| /* |
| * Copyright 2008 Jerome Glisse. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Jerome Glisse <glisse@freedesktop.org> |
| */ |
| #include <linux/list_sort.h> |
| #include <drm/drmP.h> |
| #include <drm/amdgpu_drm.h> |
| #include "amdgpu.h" |
| #include "amdgpu_trace.h" |
| |
| #define AMDGPU_CS_MAX_PRIORITY 32u |
| #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1) |
| |
| /* This is based on the bucket sort with O(n) time complexity. |
| * An item with priority "i" is added to bucket[i]. The lists are then |
| * concatenated in descending order. |
| */ |
| struct amdgpu_cs_buckets { |
| struct list_head bucket[AMDGPU_CS_NUM_BUCKETS]; |
| }; |
| |
| static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b) |
| { |
| unsigned i; |
| |
| for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) |
| INIT_LIST_HEAD(&b->bucket[i]); |
| } |
| |
| static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b, |
| struct list_head *item, unsigned priority) |
| { |
| /* Since buffers which appear sooner in the relocation list are |
| * likely to be used more often than buffers which appear later |
| * in the list, the sort mustn't change the ordering of buffers |
| * with the same priority, i.e. it must be stable. |
| */ |
| list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]); |
| } |
| |
| static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b, |
| struct list_head *out_list) |
| { |
| unsigned i; |
| |
| /* Connect the sorted buckets in the output list. */ |
| for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) { |
| list_splice(&b->bucket[i], out_list); |
| } |
| } |
| |
| int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type, |
| u32 ip_instance, u32 ring, |
| struct amdgpu_ring **out_ring) |
| { |
| /* Right now all IPs have only one instance - multiple rings. */ |
| if (ip_instance != 0) { |
| DRM_ERROR("invalid ip instance: %d\n", ip_instance); |
| return -EINVAL; |
| } |
| |
| switch (ip_type) { |
| default: |
| DRM_ERROR("unknown ip type: %d\n", ip_type); |
| return -EINVAL; |
| case AMDGPU_HW_IP_GFX: |
| if (ring < adev->gfx.num_gfx_rings) { |
| *out_ring = &adev->gfx.gfx_ring[ring]; |
| } else { |
| DRM_ERROR("only %d gfx rings are supported now\n", |
| adev->gfx.num_gfx_rings); |
| return -EINVAL; |
| } |
| break; |
| case AMDGPU_HW_IP_COMPUTE: |
| if (ring < adev->gfx.num_compute_rings) { |
| *out_ring = &adev->gfx.compute_ring[ring]; |
| } else { |
| DRM_ERROR("only %d compute rings are supported now\n", |
| adev->gfx.num_compute_rings); |
| return -EINVAL; |
| } |
| break; |
| case AMDGPU_HW_IP_DMA: |
| if (ring < 2) { |
| *out_ring = &adev->sdma[ring].ring; |
| } else { |
| DRM_ERROR("only two SDMA rings are supported\n"); |
| return -EINVAL; |
| } |
| break; |
| case AMDGPU_HW_IP_UVD: |
| *out_ring = &adev->uvd.ring; |
| break; |
| case AMDGPU_HW_IP_VCE: |
| if (ring < 2){ |
| *out_ring = &adev->vce.ring[ring]; |
| } else { |
| DRM_ERROR("only two VCE rings are supported\n"); |
| return -EINVAL; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| struct amdgpu_cs_parser *amdgpu_cs_parser_create(struct amdgpu_device *adev, |
| struct drm_file *filp, |
| struct amdgpu_ctx *ctx, |
| struct amdgpu_ib *ibs, |
| uint32_t num_ibs) |
| { |
| struct amdgpu_cs_parser *parser; |
| int i; |
| |
