| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/unicore32/mm/fault.c |
| * |
| * Code specific to PKUnity SoC and UniCore ISA |
| * |
| * Copyright (C) 2001-2010 GUAN Xue-tao |
| */ |
| #include <linux/extable.h> |
| #include <linux/signal.h> |
| #include <linux/mm.h> |
| #include <linux/hardirq.h> |
| #include <linux/init.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/page-flags.h> |
| #include <linux/sched/signal.h> |
| #include <linux/io.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| |
| /* |
| * Fault status register encodings. We steal bit 31 for our own purposes. |
| */ |
| #define FSR_LNX_PF (1 << 31) |
| |
| static inline int fsr_fs(unsigned int fsr) |
| { |
| /* xyabcde will be abcde+xy */ |
| return (fsr & 31) + ((fsr & (3 << 5)) >> 5); |
| } |
| |
| /* |
| * This is useful to dump out the page tables associated with |
| * 'addr' in mm 'mm'. |
| */ |
| void show_pte(struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| |
| if (!mm) |
| mm = &init_mm; |
| |
| printk(KERN_ALERT "pgd = %p\n", mm->pgd); |
| pgd = pgd_offset(mm, addr); |
| printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd)); |
| |
| do { |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (pgd_none(*pgd)) |
| break; |
| |
| if (pgd_bad(*pgd)) { |
| printk("(bad)"); |
| break; |
| } |
| |
| pmd = pmd_offset((pud_t *) pgd, addr); |
| if (PTRS_PER_PMD != 1) |
| printk(", *pmd=%08lx", pmd_val(*pmd)); |
| |
| if (pmd_none(*pmd)) |
| break; |
| |
| if (pmd_bad(*pmd)) { |
| printk("(bad)"); |
| break; |
| } |
| |
| /* We must not map this if we have highmem enabled */ |
| if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) |
| break; |
| |
| pte = pte_offset_map(pmd, addr); |
| printk(", *pte=%08lx", pte_val(*pte)); |
| pte_unmap(pte); |
| } while (0); |
| |
| printk("\n"); |
| } |
| |
| /* |
| * Oops. The kernel tried to access some page that wasn't present. |
| */ |
| static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr, |
| unsigned int fsr, struct pt_regs *regs) |
| { |
| /* |
| * Are we prepared to handle this kernel fault? |
| */ |
| if (fixup_exception(regs)) |
| return; |
| |
| /* |
| * No handler, we'll have to terminate things with extreme prejudice. |
| */ |
| bust_spinlocks(1); |
| printk(KERN_ALERT |
| "Unable to handle kernel %s at virtual address %08lx\n", |
| (addr < PAGE_SIZE) ? "NULL pointer dereference" : |
| "paging request", addr); |
| |
| show_pte(mm, addr); |
| die("Oops", regs, fsr); |
| bust_spinlocks(0); |
| do_exit(SIGKILL); |
| } |
| |
| /* |
| * Something tried to access memory that isn't in our memory map.. |
| * User mode accesses just cause a SIGSEGV |
| */ |
| static void __do_user_fault(unsigned long addr, unsigned int fsr, |
| unsigned int sig, int code, struct pt_regs *regs) |
| { |
| struct task_struct *tsk = current; |
| |
| tsk->thread.address = addr; |
| tsk->thread.error_code = fsr; |
| tsk->thread.trap_no = 14; |
| force_sig_fault(sig, code, (void __user *)addr); |
| } |
| |
| void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| struct task_struct *tsk = current; |
| struct mm_struct *mm = tsk->active_mm; |
| |
| /* |
| * If we are in kernel mode at this point, we |
| * have no context to handle this fault with. |
| */ |
| if (user_mode(regs)) |
