| |
| static int check_flags(const struct bpf_sk_storage_data *old_sdata, |
| u64 map_flags) |
| { |
| if (old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) |
| /* elem already exists */ |
| return -EEXIST; |
| |
| if (!old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) |
| /* elem doesn't exist, cannot update it */ |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| static int sk_storage_alloc(struct sock *sk, |
| struct bpf_sk_storage_map *smap, |
| struct bpf_sk_storage_elem *first_selem) |
| { |
| struct bpf_sk_storage *prev_sk_storage, *sk_storage; |
| int err; |
| |
| err = omem_charge(sk, sizeof(*sk_storage)); |
| if (err) |
| return err; |
| |
| sk_storage = kzalloc(sizeof(*sk_storage), GFP_ATOMIC | __GFP_NOWARN); |
| if (!sk_storage) { |
| err = -ENOMEM; |
| goto uncharge; |
| } |
| INIT_HLIST_HEAD(&sk_storage->list); |
| raw_spin_lock_init(&sk_storage->lock); |
| sk_storage->sk = sk; |
| |
| __selem_link_sk(sk_storage, first_selem); |
| selem_link_map(smap, first_selem); |
| /* Publish sk_storage to sk. sk->sk_lock cannot be acquired. |
| * Hence, atomic ops is used to set sk->sk_bpf_storage |
| * from NULL to the newly allocated sk_storage ptr. |
| * |
| * From now on, the sk->sk_bpf_storage pointer is protected |
| * by the sk_storage->lock. Hence, when freeing |
| * the sk->sk_bpf_storage, the sk_storage->lock must |
| * be held before setting sk->sk_bpf_storage to NULL. |
| */ |
| prev_sk_storage = cmpxchg((struct bpf_sk_storage **)&sk->sk_bpf_storage, |
| NULL, sk_storage); |
| if (unlikely(prev_sk_storage)) { |
| selem_unlink_map(first_selem); |
| err = -EAGAIN; |
| goto uncharge; |
| |
| /* Note that even first_selem was linked to smap's |
| * bucket->list, first_selem can be freed immediately |
| * (instead of kfree_rcu) because |
| * bpf_sk_storage_map_free() does a |
| * synchronize_rcu() before walking the bucket->list. |
| * Hence, no one is accessing selem from the |
| * bucket->list under rcu_read_lock(). |
| */ |
| } |
| |
| return 0; |
| |
| uncharge: |
| kfree(sk_storage); |
| atomic_sub(sizeof(*sk_storage), &sk->sk_omem_alloc); |
| return err; |
| } |
| |
| /* sk cannot be going away because it is linking new elem |
| * to sk->sk_bpf_storage. (i.e. sk->sk_refcnt cannot be 0). |
| * Otherwise, it will become a leak (and other memory issues |
| * during map destruction). |
| */ |
| static struct bpf_sk_storage_data *sk_storage_update(struct sock *sk, |
| struct bpf_map *map, |
| void *value, |
| u64 map_flags) |
| { |
| struct bpf_sk_storage_data *old_sdata = NULL; |
| struct bpf_sk_storage_elem *selem; |
| struct bpf_sk_storage *sk_storage; |
| struct bpf_sk_storage_map *smap; |
| int err; |
| |
| /* BPF_EXIST and BPF_NOEXIST cannot be both set */ |
| if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST) || |
| /* BPF_F_LOCK can only be used in a value with spin_lock */ |
| unlikely((map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) |
| return ERR_PTR(-EINVAL); |
| |
| smap = (struct bpf_sk_storage_map *)map; |
| sk_storage = rcu_dereference(sk->sk_bpf_storage); |
| if (!sk_storage || hlist_empty(&sk_storage->list)) { |
| /* Very first elem for this sk */ |
| err = check_flags(NULL, map_flags); |
| if (err) |
| return ERR_PTR(err); |
| |
| selem = selem_alloc(smap, sk, value, true); |
| if (!selem) |
| return ERR_PTR(-ENOMEM); |
| |
| err = sk_storage_alloc(sk, smap, selem); |
| if (err) { |
| kfree(selem); |
| atomic_sub(smap->elem_size, &sk->sk_omem_alloc); |
| return ERR_PTR(err); |
| } |
| |
| return SDATA(selem); |
| } |
| |
| if ((map_flags & BPF_F_LOCK) && !(map_flags & BPF_NOEXIST)) { |