| parser = kzalloc(sizeof(struct amdgpu_cs_parser), GFP_KERNEL); |
| if (!parser) |
| return NULL; |
| |
| parser->adev = adev; |
| parser->filp = filp; |
| parser->ctx = ctx; |
| parser->ibs = ibs; |
| parser->num_ibs = num_ibs; |
| for (i = 0; i < num_ibs; i++) |
| ibs[i].ctx = ctx; |
| |
| return parser; |
| } |
| |
| int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data) |
| { |
| union drm_amdgpu_cs *cs = data; |
| uint64_t *chunk_array_user; |
| uint64_t *chunk_array; |
| struct amdgpu_fpriv *fpriv = p->filp->driver_priv; |
| unsigned size; |
| int i; |
| int ret; |
| |
| if (cs->in.num_chunks == 0) |
| return 0; |
| |
| chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL); |
| if (!chunk_array) |
| return -ENOMEM; |
| |
| p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); |
| if (!p->ctx) { |
| ret = -EINVAL; |
| goto free_chunk; |
| } |
| |
| p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle); |
| |
| /* get chunks */ |
| INIT_LIST_HEAD(&p->validated); |
| chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks); |
| if (copy_from_user(chunk_array, chunk_array_user, |
| sizeof(uint64_t)*cs->in.num_chunks)) { |
| ret = -EFAULT; |
| goto put_bo_list; |
| } |
| |
| p->nchunks = cs->in.num_chunks; |
| p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), |
| GFP_KERNEL); |
| if (!p->chunks) { |
| ret = -ENOMEM; |
| goto put_bo_list; |
| } |
| |
| for (i = 0; i < p->nchunks; i++) { |
| struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; |
| struct drm_amdgpu_cs_chunk user_chunk; |
| uint32_t __user *cdata; |
| |
| chunk_ptr = (void __user *)(unsigned long)chunk_array[i]; |
| if (copy_from_user(&user_chunk, chunk_ptr, |
| sizeof(struct drm_amdgpu_cs_chunk))) { |
| ret = -EFAULT; |
| i--; |
| goto free_partial_kdata; |
| } |
| p->chunks[i].chunk_id = user_chunk.chunk_id; |
| p->chunks[i].length_dw = user_chunk.length_dw; |
| |
| size = p->chunks[i].length_dw; |
| cdata = (void __user *)(unsigned long)user_chunk.chunk_data; |
| p->chunks[i].user_ptr = cdata; |
| |
| p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t)); |
| if (p->chunks[i].kdata == NULL) { |
| ret = -ENOMEM; |
| i--; |
| goto free_partial_kdata; |
| } |
| size *= sizeof(uint32_t); |
| if (copy_from_user(p->chunks[i].kdata, cdata, size)) { |
| ret = -EFAULT; |
| goto free_partial_kdata; |
| } |
| |
| switch (p->chunks[i].chunk_id) { |
| case AMDGPU_CHUNK_ID_IB: |
| p->num_ibs++; |
| break; |
| |
| case AMDGPU_CHUNK_ID_FENCE: |
| size = sizeof(struct drm_amdgpu_cs_chunk_fence); |
| if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) { |
| uint32_t handle; |
| struct drm_gem_object *gobj; |
| struct drm_amdgpu_cs_chunk_fence *fence_data; |
| |
| fence_data = (void *)p->chunks[i].kdata; |
| handle = fence_data->handle; |
| gobj = drm_gem_object_lookup(p->adev->ddev, |
| p->filp, handle); |
| if (gobj == NULL) { |
| ret = -EINVAL; |
| goto free_partial_kdata; |
| } |
| |
| p->uf.bo = gem_to_amdgpu_bo(gobj); |
| p->uf.offset = fence_data->offset; |
| } else { |
| ret = -EINVAL; |
| goto free_partial_kdata; |
| } |
| break; |
| |
| case AMDGPU_CHUNK_ID_DEPENDENCIES: |
| break; |
| |
| default: |
| ret = -EINVAL; |
| goto free_partial_kdata; |
| } |
| } |
| |
| |
| p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL); |
| if (!p->ibs) { |
| ret = -ENOMEM; |
| goto free_all_kdata; |
