blob: cc2b54d52b1b1d043ca2210a678090df401f0044 [file] [log] [blame]
/*
* SBE 2T3E3 synchronous serial card driver for Linux
*
* Copyright (C) 2009-2010 Krzysztof Halasa <khc@pm.waw.pl>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
* This code is based on a driver written by SBE Inc.
*/
#include <linux/delay.h>
#include "2t3e3.h"
#include "ctrl.h"
#define bootrom_set_bit(sc, reg, bit) \
bootrom_write((sc), (reg), \
bootrom_read((sc), (reg)) | (bit))
#define bootrom_clear_bit(sc, reg, bit) \
bootrom_write((sc), (reg), \
bootrom_read((sc), (reg)) & ~(bit))
static inline void cpld_set_bit(struct channel *channel, unsigned reg, u32 bit)
{
unsigned long flags;
spin_lock_irqsave(&channel->card->bootrom_lock, flags);
bootrom_set_bit(channel, CPLD_MAP_REG(reg, channel), bit);
spin_unlock_irqrestore(&channel->card->bootrom_lock, flags);
}
static inline void cpld_clear_bit(struct channel *channel, unsigned reg, u32 bit)
{
unsigned long flags;
spin_lock_irqsave(&channel->card->bootrom_lock, flags);
bootrom_clear_bit(channel, CPLD_MAP_REG(reg, channel), bit);
spin_unlock_irqrestore(&channel->card->bootrom_lock, flags);
}
void cpld_init(struct channel *sc)
{
u32 val;
/* PCRA */
val = SBE_2T3E3_CPLD_VAL_CRC32 |
cpld_val_map[SBE_2T3E3_CPLD_VAL_LOOP_TIMING_SOURCE][sc->h.slot];
cpld_write(sc, SBE_2T3E3_CPLD_REG_PCRA, val);
/* PCRB */
val = 0;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PCRB, val);
/* PCRC */
val = 0;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PCRC, val);
/* PBWF */
val = 0;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PBWF, val);
/* PBWL */
val = 0;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PBWL, val);
/* PLTR */
val = SBE_2T3E3_CPLD_VAL_LCV_COUNTER;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PLTR, val);
udelay(1000);
/* PLCR */
val = 0;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PLCR, val);
udelay(1000);
/* PPFR */
val = 0x55;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PPFR, val);
/* TODO: this doesn't work!!! */
/* SERIAL_CHIP_SELECT */
val = 0;
cpld_write(sc, SBE_2T3E3_CPLD_REG_SERIAL_CHIP_SELECT, val);
/* PICSR */
val = SBE_2T3E3_CPLD_VAL_DMO_SIGNAL_DETECTED |
SBE_2T3E3_CPLD_VAL_RECEIVE_LOSS_OF_LOCK_DETECTED |
SBE_2T3E3_CPLD_VAL_RECEIVE_LOSS_OF_SIGNAL_DETECTED;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PICSR, val);
cpld_start_intr(sc);
udelay(1000);
}
void cpld_start_intr(struct channel *sc)
{
u32 val;
/* PIER */
val = SBE_2T3E3_CPLD_VAL_INTERRUPT_FROM_ETHERNET_ENABLE |
SBE_2T3E3_CPLD_VAL_INTERRUPT_FROM_FRAMER_ENABLE;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PIER, val);
}
void cpld_stop_intr(struct channel *sc)
{
u32 val;
/* PIER */
val = 0;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PIER, val);
}
void cpld_set_frame_mode(struct channel *sc, u32 mode)
{
if (sc->p.frame_mode == mode)
return;
switch (mode) {
case SBE_2T3E3_FRAME_MODE_HDLC:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_TRANSPARENT_MODE |
SBE_2T3E3_CPLD_VAL_RAW_MODE);
exar7250_unipolar_onoff(sc, SBE_2T3E3_OFF);
exar7300_unipolar_onoff(sc, SBE_2T3E3_OFF);
break;
case SBE_2T3E3_FRAME_MODE_TRANSPARENT:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_RAW_MODE);
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_TRANSPARENT_MODE);
exar7250_unipolar_onoff(sc, SBE_2T3E3_OFF);
exar7300_unipolar_onoff(sc, SBE_2T3E3_OFF);
break;
case SBE_2T3E3_FRAME_MODE_RAW:
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_RAW_MODE);
exar7250_unipolar_onoff(sc, SBE_2T3E3_ON);
exar7300_unipolar_onoff(sc, SBE_2T3E3_ON);
break;
default:
return;
}
sc->p.frame_mode = mode;
}
/* set rate of the local clock */
void cpld_set_frame_type(struct channel *sc, u32 type)
{
switch (type) {
case SBE_2T3E3_FRAME_TYPE_E3_G751:
case SBE_2T3E3_FRAME_TYPE_E3_G832:
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_LOCAL_CLOCK_E3);
break;
case SBE_2T3E3_FRAME_TYPE_T3_CBIT:
case SBE_2T3E3_FRAME_TYPE_T3_M13:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_LOCAL_CLOCK_E3);
