| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * arch/sh64/kernel/time.c |
| * |
| * Copyright (C) 2000, 2001 Paolo Alberelli |
| * Copyright (C) 2003 - 2007 Paul Mundt |
| * Copyright (C) 2003 Richard Curnow |
| * |
| * Original TMU/RTC code taken from sh version. |
| * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka |
| * Some code taken from i386 version. |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| */ |
| #include <linux/errno.h> |
| #include <linux/rwsem.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/profile.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/bcd.h> |
| #include <linux/timex.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/platform_device.h> |
| #include <asm/cpu/registers.h> /* required by inline __asm__ stmt. */ |
| #include <asm/cpu/irq.h> |
| #include <asm/addrspace.h> |
| #include <asm/processor.h> |
| #include <asm/uaccess.h> |
| #include <asm/delay.h> |
| |
| #define TMU_TOCR_INIT 0x00 |
| #define TMU0_TCR_INIT 0x0020 |
| #define TMU_TSTR_INIT 1 |
| #define TMU_TSTR_OFF 0 |
| |
| /* Real Time Clock */ |
| #define RTC_BLOCK_OFF 0x01040000 |
| #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF |
| #define RTC_RCR1_CIE 0x10 /* Carry Interrupt Enable */ |
| #define RTC_RCR1 (rtc_base + 0x38) |
| |
| /* Clock, Power and Reset Controller */ |
| #define CPRC_BLOCK_OFF 0x01010000 |
| #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF |
| |
| #define FRQCR (cprc_base+0x0) |
| #define WTCSR (cprc_base+0x0018) |
| #define STBCR (cprc_base+0x0030) |
| |
| /* Time Management Unit */ |
| #define TMU_BLOCK_OFF 0x01020000 |
| #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF |
| #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0) |
| #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1) |
| #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2) |
| |
| #define TMU_TOCR tmu_base+0x0 /* Byte access */ |
| #define TMU_TSTR tmu_base+0x4 /* Byte access */ |
| |
| #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */ |
| #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */ |
| #define TMU0_TCR TMU0_BASE+0x8 /* Word access */ |
| |
| #define TICK_SIZE (tick_nsec / 1000) |
| |
| static unsigned long tmu_base, rtc_base; |
| unsigned long cprc_base; |
| |
| /* Variables to allow interpolation of time of day to resolution better than a |
| * jiffy. */ |
| |
| /* This is effectively protected by xtime_lock */ |
| static unsigned long ctc_last_interrupt; |
| static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */ |
| |
| #define CTC_JIFFY_SCALE_SHIFT 40 |
| |
| /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */ |
| static unsigned long long scaled_recip_ctc_ticks_per_jiffy; |
| |
| /* Estimate number of microseconds that have elapsed since the last timer tick, |
| by scaling the delta that has occurred in the CTC register. |
| |
| WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at |
| the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this |
| in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm |
| probably needs to use TMU.TCNT0 instead. This will work even if the CPU is |
| sleeping, though will be coarser. |
| |
| FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime |
| is running or if the freq or tick arguments of adjtimex are modified after |
| we have calibrated the scaling factor? This will result in either a jump at |
| the end of a tick period, or a wrap backwards at the start of the next one, |
| if the application is reading the time of day often enough. I think we |
| ought to do better than this. For this reason, usecs_per_jiffy is left |
| separated out in the calculation below. This allows some future hook into |
| the adjtime-related stuff in kernel/timer.c to remove this hazard. |
| |