| } |
| |
| kfree(chunk_array); |
| return 0; |
| |
| free_all_kdata: |
| i = p->nchunks - 1; |
| free_partial_kdata: |
| for (; i >= 0; i--) |
| drm_free_large(p->chunks[i].kdata); |
| kfree(p->chunks); |
| put_bo_list: |
| if (p->bo_list) |
| amdgpu_bo_list_put(p->bo_list); |
| amdgpu_ctx_put(p->ctx); |
| free_chunk: |
| kfree(chunk_array); |
| |
| return ret; |
| } |
| |
| /* Returns how many bytes TTM can move per IB. |
| */ |
| static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev) |
| { |
| u64 real_vram_size = adev->mc.real_vram_size; |
| u64 vram_usage = atomic64_read(&adev->vram_usage); |
| |
| /* This function is based on the current VRAM usage. |
| * |
| * - If all of VRAM is free, allow relocating the number of bytes that |
| * is equal to 1/4 of the size of VRAM for this IB. |
| |
| * - If more than one half of VRAM is occupied, only allow relocating |
| * 1 MB of data for this IB. |
| * |
| * - From 0 to one half of used VRAM, the threshold decreases |
| * linearly. |
| * __________________ |
| * 1/4 of -|\ | |
| * VRAM | \ | |
| * | \ | |
| * | \ | |
| * | \ | |
| * | \ | |
| * | \ | |
| * | \________|1 MB |
| * |----------------| |
| * VRAM 0 % 100 % |
| * used used |
| * |
| * Note: It's a threshold, not a limit. The threshold must be crossed |
| * for buffer relocations to stop, so any buffer of an arbitrary size |
| * can be moved as long as the threshold isn't crossed before |
| * the relocation takes place. We don't want to disable buffer |
| * relocations completely. |
| * |
| * The idea is that buffers should be placed in VRAM at creation time |
| * and TTM should only do a minimum number of relocations during |
| * command submission. In practice, you need to submit at least |
| * a dozen IBs to move all buffers to VRAM if they are in GTT. |
| * |
| * Also, things can get pretty crazy under memory pressure and actual |
| * VRAM usage can change a lot, so playing safe even at 50% does |
| * consistently increase performance. |
| */ |
| |
| u64 half_vram = real_vram_size >> 1; |
| u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage; |
| u64 bytes_moved_threshold = half_free_vram >> 1; |
| return max(bytes_moved_threshold, 1024*1024ull); |
| } |
| |
| int amdgpu_cs_list_validate(struct amdgpu_device *adev, |
| struct amdgpu_vm *vm, |
| struct list_head *validated) |
| { |
| struct amdgpu_bo_list_entry *lobj; |
| struct amdgpu_bo *bo; |
| u64 bytes_moved = 0, initial_bytes_moved; |
| u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev); |
| int r; |
| |
| list_for_each_entry(lobj, validated, tv.head) { |
| bo = lobj->robj; |
| if (!bo->pin_count) { |
| u32 domain = lobj->prefered_domains; |
| u32 current_domain = |
| amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type); |
| |
| /* Check if this buffer will be moved and don't move it |
| * if we have moved too many buffers for this IB already. |
| * |
| * Note that this allows moving at least one buffer of |
| * any size, because it doesn't take the current "bo" |
| * into account. We don't want to disallow buffer moves |
| * completely. |
| */ |
| if ((lobj->allowed_domains & current_domain) != 0 && |
| (domain & current_domain) == 0 && /* will be moved */ |
| bytes_moved > bytes_moved_threshold) { |
| /* don't move it */ |
| domain = current_domain; |
| } |
| |
| retry: |