break;
default:
return;
}
}
void cpld_set_scrambler(struct channel *sc, u32 mode)
{
if (sc->p.scrambler == mode)
return;
switch (mode) {
case SBE_2T3E3_SCRAMBLER_OFF:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRB,
SBE_2T3E3_CPLD_VAL_SCRAMBLER_ENABLE);
break;
case SBE_2T3E3_SCRAMBLER_LARSCOM:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRB,
SBE_2T3E3_CPLD_VAL_SCRAMBLER_TYPE);
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRB,
SBE_2T3E3_CPLD_VAL_SCRAMBLER_ENABLE);
break;
case SBE_2T3E3_SCRAMBLER_ADC_KENTROX_DIGITAL:
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRB,
SBE_2T3E3_CPLD_VAL_SCRAMBLER_TYPE);
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRB,
SBE_2T3E3_CPLD_VAL_SCRAMBLER_ENABLE);
break;
default:
return;
}
sc->p.scrambler = mode;
}
void cpld_set_crc(struct channel *sc, u32 crc)
{
if (sc->p.crc == crc)
return;
switch (crc) {
case SBE_2T3E3_CRC_16:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_CRC32);
break;
case SBE_2T3E3_CRC_32:
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_CRC32);
break;
default:
return;
}
sc->p.crc = crc;
}
void cpld_select_panel(struct channel *sc, u32 panel)
{
if (sc->p.panel == panel)
return;
switch (panel) {
case SBE_2T3E3_PANEL_FRONT:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_REAR_PANEL);
break;
case SBE_2T3E3_PANEL_REAR:
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_REAR_PANEL);
break;
default:
return;
}
udelay(100);
sc->p.panel = panel;
}
extern void cpld_set_clock(struct channel *sc, u32 mode)
{
if (sc->p.clock_source == mode)
return;
switch (mode) {
case SBE_2T3E3_TIMING_LOCAL:
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_ALT);
break;
case SBE_2T3E3_TIMING_LOOP:
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRA,
SBE_2T3E3_CPLD_VAL_ALT);
break;
default:
return;
}
sc->p.clock_source = mode;
}
void cpld_set_pad_count(struct channel *sc, u32 count)
{
u32 val;
if (sc->p.pad_count == count)
return;
switch (count) {
case SBE_2T3E3_PAD_COUNT_1:
val = SBE_2T3E3_CPLD_VAL_PAD_COUNT_1;
break;
case SBE_2T3E3_PAD_COUNT_2:
val = SBE_2T3E3_CPLD_VAL_PAD_COUNT_2;
break;
case SBE_2T3E3_PAD_COUNT_3:
val = SBE_2T3E3_CPLD_VAL_PAD_COUNT_3;
break;
case SBE_2T3E3_PAD_COUNT_4:
val = SBE_2T3E3_CPLD_VAL_PAD_COUNT_4;
break;
default:
return;
}
cpld_clear_bit(sc, SBE_2T3E3_CPLD_REG_PCRB,
SBE_2T3E3_CPLD_VAL_PAD_COUNT);
cpld_set_bit(sc, SBE_2T3E3_CPLD_REG_PCRB, val);
sc->p.pad_count = count;
}
void cpld_LOS_update(struct channel *sc)
{
u_int8_t los;
cpld_write(sc, SBE_2T3E3_CPLD_REG_PICSR,
SBE_2T3E3_CPLD_VAL_DMO_SIGNAL_DETECTED |
SBE_2T3E3_CPLD_VAL_RECEIVE_LOSS_OF_LOCK_DETECTED |
SBE_2T3E3_CPLD_VAL_RECEIVE_LOSS_OF_SIGNAL_DETECTED);
los = cpld_read(sc, SBE_2T3E3_CPLD_REG_PICSR) &
SBE_2T3E3_CPLD_VAL_RECEIVE_LOSS_OF_SIGNAL_DETECTED;
if (los != sc->s.LOS)
dev_info(&sc->pdev->dev, "SBE 2T3E3: LOS status: %s\n",
los ? "Loss of signal" : "Signal OK");
sc->s.LOS = los;
}
void cpld_set_fractional_mode(struct channel *sc, u32 mode,
u32 start, u32 stop)
{
if (mode == SBE_2T3E3_FRACTIONAL_MODE_NONE) {
start = 0;
stop = 0;
}
if (sc->p.fractional_mode == mode && sc->p.bandwidth_start == start &&
sc->p.bandwidth_stop == stop)
return;
switch (mode) {
case SBE_2T3E3_FRACTIONAL_MODE_NONE:
cpld_write(sc, SBE_2T3E3_CPLD_REG_PCRC,
SBE_2T3E3_CPLD_VAL_FRACTIONAL_MODE_NONE);
break;
case SBE_2T3E3_FRACTIONAL_MODE_0:
cpld_write(sc, SBE_2T3E3_CPLD_REG_PCRC,
SBE_2T3E3_CPLD_VAL_FRACTIONAL_MODE_0);
break;
case SBE_2T3E3_FRACTIONAL_MODE_1:
cpld_write(sc, SBE_2T3E3_CPLD_REG_PCRC,
SBE_2T3E3_CPLD_VAL_FRACTIONAL_MODE_1);
break;
case SBE_2T3E3_FRACTIONAL_MODE_2:
cpld_write(sc, SBE_2T3E3_CPLD_REG_PCRC,
SBE_2T3E3_CPLD_VAL_FRACTIONAL_MODE_2);
break;
default:
printk(KERN_ERR "wrong mode in set_fractional_mode\n");
return;
}
cpld_write(sc, SBE_2T3E3_CPLD_REG_PBWF, start);
cpld_write(sc, SBE_2T3E3_CPLD_REG_PBWL, stop);
sc->p.fractional_mode = mode;
sc->p.bandwidth_start = start;
sc->p.bandwidth_stop = stop;
}