| /* Hoping to find an old_sdata to do inline update |
| * such that it can avoid taking the sk_storage->lock |
| * and changing the lists. |
| */ |
| old_sdata = __sk_storage_lookup(sk_storage, smap, false); |
| err = check_flags(old_sdata, map_flags); |
| if (err) |
| return ERR_PTR(err); |
| if (old_sdata && selem_linked_to_sk(SELEM(old_sdata))) { |
| copy_map_value_locked(map, old_sdata->data, |
| value, false); |
| return old_sdata; |
| } |
| } |
| |
| raw_spin_lock_bh(&sk_storage->lock); |
| |
| /* Recheck sk_storage->list under sk_storage->lock */ |
| if (unlikely(hlist_empty(&sk_storage->list))) { |
| /* A parallel del is happening and sk_storage is going |
| * away. It has just been checked before, so very |
| * unlikely. Return instead of retry to keep things |
| * simple. |
| */ |
| err = -EAGAIN; |
| goto unlock_err; |
| } |
| |
| old_sdata = __sk_storage_lookup(sk_storage, smap, false); |
| err = check_flags(old_sdata, map_flags); |
| if (err) |
| goto unlock_err; |
| |
| if (old_sdata && (map_flags & BPF_F_LOCK)) { |
| copy_map_value_locked(map, old_sdata->data, value, false); |
| selem = SELEM(old_sdata); |
| goto unlock; |
| } |
| |
| /* sk_storage->lock is held. Hence, we are sure |
| * we can unlink and uncharge the old_sdata successfully |
| * later. Hence, instead of charging the new selem now |
| * and then uncharge the old selem later (which may cause |
| * a potential but unnecessary charge failure), avoid taking |
| * a charge at all here (the "!old_sdata" check) and the |
| * old_sdata will not be uncharged later during __selem_unlink_sk(). |
| */ |
| selem = selem_alloc(smap, sk, value, !old_sdata); |
| if (!selem) { |
| err = -ENOMEM; |
| goto unlock_err; |
| } |
| |
| /* First, link the new selem to the map */ |
| selem_link_map(smap, selem); |
| |
| /* Second, link (and publish) the new selem to sk_storage */ |
| __selem_link_sk(sk_storage, selem); |
| |
| /* Third, remove old selem, SELEM(old_sdata) */ |
| if (old_sdata) { |
| selem_unlink_map(SELEM(old_sdata)); |
| __selem_unlink_sk(sk_storage, SELEM(old_sdata), false); |
| } |
| |
| unlock: |
| raw_spin_unlock_bh(&sk_storage->lock); |
| return SDATA(selem); |
| |
| unlock_err: |
| raw_spin_unlock_bh(&sk_storage->lock); |
| return ERR_PTR(err); |
| } |
| |
| static int sk_storage_delete(struct sock *sk, struct bpf_map *map) |
| { |
| struct bpf_sk_storage_data *sdata; |
| |
| sdata = sk_storage_lookup(sk, map, false); |
| if (!sdata) |
| return -ENOENT; |
| |
| selem_unlink(SELEM(sdata)); |
| |
| return 0; |
| } |
| |
| /* Called by __sk_destruct() */ |
| void bpf_sk_storage_free(struct sock *sk) |
| { |
| struct bpf_sk_storage_elem *selem; |
| struct bpf_sk_storage *sk_storage; |
| bool free_sk_storage = false; |
| struct hlist_node *n; |
| |
| rcu_read_lock(); |
| sk_storage = rcu_dereference(sk->sk_bpf_storage); |
| if (!sk_storage) { |
| rcu_read_unlock(); |
| return; |
| } |
| |
| /* Netiher the bpf_prog nor the bpf-map's syscall |
| * could be modifying the sk_storage->list now. |
| * Thus, no elem can be added-to or deleted-from the |
| * sk_storage->list by the bpf_prog or by the bpf-map's syscall. |
| * |
| * It is racing with bpf_sk_storage_map_free() alone |
| * when unlinking elem from the sk_storage->list and |
| * the map's bucket->list. |
| */ |
| raw_spin_lock_bh(&sk_storage->lock); |
| hlist_for_each_entry_safe(selem, n, &sk_storage->list, snode) { |
| /* Always unlink from map before unlinking from |
| * sk_storage. |
| */ |
| selem_unlink_map(selem); |
| free_sk_storage = __selem_unlink_sk(sk_storage, selem, true); |