| amdgpu_ttm_placement_from_domain(bo, domain); |
| initial_bytes_moved = atomic64_read(&adev->num_bytes_moved); |
| r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); |
| bytes_moved += atomic64_read(&adev->num_bytes_moved) - |
| initial_bytes_moved; |
| |
| if (unlikely(r)) { |
| if (r != -ERESTARTSYS && domain != lobj->allowed_domains) { |
| domain = lobj->allowed_domains; |
| goto retry; |
| } |
| return r; |
| } |
| } |
| lobj->bo_va = amdgpu_vm_bo_find(vm, bo); |
| } |
| return 0; |
| } |
| |
| static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p) |
| { |
| struct amdgpu_fpriv *fpriv = p->filp->driver_priv; |
| struct amdgpu_cs_buckets buckets; |
| struct list_head duplicates; |
| bool need_mmap_lock = false; |
| int i, r; |
| |
| if (p->bo_list) { |
| need_mmap_lock = p->bo_list->has_userptr; |
| amdgpu_cs_buckets_init(&buckets); |
| for (i = 0; i < p->bo_list->num_entries; i++) |
| amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head, |
| p->bo_list->array[i].priority); |
| |
| amdgpu_cs_buckets_get_list(&buckets, &p->validated); |
| } |
| |
| p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm, |
| &p->validated); |
| |
| if (need_mmap_lock) |
| down_read(¤t->mm->mmap_sem); |
| |
| INIT_LIST_HEAD(&duplicates); |
| r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates); |
| if (unlikely(r != 0)) |
| goto error_reserve; |
| |
| r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated); |
| if (r) |
| goto error_validate; |
| |
| r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates); |
| |
| error_validate: |
| if (r) |
| ttm_eu_backoff_reservation(&p->ticket, &p->validated); |
| |
| error_reserve: |
| if (need_mmap_lock) |
| up_read(¤t->mm->mmap_sem); |
| |
| return r; |
| } |
| |
| static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) |
| { |
| struct amdgpu_bo_list_entry *e; |
| int r; |
| |
| list_for_each_entry(e, &p->validated, tv.head) { |
| struct reservation_object *resv = e->robj->tbo.resv; |
| r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp); |
| |
| if (r) |
| return r; |
| } |
| return 0; |
| } |
| |
| static int cmp_size_smaller_first(void *priv, struct list_head *a, |
| struct list_head *b) |
| { |
| struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head); |
| struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head); |
| |
| /* Sort A before B if A is smaller. */ |
| return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages; |
| } |
| |
| static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff) |
| { |
| if (!error) { |
| /* Sort the buffer list from the smallest to largest buffer, |
| * which affects the order of buffers in the LRU list. |
| * This assures that the smallest buffers are added first |
| * to the LRU list, so they are likely to be later evicted |
| * first, instead of large buffers whose eviction is more |
| * expensive. |
| * |
| * This slightly lowers the number of bytes moved by TTM |
| * per frame under memory pressure. |
| */ |
| list_sort(NULL, &parser->validated, cmp_size_smaller_first); |
| |
| ttm_eu_fence_buffer_objects(&parser->ticket, |
| &parser->validated, |
| &parser->ibs[parser->num_ibs-1].fence->base); |
| } else if (backoff) { |
| ttm_eu_backoff_reservation(&parser->ticket, |
| &parser->validated); |
| } |
| } |
| |