| */ |
| |
| static unsigned long usecs_since_tick(void) |
| { |
| unsigned long long current_ctc; |
| long ctc_ticks_since_interrupt; |
| unsigned long long ull_ctc_ticks_since_interrupt; |
| unsigned long result; |
| |
| unsigned long long mul1_out; |
| unsigned long long mul1_out_high; |
| unsigned long long mul2_out_low, mul2_out_high; |
| |
| /* Read CTC register */ |
| asm ("getcon cr62, %0" : "=r" (current_ctc)); |
| /* Note, the CTC counts down on each CPU clock, not up. |
| Note(2), use long type to get correct wraparound arithmetic when |
| the counter crosses zero. */ |
| ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc; |
| ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt; |
| |
| /* Inline assembly to do 32x32x32->64 multiplier */ |
| asm volatile ("mulu.l %1, %2, %0" : |
| "=r" (mul1_out) : |
| "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy)); |
| |
| mul1_out_high = mul1_out >> 32; |
| |
| asm volatile ("mulu.l %1, %2, %0" : |
| "=r" (mul2_out_low) : |
| "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy)); |
| |
| #if 1 |
| asm volatile ("mulu.l %1, %2, %0" : |
| "=r" (mul2_out_high) : |
| "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy)); |
| #endif |
| |
| result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT); |
| |
| return result; |
| } |
| |
| void do_gettimeofday(struct timeval *tv) |
| { |
| unsigned long flags; |
| unsigned long seq; |
| unsigned long usec, sec; |
| |
| do { |
| seq = read_seqbegin_irqsave(&xtime_lock, flags); |
| usec = usecs_since_tick(); |
| sec = xtime.tv_sec; |
| usec += xtime.tv_nsec / 1000; |
| } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); |
| |
| while (usec >= 1000000) { |
| usec -= 1000000; |
| sec++; |
| } |
| |
| tv->tv_sec = sec; |
| tv->tv_usec = usec; |
| } |
| |
| int do_settimeofday(struct timespec *tv) |
| { |
| time_t wtm_sec, sec = tv->tv_sec; |
| long wtm_nsec, nsec = tv->tv_nsec; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| /* |
| * This is revolting. We need to set "xtime" correctly. However, the |
| * value in this location is the value at the most recent update of |
| * wall time. Discover what correction gettimeofday() would have |
| * made, and then undo it! |
| */ |
| nsec -= 1000 * usecs_since_tick(); |
| |
| wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| |
| set_normalized_timespec(&xtime, sec, nsec); |
| set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| |
| ntp_clear(); |
| write_sequnlock_irq(&xtime_lock); |
| clock_was_set(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(do_settimeofday); |
| |
| /* Dummy RTC ops */ |
| static void null_rtc_get_time(struct timespec *tv) |
| { |
| tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0); |
| tv->tv_nsec = 0; |
| } |
| |
| static int null_rtc_set_time(const time_t secs) |
| { |
| return 0; |
| } |
| |
| void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time; |
| int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time; |
| |
| /* last time the RTC clock got updated */ |
| static long last_rtc_update; |
| |
| /* |
| * timer_interrupt() needs to keep up the real-time clock, |
| * as well as call the "do_timer()" routine every clocktick |
| */ |
| static inline void do_timer_interrupt(void) |
| { |
| unsigned long long current_ctc; |
| asm ("getcon cr62, %0" : "=r" (current_ctc)); |
| ctc_last_interrupt = (unsigned long) current_ctc; |
| |
| do_timer(1); |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(get_irq_regs())); |
| #endif |
| if (current->pid) |
| profile_tick(CPU_PROFILING); |
| |
| #ifdef CONFIG_HEARTBEAT |
| if (sh_mv.mv_heartbeat != NULL) |
| sh_mv.mv_heartbeat(); |
| #endif |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| */ |
| if (ntp_synced() && |
| xtime.tv_sec > last_rtc_update + 660 && |