| __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); |
| else |
| __do_kernel_fault(mm, addr, fsr, regs); |
| } |
| |
| #define VM_FAULT_BADMAP 0x010000 |
| #define VM_FAULT_BADACCESS 0x020000 |
| |
| /* |
| * Check that the permissions on the VMA allow for the fault which occurred. |
| * If we encountered a write fault, we must have write permission, otherwise |
| * we allow any permission. |
| */ |
| static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) |
| { |
| unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; |
| |
| if (!(fsr ^ 0x12)) /* write? */ |
| mask = VM_WRITE; |
| if (fsr & FSR_LNX_PF) |
| mask = VM_EXEC; |
| |
| return vma->vm_flags & mask ? false : true; |
| } |
| |
| static vm_fault_t __do_pf(struct mm_struct *mm, unsigned long addr, |
| unsigned int fsr, unsigned int flags, struct task_struct *tsk) |
| { |
| struct vm_area_struct *vma; |
| vm_fault_t fault; |
| |
| vma = find_vma(mm, addr); |
| fault = VM_FAULT_BADMAP; |
| if (unlikely(!vma)) |
| goto out; |
| if (unlikely(vma->vm_start > addr)) |
| goto check_stack; |
| |
| /* |
| * Ok, we have a good vm_area for this |
| * memory access, so we can handle it. |
| */ |
| good_area: |
| if (access_error(fsr, vma)) { |
| fault = VM_FAULT_BADACCESS; |
| goto out; |
| } |
| |
| /* |
| * If for any reason at all we couldn't handle the fault, make |
| * sure we exit gracefully rather than endlessly redo the fault. |
| */ |
| fault = handle_mm_fault(vma, addr & PAGE_MASK, flags); |
| return fault; |
| |
| check_stack: |
| if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) |
| goto good_area; |
| out: |
| return fault; |
| } |
| |
| static int do_pf(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| struct task_struct *tsk; |
| struct mm_struct *mm; |
| int sig, code; |
| vm_fault_t fault; |
| unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
| |
| tsk = current; |
| mm = tsk->mm; |
| |
| /* |
| * If we're in an interrupt or have no user |
| * context, we must not take the fault.. |
| */ |
| if (faulthandler_disabled() || !mm) |
| goto no_context; |
| |
| if (user_mode(regs)) |
| flags |= FAULT_FLAG_USER; |
| if (!(fsr ^ 0x12)) |
| flags |= FAULT_FLAG_WRITE; |
| |
| /* |
| * As per x86, we may deadlock here. However, since the kernel only |
| * validly references user space from well defined areas of the code, |
| * we can bug out early if this is from code which shouldn't. |
| */ |
| if (!down_read_trylock(&mm->mmap_sem)) { |
| if (!user_mode(regs) |
| && !search_exception_tables(regs->UCreg_pc)) |
| goto no_context; |
| retry: |
| down_read(&mm->mmap_sem); |
| } else { |
| /* |
| * The above down_read_trylock() might have succeeded in |
| * which case, we'll have missed the might_sleep() from |
| * down_read() |
| */ |
| might_sleep(); |
| #ifdef CONFIG_DEBUG_VM |
| if (!user_mode(regs) && |
| !search_exception_tables(regs->UCreg_pc)) |
| goto no_context; |
| #endif |
| } |
| |
| fault = __do_pf(mm, addr, fsr, flags, tsk); |
| |
| /* If we need to retry but a fatal signal is pending, handle the |
| * signal first. We do not need to release the mmap_sem because |
| * it would already be released in __lock_page_or_retry in |
| * mm/filemap.c. */ |
| if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) |