| static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser) |
| { |
| unsigned i; |
| if (parser->ctx) |
| amdgpu_ctx_put(parser->ctx); |
| if (parser->bo_list) |
| amdgpu_bo_list_put(parser->bo_list); |
| |
| drm_free_large(parser->vm_bos); |
| for (i = 0; i < parser->nchunks; i++) |
| drm_free_large(parser->chunks[i].kdata); |
| kfree(parser->chunks); |
| if (!amdgpu_enable_scheduler) |
| { |
| if (parser->ibs) |
| for (i = 0; i < parser->num_ibs; i++) |
| amdgpu_ib_free(parser->adev, &parser->ibs[i]); |
| kfree(parser->ibs); |
| if (parser->uf.bo) |
| drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base); |
| } |
| |
| kfree(parser); |
| } |
| |
| /** |
| * cs_parser_fini() - clean parser states |
| * @parser: parser structure holding parsing context. |
| * @error: error number |
| * |
| * If error is set than unvalidate buffer, otherwise just free memory |
| * used by parsing context. |
| **/ |
| static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff) |
| { |
| amdgpu_cs_parser_fini_early(parser, error, backoff); |
| amdgpu_cs_parser_fini_late(parser); |
| } |
| |
| static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p, |
| struct amdgpu_vm *vm) |
| { |
| struct amdgpu_device *adev = p->adev; |
| struct amdgpu_bo_va *bo_va; |
| struct amdgpu_bo *bo; |
| int i, r; |
| |
| r = amdgpu_vm_update_page_directory(adev, vm); |
| if (r) |
| return r; |
| |
| r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence); |
| if (r) |
| return r; |
| |
| r = amdgpu_vm_clear_freed(adev, vm); |
| if (r) |
| return r; |
| |
| if (p->bo_list) { |
| for (i = 0; i < p->bo_list->num_entries; i++) { |
| struct fence *f; |
| |
| /* ignore duplicates */ |
| bo = p->bo_list->array[i].robj; |
| if (!bo) |
| continue; |
| |
| bo_va = p->bo_list->array[i].bo_va; |
| if (bo_va == NULL) |
| continue; |
| |
| r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem); |
| if (r) |
| return r; |
| |
| f = bo_va->last_pt_update; |
| r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f); |
| if (r) |
| return r; |
| } |
| } |
| |
| return amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync); |
| } |
| |
| static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev, |
| struct amdgpu_cs_parser *parser) |
| { |
| struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; |
| struct amdgpu_vm *vm = &fpriv->vm; |
| struct amdgpu_ring *ring; |
| int i, r; |
| |
| if (parser->num_ibs == 0) |
| return 0; |
| |
| /* Only for UVD/VCE VM emulation */ |
| for (i = 0; i < parser->num_ibs; i++) { |
| ring = parser->ibs[i].ring; |
| if (ring->funcs->parse_cs) { |
| r = amdgpu_ring_parse_cs(ring, parser, i); |
| if (r) |
| return r; |
| } |
| } |
| |
| mutex_lock(&vm->mutex); |
| r = amdgpu_bo_vm_update_pte(parser, vm); |
| if (r) { |
| goto out; |
| } |
| amdgpu_cs_sync_rings(parser); |
| if (!amdgpu_enable_scheduler) |
| r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs, |
| parser->filp); |
| |
| out: |
| mutex_unlock(&vm->mutex); |
| return r; |
| } |
| |
| static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r) |
| { |
| if (r == -EDEADLK) { |
| r = amdgpu_gpu_reset(adev); |
| if (!r) |
| r = -EAGAIN; |
| } |
| return r; |
| } |
| |
| static int amdgpu_cs_ib_fill(struct amdgpu_device *adev, |
| struct amdgpu_cs_parser *parser) |
| { |
| struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; |