| } |
| raw_spin_unlock_bh(&sk_storage->lock); |
| rcu_read_unlock(); |
| |
| if (free_sk_storage) |
| kfree_rcu(sk_storage, rcu); |
| } |
| |
| static void bpf_sk_storage_map_free(struct bpf_map *map) |
| { |
| struct bpf_sk_storage_elem *selem; |
| struct bpf_sk_storage_map *smap; |
| struct bucket *b; |
| unsigned int i; |
| |
| smap = (struct bpf_sk_storage_map *)map; |
| |
| synchronize_rcu(); |
| |
| /* bpf prog and the userspace can no longer access this map |
| * now. No new selem (of this map) can be added |
| * to the sk->sk_bpf_storage or to the map bucket's list. |
| * |
| * The elem of this map can be cleaned up here |
| * or |
| * by bpf_sk_storage_free() during __sk_destruct(). |
| */ |
| for (i = 0; i < (1U << smap->bucket_log); i++) { |
| b = &smap->buckets[i]; |
| |
| rcu_read_lock(); |
| /* No one is adding to b->list now */ |
| while ((selem = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(&b->list)), |
| struct bpf_sk_storage_elem, |
| map_node))) { |
| selem_unlink(selem); |
| cond_resched_rcu(); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* bpf_sk_storage_free() may still need to access the map. |
| * e.g. bpf_sk_storage_free() has unlinked selem from the map |
| * which then made the above while((selem = ...)) loop |
| * exited immediately. |
| * |
| * However, the bpf_sk_storage_free() still needs to access |
| * the smap->elem_size to do the uncharging in |
| * __selem_unlink_sk(). |
| * |
| * Hence, wait another rcu grace period for the |
| * bpf_sk_storage_free() to finish. |
| */ |
| synchronize_rcu(); |
| |
| kvfree(smap->buckets); |
| kfree(map); |
| } |
| |
| static int bpf_sk_storage_map_alloc_check(union bpf_attr *attr) |
| { |
| if (attr->map_flags != BPF_F_NO_PREALLOC || attr->max_entries || |
| attr->key_size != sizeof(int) || !attr->value_size || |
| /* Enforce BTF for userspace sk dumping */ |
| !attr->btf_key_type_id || !attr->btf_value_type_id) |
| return -EINVAL; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (attr->value_size >= KMALLOC_MAX_SIZE - |
| MAX_BPF_STACK - sizeof(struct bpf_sk_storage_elem) || |
| /* U16_MAX is much more than enough for sk local storage |
| * considering a tcp_sock is ~2k. |
| */ |
| attr->value_size > U16_MAX - sizeof(struct bpf_sk_storage_elem)) |
| return -E2BIG; |
| |
| return 0; |
| } |
| |
| static struct bpf_map *bpf_sk_storage_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_sk_storage_map *smap; |
| unsigned int i; |
| u32 nbuckets; |
| u64 cost; |
| |
| smap = kzalloc(sizeof(*smap), GFP_USER | __GFP_NOWARN); |
| if (!smap) |
| return ERR_PTR(-ENOMEM); |
| bpf_map_init_from_attr(&smap->map, attr); |
| |
| smap->bucket_log = ilog2(roundup_pow_of_two(num_possible_cpus())); |
| nbuckets = 1U << smap->bucket_log; |
| smap->buckets = kvcalloc(sizeof(*smap->buckets), nbuckets, |
| GFP_USER | __GFP_NOWARN); |
| if (!smap->buckets) { |
| kfree(smap); |
| return ERR_PTR(-ENOMEM); |
| } |
| cost = sizeof(*smap->buckets) * nbuckets + sizeof(*smap); |
| |
| for (i = 0; i < nbuckets; i++) { |
| INIT_HLIST_HEAD(&smap->buckets[i].list); |
| raw_spin_lock_init(&smap->buckets[i].lock); |
| } |
| |
| smap->elem_size = sizeof(struct bpf_sk_storage_elem) + attr->value_size; |
| smap->cache_idx = (unsigned int)atomic_inc_return(&cache_idx) % |
| BPF_SK_STORAGE_CACHE_SIZE; |
| smap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; |
| |
| return &smap->map; |
| } |
| |
| static int notsupp_get_next_key(struct bpf_map *map, void *key, |
| void *next_key) |
| { |
| return -ENOTSUPP; |
| } |
| |
| static int bpf_sk_storage_map_check_btf(const struct bpf_map *map, |