| (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && |
| (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { |
| if (rtc_sh_set_time(xtime.tv_sec) == 0) |
| last_rtc_update = xtime.tv_sec; |
| else |
| /* do it again in 60 s */ |
| last_rtc_update = xtime.tv_sec - 600; |
| } |
| } |
| |
| /* |
| * This is the same as the above, except we _also_ save the current |
| * Time Stamp Counter value at the time of the timer interrupt, so that |
| * we later on can estimate the time of day more exactly. |
| */ |
| static irqreturn_t timer_interrupt(int irq, void *dev_id) |
| { |
| unsigned long timer_status; |
| |
| /* Clear UNF bit */ |
| timer_status = ctrl_inw(TMU0_TCR); |
| timer_status &= ~0x100; |
| ctrl_outw(timer_status, TMU0_TCR); |
| |
| /* |
| * Here we are in the timer irq handler. We just have irqs locally |
| * disabled but we don't know if the timer_bh is running on the other |
| * CPU. We need to avoid to SMP race with it. NOTE: we don' t need |
| * the irq version of write_lock because as just said we have irq |
| * locally disabled. -arca |
| */ |
| write_lock(&xtime_lock); |
| do_timer_interrupt(); |
| write_unlock(&xtime_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| static __init unsigned int get_cpu_hz(void) |
| { |
| unsigned int count; |
| unsigned long __dummy; |
| unsigned long ctc_val_init, ctc_val; |
| |
| /* |
| ** Regardless the toolchain, force the compiler to use the |
| ** arbitrary register r3 as a clock tick counter. |
| ** NOTE: r3 must be in accordance with sh64_rtc_interrupt() |
| */ |
| register unsigned long long __rtc_irq_flag __asm__ ("r3"); |
| |
| local_irq_enable(); |
| do {} while (ctrl_inb(rtc_base) != 0); |
| ctrl_outb(RTC_RCR1_CIE, RTC_RCR1); /* Enable carry interrupt */ |
| |
| /* |
| * r3 is arbitrary. CDC does not support "=z". |
| */ |
| ctc_val_init = 0xffffffff; |
| ctc_val = ctc_val_init; |
| |
| asm volatile("gettr tr0, %1\n\t" |
| "putcon %0, " __CTC "\n\t" |
| "and %2, r63, %2\n\t" |
| "pta $+4, tr0\n\t" |
| "beq/l %2, r63, tr0\n\t" |
| "ptabs %1, tr0\n\t" |
| "getcon " __CTC ", %0\n\t" |
| : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag) |
| : "0" (0)); |
| local_irq_disable(); |
| /* |
| * SH-3: |
| * CPU clock = 4 stages * loop |
| * tst rm,rm if id ex |
| * bt/s 1b if id ex |
| * add #1,rd if id ex |
| * (if) pipe line stole |
| * tst rm,rm if id ex |
| * .... |
| * |
| * |
| * SH-4: |
| * CPU clock = 6 stages * loop |
| * I don't know why. |
| * .... |
| * |
| * SH-5: |
| * Use CTC register to count. This approach returns the right value |
| * even if the I-cache is disabled (e.g. whilst debugging.) |
| * |
| */ |
| |
| count = ctc_val_init - ctc_val; /* CTC counts down */ |
| |
| #if defined (CONFIG_SH_SIMULATOR) |
| /* |
| * Let's pretend we are a 5MHz SH-5 to avoid a too |
| * little timer interval. Also to keep delay |
| * calibration within a reasonable time. |
| */ |
| return 5000000; |
| #else |
| /* |
| * This really is count by the number of clock cycles |
| * by the ratio between a complete R64CNT |
| * wrap-around (128) and CUI interrupt being raised (64). |
| */ |
| return count*2; |
| #endif |
| } |
| |
| static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| |
| ctrl_outb(0, RTC_RCR1); /* Disable Carry Interrupts */ |
| regs->regs[3] = 1; /* Using r3 */ |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction irq0 = { |
| .handler = timer_interrupt, |
| .flags = IRQF_DISABLED, |
| .mask = CPU_MASK_NONE, |
| .name = "timer", |
| }; |
| static struct irqaction irq1 = { |
| .handler = sh64_rtc_interrupt, |
| .flags = IRQF_DISABLED, |
| .mask = CPU_MASK_NONE, |
| .name = "rtc", |
| }; |
| |
| void __init time_init(void) |
| { |
| unsigned int cpu_clock, master_clock, bus_clock, module_clock; |