| struct amdgpu_vm *vm = &fpriv->vm; |
| int i, j; |
| int r; |
| |
| for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) { |
| struct amdgpu_cs_chunk *chunk; |
| struct amdgpu_ib *ib; |
| struct drm_amdgpu_cs_chunk_ib *chunk_ib; |
| struct amdgpu_ring *ring; |
| |
| chunk = &parser->chunks[i]; |
| ib = &parser->ibs[j]; |
| chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata; |
| |
| if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB) |
| continue; |
| |
| r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type, |
| chunk_ib->ip_instance, chunk_ib->ring, |
| &ring); |
| if (r) |
| return r; |
| |
| if (ring->funcs->parse_cs) { |
| struct amdgpu_bo_va_mapping *m; |
| struct amdgpu_bo *aobj = NULL; |
| uint64_t offset; |
| uint8_t *kptr; |
| |
| m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start, |
| &aobj); |
| if (!aobj) { |
| DRM_ERROR("IB va_start is invalid\n"); |
| return -EINVAL; |
| } |
| |
| if ((chunk_ib->va_start + chunk_ib->ib_bytes) > |
| (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) { |
| DRM_ERROR("IB va_start+ib_bytes is invalid\n"); |
| return -EINVAL; |
| } |
| |
| /* the IB should be reserved at this point */ |
| r = amdgpu_bo_kmap(aobj, (void **)&kptr); |
| if (r) { |
| return r; |
| } |
| |
| offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE; |
| kptr += chunk_ib->va_start - offset; |
| |
| r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib); |
| if (r) { |
| DRM_ERROR("Failed to get ib !\n"); |
| return r; |
| } |
| |
| memcpy(ib->ptr, kptr, chunk_ib->ib_bytes); |
| amdgpu_bo_kunmap(aobj); |
| } else { |
| r = amdgpu_ib_get(ring, vm, 0, ib); |
| if (r) { |
| DRM_ERROR("Failed to get ib !\n"); |
| return r; |
| } |
| |
| ib->gpu_addr = chunk_ib->va_start; |
| } |
| |
| ib->length_dw = chunk_ib->ib_bytes / 4; |
| ib->flags = chunk_ib->flags; |
| ib->ctx = parser->ctx; |
| j++; |
| } |
| |
| if (!parser->num_ibs) |
| return 0; |
| |
| /* add GDS resources to first IB */ |
| if (parser->bo_list) { |
| struct amdgpu_bo *gds = parser->bo_list->gds_obj; |
| struct amdgpu_bo *gws = parser->bo_list->gws_obj; |
| struct amdgpu_bo *oa = parser->bo_list->oa_obj; |
| struct amdgpu_ib *ib = &parser->ibs[0]; |
| |
| if (gds) { |
| ib->gds_base = amdgpu_bo_gpu_offset(gds); |
| ib->gds_size = amdgpu_bo_size(gds); |
| } |
| if (gws) { |
| ib->gws_base = amdgpu_bo_gpu_offset(gws); |
| ib->gws_size = amdgpu_bo_size(gws); |
| } |
| if (oa) { |
| ib->oa_base = amdgpu_bo_gpu_offset(oa); |
| ib->oa_size = amdgpu_bo_size(oa); |
| } |
| } |
| /* wrap the last IB with user fence */ |
| if (parser->uf.bo) { |
| struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1]; |
| |
| /* UVD & VCE fw doesn't support user fences */ |
| if (ib->ring->type == AMDGPU_RING_TYPE_UVD || |
| ib->ring->type == AMDGPU_RING_TYPE_VCE) |
| return -EINVAL; |
| |
| ib->user = &parser->uf; |
| } |
| |
| return 0; |
| } |
| |
| static int amdgpu_cs_dependencies(struct amdgpu_device *adev, |
| struct amdgpu_cs_parser *p) |
| { |
| struct amdgpu_fpriv *fpriv = p->filp->driver_priv; |
| struct amdgpu_ib *ib; |
| int i, j, r; |
| |
| if (!p->num_ibs) |
| return 0; |
| |
| /* Add dependencies to first IB */ |
| ib = &p->ibs[0]; |
| for (i = 0; i < p->nchunks; ++i) { |
| struct drm_amdgpu_cs_chunk_dep *deps; |
| struct amdgpu_cs_chunk *chunk; |
