blob: 51274483502e647c03190b2926be106c2a479ce6 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Please try to maintain the following order within this file unless it makes
* sense to do otherwise. From top to bottom:
* 1. typedefs
* 2. #defines, and macros
* 3. structure definitions
* 4. function prototypes
*
* Within each section, please try to order by generation in ascending order,
* from top to bottom (ie. gen6 on the top, gen8 on the bottom).
*/
#ifndef __I915_GEM_GTT_H__
#define __I915_GEM_GTT_H__
#include <linux/io-mapping.h>
#include <linux/kref.h>
#include <linux/mm.h>
#include <linux/pagevec.h>
#include <linux/workqueue.h>
#include <drm/drm_mm.h>
#include "gt/intel_reset.h"
#include "i915_gem_fence_reg.h"
#include "i915_request.h"
#include "i915_scatterlist.h"
#include "i915_selftest.h"
#include "gt/intel_timeline.h"
#define I915_GTT_PAGE_SIZE_4K BIT_ULL(12)
#define I915_GTT_PAGE_SIZE_64K BIT_ULL(16)
#define I915_GTT_PAGE_SIZE_2M BIT_ULL(21)
#define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
#define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
#define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE
#define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
#define I915_FENCE_REG_NONE -1
#define I915_MAX_NUM_FENCES 32
/* 32 fences + sign bit for FENCE_REG_NONE */
#define I915_MAX_NUM_FENCE_BITS 6
struct drm_i915_file_private;
struct drm_i915_gem_object;
struct i915_vma;
struct intel_gt;
typedef u32 gen6_pte_t;
typedef u64 gen8_pte_t;
#define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT)
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_CACHE_LLC (2 << 1)
#define GEN6_PTE_UNCACHED (1 << 1)
#define GEN6_PTE_VALID (1 << 0)
#define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len)))
#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
#define I915_PDES 512
#define I915_PDE_MASK (I915_PDES - 1)
#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
#define GEN6_PDE_SHIFT 22
#define GEN6_PDE_VALID (1 << 0)
#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
#define BYT_PTE_WRITEABLE (1 << 1)
/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
* 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
*/
#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
(((bits) & 0x8) << (11 - 3)))
#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
#define HSW_PTE_UNCACHED (0)
#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
/*
* GEN8 32b style address is defined as a 3 level page table:
* 31:30 | 29:21 | 20:12 | 11:0
* PDPE | PDE | PTE | offset
* The difference as compared to normal x86 3 level page table is the PDPEs are
* programmed via register.
*
* GEN8 48b style address is defined as a 4 level page table:
* 47:39 | 38:30 | 29:21 | 20:12 | 11:0
* PML4E | PDPE | PDE | PTE | offset
*/
#define GEN8_3LVL_PDPES 4
#define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD)
#define PPAT_CACHED_PDE 0 /* WB LLC */
#define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */
#define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */
#define CHV_PPAT_SNOOP (1<<6)
#define GEN8_PPAT_AGE(x) ((x)<<4)
#define GEN8_PPAT_LLCeLLC (3<<2)
#define GEN8_PPAT_LLCELLC (2<<2)
#define GEN8_PPAT_LLC (1<<2)
#define GEN8_PPAT_WB (3<<0)
#define GEN8_PPAT_WT (2<<0)
#define GEN8_PPAT_WC (1<<0)
#define GEN8_PPAT_UC (0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
#define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8))
#define GEN8_PDE_IPS_64K BIT(11)
#define GEN8_PDE_PS_2M BIT(7)
#define for_each_sgt_dma(__dmap, __iter, __sgt) \
__for_each_sgt_dma(__dmap, __iter, __sgt, I915_GTT_PAGE_SIZE)
struct intel_remapped_plane_info {
/* in gtt pages */
unsigned int width, height, stride, offset;
} __packed;
struct intel_remapped_info {
struct intel_remapped_plane_info plane[2];
unsigned int unused_mbz;
} __packed;
struct intel_rotation_info {
struct intel_remapped_plane_info plane[2];
} __packed;
struct intel_partial_info {
u64 offset;
unsigned int size;
} __packed;
enum i915_ggtt_view_type {
I915_GGTT_VIEW_NORMAL = 0,
I915_GGTT_VIEW_ROTATED = sizeof(struct intel_rotation_info),
I915_GGTT_VIEW_PARTIAL = sizeof(struct intel_partial_info),
I915_GGTT_VIEW_REMAPPED = sizeof(struct intel_remapped_info),
};
static inline void assert_i915_gem_gtt_types(void)
{
BUILD_BUG_ON(sizeof(struct intel_rotation_info) != 8*sizeof(unsigned int));
BUILD_BUG_ON(sizeof(struct intel_partial_info) != sizeof(u64) + sizeof(unsigned int));
BUILD_BUG_ON(sizeof(struct intel_remapped_info) != 9*sizeof(unsigned int));
/* Check that rotation/remapped shares offsets for simplicity */
BUILD_BUG_ON(offsetof(struct intel_remapped_info, plane[0]) !=
offsetof(struct intel_rotation_info, plane[0]));
BUILD_BUG_ON(offsetofend(struct intel_remapped_info, plane[1]) !=
offsetofend(struct intel_rotation_info, plane[1]));
/* As we encode the size of each branch inside the union into its type,
* we have to be careful that each branch has a unique size.