| unsigned long interval; |
| unsigned long frqcr, ifc, pfc; |
| static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 }; |
| #define bfc_table ifc_table /* Same */ |
| #define pfc_table ifc_table /* Same */ |
| |
| tmu_base = onchip_remap(TMU_BASE, 1024, "TMU"); |
| if (!tmu_base) { |
| panic("Unable to remap TMU\n"); |
| } |
| |
| rtc_base = onchip_remap(RTC_BASE, 1024, "RTC"); |
| if (!rtc_base) { |
| panic("Unable to remap RTC\n"); |
| } |
| |
| cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC"); |
| if (!cprc_base) { |
| panic("Unable to remap CPRC\n"); |
| } |
| |
| rtc_sh_get_time(&xtime); |
| |
| setup_irq(TIMER_IRQ, &irq0); |
| setup_irq(RTC_IRQ, &irq1); |
| |
| /* Check how fast it is.. */ |
| cpu_clock = get_cpu_hz(); |
| |
| /* Note careful order of operations to maintain reasonable precision and avoid overflow. */ |
| scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ)); |
| |
| free_irq(RTC_IRQ, NULL); |
| |
| printk("CPU clock: %d.%02dMHz\n", |
| (cpu_clock / 1000000), (cpu_clock % 1000000)/10000); |
| { |
| unsigned short bfc; |
| frqcr = ctrl_inl(FRQCR); |
| ifc = ifc_table[(frqcr>> 6) & 0x0007]; |
| bfc = bfc_table[(frqcr>> 3) & 0x0007]; |
| pfc = pfc_table[(frqcr>> 12) & 0x0007]; |
| master_clock = cpu_clock * ifc; |
| bus_clock = master_clock/bfc; |
| } |
| |
| printk("Bus clock: %d.%02dMHz\n", |
| (bus_clock/1000000), (bus_clock % 1000000)/10000); |
| module_clock = master_clock/pfc; |
| printk("Module clock: %d.%02dMHz\n", |
| (module_clock/1000000), (module_clock % 1000000)/10000); |
| interval = (module_clock/(HZ*4)); |
| |
| printk("Interval = %ld\n", interval); |
| |
| current_cpu_data.cpu_clock = cpu_clock; |
| current_cpu_data.master_clock = master_clock; |
| current_cpu_data.bus_clock = bus_clock; |
| current_cpu_data.module_clock = module_clock; |
| |
| /* Start TMU0 */ |
| ctrl_outb(TMU_TSTR_OFF, TMU_TSTR); |
| ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); |
| ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); |
| ctrl_outl(interval, TMU0_TCOR); |
| ctrl_outl(interval, TMU0_TCNT); |
| ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); |
| } |
| |
| void enter_deep_standby(void) |
| { |
| /* Disable watchdog timer */ |
| ctrl_outl(0xa5000000, WTCSR); |
| /* Configure deep standby on sleep */ |
| ctrl_outl(0x03, STBCR); |
| |
| #ifdef CONFIG_SH_ALPHANUMERIC |
| { |
| extern void mach_alphanum(int position, unsigned char value); |
| extern void mach_alphanum_brightness(int setting); |
| char halted[] = "Halted. "; |
| int i; |
| mach_alphanum_brightness(6); /* dimmest setting above off */ |
| for (i=0; i<8; i++) { |
| mach_alphanum(i, halted[i]); |
| } |
| asm __volatile__ ("synco"); |
| } |
| #endif |
| |
| asm __volatile__ ("sleep"); |
| asm __volatile__ ("synci"); |
| asm __volatile__ ("nop"); |
| asm __volatile__ ("nop"); |
| asm __volatile__ ("nop"); |
| asm __volatile__ ("nop"); |
| panic("Unexpected wakeup!\n"); |
| } |
| |
| static struct resource rtc_resources[] = { |
| [0] = { |
| /* RTC base, filled in by rtc_init */ |
| .flags = IORESOURCE_IO, |
| }, |
| [1] = { |
| /* Period IRQ */ |
| .start = IRQ_PRI, |
| .flags = IORESOURCE_IRQ, |
| }, |
| [2] = { |
| /* Carry IRQ */ |
| .start = IRQ_CUI, |
| .flags = IORESOURCE_IRQ, |
| }, |
| [3] = { |
| /* Alarm IRQ */ |
| .start = IRQ_ATI, |
| .flags = IORESOURCE_IRQ, |
| }, |
| }; |
| |
| static struct platform_device rtc_device = { |
| .name = "sh-rtc", |
| .id = -1, |
| .num_resources = ARRAY_SIZE(rtc_resources), |
| .resource = rtc_resources, |
| }; |
| |
| static int __init rtc_init(void) |
| { |
| rtc_resources[0].start = rtc_base; |
| rtc_resources[0].end = rtc_resources[0].start + 0x58 - 1; |
| |
| return platform_device_register(&rtc_device); |
| } |
| device_initcall(rtc_init); |