| unsigned num_deps; |
| |
| chunk = &p->chunks[i]; |
| |
| if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES) |
| continue; |
| |
| deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata; |
| num_deps = chunk->length_dw * 4 / |
| sizeof(struct drm_amdgpu_cs_chunk_dep); |
| |
| for (j = 0; j < num_deps; ++j) { |
| struct amdgpu_ring *ring; |
| struct amdgpu_ctx *ctx; |
| struct fence *fence; |
| |
| r = amdgpu_cs_get_ring(adev, deps[j].ip_type, |
| deps[j].ip_instance, |
| deps[j].ring, &ring); |
| if (r) |
| return r; |
| |
| ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id); |
| if (ctx == NULL) |
| return -EINVAL; |
| |
| fence = amdgpu_ctx_get_fence(ctx, ring, |
| deps[j].handle); |
| if (IS_ERR(fence)) { |
| r = PTR_ERR(fence); |
| amdgpu_ctx_put(ctx); |
| return r; |
| |
| } else if (fence) { |
| r = amdgpu_sync_fence(adev, &ib->sync, fence); |
| fence_put(fence); |
| amdgpu_ctx_put(ctx); |
| if (r) |
| return r; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int amdgpu_cs_free_job(struct amdgpu_job *job) |
| { |
| int i; |
| if (job->ibs) |
| for (i = 0; i < job->num_ibs; i++) |
| amdgpu_ib_free(job->adev, &job->ibs[i]); |
| kfree(job->ibs); |
| if (job->uf.bo) |
| drm_gem_object_unreference_unlocked(&job->uf.bo->gem_base); |
| return 0; |
| } |
| |
| int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) |
| { |
| struct amdgpu_device *adev = dev->dev_private; |
| union drm_amdgpu_cs *cs = data; |
| struct amdgpu_cs_parser *parser; |
| bool reserved_buffers = false; |
| int i, r; |
| |
| down_read(&adev->exclusive_lock); |
| if (!adev->accel_working) { |
| up_read(&adev->exclusive_lock); |
| return -EBUSY; |
| } |
| |
| parser = amdgpu_cs_parser_create(adev, filp, NULL, NULL, 0); |
| if (!parser) |
| return -ENOMEM; |
| r = amdgpu_cs_parser_init(parser, data); |
| if (r) { |
| DRM_ERROR("Failed to initialize parser !\n"); |
| kfree(parser); |
| up_read(&adev->exclusive_lock); |
| r = amdgpu_cs_handle_lockup(adev, r); |
| return r; |
| } |
| |
| r = amdgpu_cs_parser_relocs(parser); |
| if (r == -ENOMEM) |
| DRM_ERROR("Not enough memory for command submission!\n"); |
| else if (r && r != -ERESTARTSYS) |
| DRM_ERROR("Failed to process the buffer list %d!\n", r); |
| else if (!r) { |
| reserved_buffers = true; |
| r = amdgpu_cs_ib_fill(adev, parser); |
| } |
| |
| if (!r) { |
| r = amdgpu_cs_dependencies(adev, parser); |
| if (r) |
| DRM_ERROR("Failed in the dependencies handling %d!\n", r); |
| } |
| |
| if (r) |
| goto out; |
| |
| for (i = 0; i < parser->num_ibs; i++) |
| trace_amdgpu_cs(parser, i); |
| |
| r = amdgpu_cs_ib_vm_chunk(adev, parser); |
| if (r) |
| goto out; |
| |
| if (amdgpu_enable_scheduler && parser->num_ibs) { |
| struct amdgpu_job *job; |
| struct amdgpu_ring * ring = parser->ibs->ring; |
| job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL); |
| if (!job) |
| return -ENOMEM; |
| job->base.sched = &ring->sched; |
| job->base.s_entity = &parser->ctx->rings[ring->idx].entity; |
| job->adev = parser->adev; |
| job->ibs = parser->ibs; |
| job->num_ibs = parser->num_ibs; |
| job->base.owner = parser->filp; |
| mutex_init(&job->job_lock); |
| if (job->ibs[job->num_ibs - 1].user) { |
| memcpy(&job->uf, &parser->uf, |
| sizeof(struct amdgpu_user_fence)); |
| job->ibs[job->num_ibs - 1].user = &job->uf; |