| return 0; |
| |
| if (!(fault & VM_FAULT_ERROR) && (flags & FAULT_FLAG_ALLOW_RETRY)) { |
| if (fault & VM_FAULT_MAJOR) |
| tsk->maj_flt++; |
| else |
| tsk->min_flt++; |
| if (fault & VM_FAULT_RETRY) { |
| /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk |
| * of starvation. */ |
| flags &= ~FAULT_FLAG_ALLOW_RETRY; |
| goto retry; |
| } |
| } |
| |
| up_read(&mm->mmap_sem); |
| |
| /* |
| * Handle the "normal" case first - VM_FAULT_MAJOR |
| */ |
| if (likely(!(fault & |
| (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) |
| return 0; |
| |
| /* |
| * If we are in kernel mode at this point, we |
| * have no context to handle this fault with. |
| */ |
| if (!user_mode(regs)) |
| goto no_context; |
| |
| if (fault & VM_FAULT_OOM) { |
| /* |
| * We ran out of memory, call the OOM killer, and return to |
| * userspace (which will retry the fault, or kill us if we |
| * got oom-killed) |
| */ |
| pagefault_out_of_memory(); |
| return 0; |
| } |
| |
| if (fault & VM_FAULT_SIGBUS) { |
| /* |
| * We had some memory, but were unable to |
| * successfully fix up this page fault. |
| */ |
| sig = SIGBUS; |
| code = BUS_ADRERR; |
| } else { |
| /* |
| * Something tried to access memory that |
| * isn't in our memory map.. |
| */ |
| sig = SIGSEGV; |
| code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR; |
| } |
| |
| __do_user_fault(addr, fsr, sig, code, regs); |
| return 0; |
| |
| no_context: |
| __do_kernel_fault(mm, addr, fsr, regs); |
| return 0; |
| } |
| |
| /* |
| * First Level Translation Fault Handler |
| * |
| * We enter here because the first level page table doesn't contain |
| * a valid entry for the address. |
| * |
| * If the address is in kernel space (>= TASK_SIZE), then we are |
| * probably faulting in the vmalloc() area. |
| * |
| * If the init_task's first level page tables contains the relevant |
| * entry, we copy the it to this task. If not, we send the process |
| * a signal, fixup the exception, or oops the kernel. |
| * |
| * NOTE! We MUST NOT take any locks for this case. We may be in an |
| * interrupt or a critical region, and should only copy the information |
| * from the master page table, nothing more. |
| */ |
| static int do_ifault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| unsigned int index; |
| pgd_t *pgd, *pgd_k; |
| pmd_t *pmd, *pmd_k; |
| |
| if (addr < TASK_SIZE) |
| return do_pf(addr, fsr, regs); |
| |
| if (user_mode(regs)) |
| goto bad_area; |
| |
| index = pgd_index(addr); |
| |
| pgd = cpu_get_pgd() + index; |
| pgd_k = init_mm.pgd + index; |
| |
| if (pgd_none(*pgd_k)) |
| goto bad_area; |
| |
| pmd_k = pmd_offset((pud_t *) pgd_k, addr); |
| pmd = pmd_offset((pud_t *) pgd, addr); |
| |
| if (pmd_none(*pmd_k)) |
| goto bad_area; |
| |
| set_pmd(pmd, *pmd_k); |
| flush_pmd_entry(pmd); |
| return 0; |
| |
| bad_area: |
| do_bad_area(addr, fsr, regs); |
| return 0; |
| } |
| |
| /* |
| * This abort handler always returns "fault". |
| */ |
| static int do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| return 1; |
| } |
| |
| static int do_good(unsigned long addr, unsigned int fsr, struct pt_regs *regs) |
| { |
| unsigned int res1, res2; |
| |
| printk("dabt exception but no error!\n"); |
| |
| __asm__ __volatile__( |
| "mff %0,f0\n" |