*/
switch ((enum i915_ggtt_view_type)0) {
case I915_GGTT_VIEW_NORMAL:
case I915_GGTT_VIEW_PARTIAL:
case I915_GGTT_VIEW_ROTATED:
case I915_GGTT_VIEW_REMAPPED:
/* gcc complains if these are identical cases */
break;
}
}
struct i915_ggtt_view {
enum i915_ggtt_view_type type;
union {
/* Members need to contain no holes/padding */
struct intel_partial_info partial;
struct intel_rotation_info rotated;
struct intel_remapped_info remapped;
};
};
enum i915_cache_level;
struct i915_vma;
struct i915_page_dma {
struct page *page;
union {
dma_addr_t daddr;
/* For gen6/gen7 only. This is the offset in the GGTT
* where the page directory entries for PPGTT begin
*/
u32 ggtt_offset;
};
};
struct i915_page_scratch {
struct i915_page_dma base;
u64 encode;
};
struct i915_page_table {
struct i915_page_dma base;
atomic_t used;
};
struct i915_page_directory {
struct i915_page_table pt;
spinlock_t lock;
void *entry[512];
};
#define __px_choose_expr(x, type, expr, other) \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(x), type) || \
__builtin_types_compatible_p(typeof(x), const type), \
({ type __x = (type)(x); expr; }), \
other)
#define px_base(px) \
__px_choose_expr(px, struct i915_page_dma *, __x, \
__px_choose_expr(px, struct i915_page_scratch *, &__x->base, \
__px_choose_expr(px, struct i915_page_table *, &__x->base, \
__px_choose_expr(px, struct i915_page_directory *, &__x->pt.base, \
(void)0))))
#define px_dma(px) (px_base(px)->daddr)
#define px_pt(px) \
__px_choose_expr(px, struct i915_page_table *, __x, \
__px_choose_expr(px, struct i915_page_directory *, &__x->pt, \
(void)0))
#define px_used(px) (&px_pt(px)->used)
struct i915_vma_ops {
/* Map an object into an address space with the given cache flags. */
int (*bind_vma)(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags);
/*
* Unmap an object from an address space. This usually consists of
* setting the valid PTE entries to a reserved scratch page.
*/
void (*unbind_vma)(struct i915_vma *vma);
int (*set_pages)(struct i915_vma *vma);
void (*clear_pages)(struct i915_vma *vma);
};
struct pagestash {
spinlock_t lock;
struct pagevec pvec;
};
struct i915_address_space {
struct kref ref;
struct rcu_work rcu;
struct drm_mm mm;
struct intel_gt *gt;
struct drm_i915_private *i915;
struct device *dma;
/* Every address space belongs to a struct file - except for the global
* GTT that is owned by the driver (and so @file is set to NULL). In
* principle, no information should leak from one context to another
* (or between files/processes etc) unless explicitly shared by the
* owner. Tracking the owner is important in order to free up per-file
* objects along with the file, to aide resource tracking, and to
* assign blame.
*/
struct drm_i915_file_private *file;
u64 total; /* size addr space maps (ex. 2GB for ggtt) */
u64 reserved; /* size addr space reserved */
bool closed;
struct mutex mutex; /* protects vma and our lists */
#define VM_CLASS_GGTT 0
#define VM_CLASS_PPGTT 1
struct i915_page_scratch scratch[4];
unsigned int scratch_order;
unsigned int top;
/**
* List of vma currently bound.
*/
struct list_head bound_list;
/**
* List of vma that are not unbound.