| } |
| |
| job->free_job = amdgpu_cs_free_job; |
| mutex_lock(&job->job_lock); |
| r = amd_sched_entity_push_job(&job->base); |
| if (r) { |
| mutex_unlock(&job->job_lock); |
| amdgpu_cs_free_job(job); |
| kfree(job); |
| goto out; |
| } |
| cs->out.handle = |
| amdgpu_ctx_add_fence(parser->ctx, ring, |
| &job->base.s_fence->base); |
| parser->ibs[parser->num_ibs - 1].sequence = cs->out.handle; |
| |
| list_sort(NULL, &parser->validated, cmp_size_smaller_first); |
| ttm_eu_fence_buffer_objects(&parser->ticket, |
| &parser->validated, |
| &job->base.s_fence->base); |
| |
| mutex_unlock(&job->job_lock); |
| amdgpu_cs_parser_fini_late(parser); |
| up_read(&adev->exclusive_lock); |
| return 0; |
| } |
| |
| cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence; |
| out: |
| amdgpu_cs_parser_fini(parser, r, reserved_buffers); |
| up_read(&adev->exclusive_lock); |
| r = amdgpu_cs_handle_lockup(adev, r); |
| return r; |
| } |
| |
| /** |
| * amdgpu_cs_wait_ioctl - wait for a command submission to finish |
| * |
| * @dev: drm device |
| * @data: data from userspace |
| * @filp: file private |
| * |
| * Wait for the command submission identified by handle to finish. |
| */ |
| int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *filp) |
| { |
| union drm_amdgpu_wait_cs *wait = data; |
| struct amdgpu_device *adev = dev->dev_private; |
| unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); |
| struct amdgpu_ring *ring = NULL; |
| struct amdgpu_ctx *ctx; |
| struct fence *fence; |
| long r; |
| |
| r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance, |
| wait->in.ring, &ring); |
| if (r) |
| return r; |
| |
| ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); |
| if (ctx == NULL) |
| return -EINVAL; |
| |
| fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle); |
| if (IS_ERR(fence)) |
| r = PTR_ERR(fence); |
| else if (fence) { |
| r = fence_wait_timeout(fence, true, timeout); |
| fence_put(fence); |
| } else |
| r = 1; |
| |
| amdgpu_ctx_put(ctx); |
| if (r < 0) |
| return r; |
| |
| memset(wait, 0, sizeof(*wait)); |
| wait->out.status = (r == 0); |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_cs_find_bo_va - find bo_va for VM address |
| * |
| * @parser: command submission parser context |
| * @addr: VM address |
| * @bo: resulting BO of the mapping found |
| * |
| * Search the buffer objects in the command submission context for a certain |
| * virtual memory address. Returns allocation structure when found, NULL |
| * otherwise. |
| */ |
| struct amdgpu_bo_va_mapping * |
| amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, |
| uint64_t addr, struct amdgpu_bo **bo) |
| { |
| struct amdgpu_bo_list_entry *reloc; |
| struct amdgpu_bo_va_mapping *mapping; |
| |
| addr /= AMDGPU_GPU_PAGE_SIZE; |
| |
| list_for_each_entry(reloc, &parser->validated, tv.head) { |
| if (!reloc->bo_va) |
| continue; |
| |
| list_for_each_entry(mapping, &reloc->bo_va->valids, list) { |
| if (mapping->it.start > addr || |
| addr > mapping->it.last) |
| continue; |
| |
| *bo = reloc->bo_va->bo; |
| return mapping; |
| } |
| |
| list_for_each_entry(mapping, &reloc->bo_va->invalids, list) { |
| if (mapping->it.start > addr || |
| addr > mapping->it.last) |
| continue; |
| |
| *bo = reloc->bo_va->bo; |
| return mapping; |
| } |
| } |
| |
| return NULL; |
| } |