| "mff %1,f1\n" |
| : "=r"(res1), "=r"(res2) |
| : |
| : "memory"); |
| |
| printk(KERN_EMERG "r0 :%08x r1 :%08x\n", res1, res2); |
| panic("shut up\n"); |
| return 0; |
| } |
| |
| static struct fsr_info { |
| int (*fn) (unsigned long addr, unsigned int fsr, struct pt_regs *regs); |
| int sig; |
| int code; |
| const char *name; |
| } fsr_info[] = { |
| /* |
| * The following are the standard Unicore-I and UniCore-II aborts. |
| */ |
| { do_good, SIGBUS, 0, "no error" }, |
| { do_bad, SIGBUS, BUS_ADRALN, "alignment exception" }, |
| { do_bad, SIGBUS, BUS_OBJERR, "external exception" }, |
| { do_bad, SIGBUS, 0, "burst operation" }, |
| { do_bad, SIGBUS, 0, "unknown 00100" }, |
| { do_ifault, SIGSEGV, SEGV_MAPERR, "2nd level pt non-exist"}, |
| { do_bad, SIGBUS, 0, "2nd lvl large pt non-exist" }, |
| { do_bad, SIGBUS, 0, "invalid pte" }, |
| { do_pf, SIGSEGV, SEGV_MAPERR, "page miss" }, |
| { do_bad, SIGBUS, 0, "middle page miss" }, |
| { do_bad, SIGBUS, 0, "large page miss" }, |
| { do_pf, SIGSEGV, SEGV_MAPERR, "super page (section) miss" }, |
| { do_bad, SIGBUS, 0, "unknown 01100" }, |
| { do_bad, SIGBUS, 0, "unknown 01101" }, |
| { do_bad, SIGBUS, 0, "unknown 01110" }, |
| { do_bad, SIGBUS, 0, "unknown 01111" }, |
| { do_bad, SIGBUS, 0, "addr: up 3G or IO" }, |
| { do_pf, SIGSEGV, SEGV_ACCERR, "read unreadable addr" }, |
| { do_pf, SIGSEGV, SEGV_ACCERR, "write unwriteable addr"}, |
| { do_pf, SIGSEGV, SEGV_ACCERR, "exec unexecutable addr"}, |
| { do_bad, SIGBUS, 0, "unknown 10100" }, |
| { do_bad, SIGBUS, 0, "unknown 10101" }, |
| { do_bad, SIGBUS, 0, "unknown 10110" }, |
| { do_bad, SIGBUS, 0, "unknown 10111" }, |
| { do_bad, SIGBUS, 0, "unknown 11000" }, |
| { do_bad, SIGBUS, 0, "unknown 11001" }, |
| { do_bad, SIGBUS, 0, "unknown 11010" }, |
| { do_bad, SIGBUS, 0, "unknown 11011" }, |
| { do_bad, SIGBUS, 0, "unknown 11100" }, |
| { do_bad, SIGBUS, 0, "unknown 11101" }, |
| { do_bad, SIGBUS, 0, "unknown 11110" }, |
| { do_bad, SIGBUS, 0, "unknown 11111" } |
| }; |
| |
| void __init hook_fault_code(int nr, |
| int (*fn) (unsigned long, unsigned int, struct pt_regs *), |
| int sig, int code, const char *name) |
| { |
| if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) |
| BUG(); |
| |
| fsr_info[nr].fn = fn; |
| fsr_info[nr].sig = sig; |
| fsr_info[nr].code = code; |
| fsr_info[nr].name = name; |
| } |
| |
| /* |
| * Dispatch a data abort to the relevant handler. |
| */ |
| asmlinkage void do_DataAbort(unsigned long addr, unsigned int fsr, |
| struct pt_regs *regs) |
| { |
| const struct fsr_info *inf = fsr_info + fsr_fs(fsr); |
| |
| if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) |
| return; |
| |
| printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n", |
| inf->name, fsr, addr); |
| |
| uc32_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, |
| fsr, 0); |
| } |
| |
| asmlinkage void do_PrefetchAbort(unsigned long addr, |
| unsigned int ifsr, struct pt_regs *regs) |
| { |
| const struct fsr_info *inf = fsr_info + fsr_fs(ifsr); |
| |
| if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) |
| return; |
| |
| printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", |
| inf->name, ifsr, addr); |
| |
| uc32_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, |
| ifsr, 0); |
| } |