| const struct btf *btf, |
| const struct btf_type *key_type, |
| const struct btf_type *value_type) |
| { |
| u32 int_data; |
| |
| if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) |
| return -EINVAL; |
| |
| int_data = *(u32 *)(key_type + 1); |
| if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static void *bpf_fd_sk_storage_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_sk_storage_data *sdata; |
| struct socket *sock; |
| int fd, err; |
| |
| fd = *(int *)key; |
| sock = sockfd_lookup(fd, &err); |
| if (sock) { |
| sdata = sk_storage_lookup(sock->sk, map, true); |
| sockfd_put(sock); |
| return sdata ? sdata->data : NULL; |
| } |
| |
| return ERR_PTR(err); |
| } |
| |
| static int bpf_fd_sk_storage_update_elem(struct bpf_map *map, void *key, |
| void *value, u64 map_flags) |
| { |
| struct bpf_sk_storage_data *sdata; |
| struct socket *sock; |
| int fd, err; |
| |
| fd = *(int *)key; |
| sock = sockfd_lookup(fd, &err); |
| if (sock) { |
| sdata = sk_storage_update(sock->sk, map, value, map_flags); |
| sockfd_put(sock); |
| return PTR_ERR_OR_ZERO(sdata); |
| } |
| |
| return err; |
| } |
| |
| static int bpf_fd_sk_storage_delete_elem(struct bpf_map *map, void *key) |
| { |
| struct socket *sock; |
| int fd, err; |
| |
| fd = *(int *)key; |
| sock = sockfd_lookup(fd, &err); |
| if (sock) { |
| err = sk_storage_delete(sock->sk, map); |
| sockfd_put(sock); |
| return err; |
| } |
| |
| return err; |
| } |
| |
| BPF_CALL_4(bpf_sk_storage_get, struct bpf_map *, map, struct sock *, sk, |
| void *, value, u64, flags) |
| { |
| struct bpf_sk_storage_data *sdata; |
| |
| if (flags > BPF_SK_STORAGE_GET_F_CREATE) |
| return (unsigned long)NULL; |
| |
| sdata = sk_storage_lookup(sk, map, true); |
| if (sdata) |
| return (unsigned long)sdata->data; |
| |
| if (flags == BPF_SK_STORAGE_GET_F_CREATE && |
| /* Cannot add new elem to a going away sk. |
| * Otherwise, the new elem may become a leak |
| * (and also other memory issues during map |
| * destruction). |
| */ |
| refcount_inc_not_zero(&sk->sk_refcnt)) { |
| sdata = sk_storage_update(sk, map, value, BPF_NOEXIST); |
| /* sk must be a fullsock (guaranteed by verifier), |
| * so sock_gen_put() is unnecessary. |
| */ |
| sock_put(sk); |
| return IS_ERR(sdata) ? |
| (unsigned long)NULL : (unsigned long)sdata->data; |
| } |
| |
| return (unsigned long)NULL; |
| } |
| |
| BPF_CALL_2(bpf_sk_storage_delete, struct bpf_map *, map, struct sock *, sk) |
| { |
| if (refcount_inc_not_zero(&sk->sk_refcnt)) { |
| int err; |
| |
| err = sk_storage_delete(sk, map); |
| sock_put(sk); |
| return err; |
| } |
| |
| return -ENOENT; |
| } |
| |
| const struct bpf_map_ops sk_storage_map_ops = { |
| .map_alloc_check = bpf_sk_storage_map_alloc_check, |
| .map_alloc = bpf_sk_storage_map_alloc, |
| .map_free = bpf_sk_storage_map_free, |
| .map_get_next_key = notsupp_get_next_key, |
| .map_lookup_elem = bpf_fd_sk_storage_lookup_elem, |
| .map_update_elem = bpf_fd_sk_storage_update_elem, |
| .map_delete_elem = bpf_fd_sk_storage_delete_elem, |
| .map_check_btf = bpf_sk_storage_map_check_btf, |
| }; |
| |
| const struct bpf_func_proto bpf_sk_storage_get_proto = { |
| .func = bpf_sk_storage_get, |
| .gpl_only = false, |
| .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_SOCKET, |
| .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, |
| .arg4_type = ARG_ANYTHING, |
| }; |
| |
| const struct bpf_func_proto bpf_sk_storage_delete_proto = { |
| .func = bpf_sk_storage_delete, |
| .gpl_only = false, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_SOCKET, |
| }; |