*/
struct list_head unbound_list;
struct pagestash free_pages;
/* Global GTT */
bool is_ggtt:1;
/* Some systems require uncached updates of the page directories */
bool pt_kmap_wc:1;
/* Some systems support read-only mappings for GGTT and/or PPGTT */
bool has_read_only:1;
u64 (*pte_encode)(dma_addr_t addr,
enum i915_cache_level level,
u32 flags); /* Create a valid PTE */
#define PTE_READ_ONLY (1<<0)
int (*allocate_va_range)(struct i915_address_space *vm,
u64 start, u64 length);
void (*clear_range)(struct i915_address_space *vm,
u64 start, u64 length);
void (*insert_page)(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level cache_level,
u32 flags);
void (*insert_entries)(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags);
void (*cleanup)(struct i915_address_space *vm);
struct i915_vma_ops vma_ops;
I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
I915_SELFTEST_DECLARE(bool scrub_64K);
};
#define i915_is_ggtt(vm) ((vm)->is_ggtt)
static inline bool
i915_vm_is_4lvl(const struct i915_address_space *vm)
{
return (vm->total - 1) >> 32;
}
static inline bool
i915_vm_has_scratch_64K(struct i915_address_space *vm)
{
return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K);
}
/* The Graphics Translation Table is the way in which GEN hardware translates a
* Graphics Virtual Address into a Physical Address. In addition to the normal
* collateral associated with any va->pa translations GEN hardware also has a
* portion of the GTT which can be mapped by the CPU and remain both coherent
* and correct (in cases like swizzling). That region is referred to as GMADR in
* the spec.
*/
struct i915_ggtt {
struct i915_address_space vm;
struct io_mapping iomap; /* Mapping to our CPU mappable region */
struct resource gmadr; /* GMADR resource */
resource_size_t mappable_end; /* End offset that we can CPU map */
/** "Graphics Stolen Memory" holds the global PTEs */
void __iomem *gsm;
void (*invalidate)(struct i915_ggtt *ggtt);
/** PPGTT used for aliasing the PPGTT with the GTT */
struct i915_ppgtt *alias;
bool do_idle_maps;
int mtrr;
u32 pin_bias;
unsigned int num_fences;
struct i915_fence_reg fence_regs[I915_MAX_NUM_FENCES];
struct list_head fence_list;
/** List of all objects in gtt_space, currently mmaped by userspace.
* All objects within this list must also be on bound_list.
*/
struct list_head userfault_list;
/* Manual runtime pm autosuspend delay for user GGTT mmaps */
struct intel_wakeref_auto userfault_wakeref;
struct drm_mm_node error_capture;
struct drm_mm_node uc_fw;
};
struct i915_ppgtt {
struct i915_address_space vm;
intel_engine_mask_t pd_dirty_engines;
struct i915_page_directory *pd;
};
struct gen6_ppgtt {
struct i915_ppgtt base;
struct i915_vma *vma;
gen6_pte_t __iomem *pd_addr;
unsigned int pin_count;
bool scan_for_unused_pt;
};
#define __to_gen6_ppgtt(base) container_of(base, struct gen6_ppgtt, base)
static inline struct gen6_ppgtt *to_gen6_ppgtt(struct i915_ppgtt *base)
{
BUILD_BUG_ON(offsetof(struct gen6_ppgtt, base));
return __to_gen6_ppgtt(base);
}
/*
* gen6_for_each_pde() iterates over every pde from start until start+length.
* If start and start+length are not perfectly divisible, the macro will round
* down and up as needed. Start=0 and length=2G effectively iterates over
* every PDE in the system. The macro modifies ALL its parameters except 'pd',
* so each of the other parameters should preferably be a simple variable, or
* at most an lvalue with no side-effects!
*/
#define gen6_for_each_pde(pt, pd, start, length, iter) \
for (iter = gen6_pde_index(start); \
length > 0 && iter < I915_PDES && \
(pt = i915_pt_entry(pd, iter), true); \
({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
#define gen6_for_all_pdes(pt, pd, iter) \
for (iter = 0; \
iter < I915_PDES && \
(pt = i915_pt_entry(pd, iter), true); \
++iter)
static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
{
const u32 mask = NUM_PTE(pde_shift) - 1;
return (address >> PAGE_SHIFT) & mask;
}
/* Helper to counts the number of PTEs within the given length. This count
* does not cross a page table boundary, so the max value would be
* GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
*/
static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
{
const u64 mask = ~((1ULL << pde_shift) - 1);
u64 end;
GEM_BUG_ON(length == 0);
GEM_BUG_ON(offset_in_page(addr | length));
end = addr + length;
if ((addr & mask) != (end & mask))
return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
}
static inline u32 i915_pde_index(u64 addr, u32 shift)
{
return (addr >> shift) & I915_PDE_MASK;
}
static inline u32 gen6_pte_index(u32 addr)
{
return i915_pte_index(addr, GEN6_PDE_SHIFT);
}
static inline u32 gen6_pte_count(u32 addr, u32 length)
{
return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
}
static inline u32 gen6_pde_index(u32 addr)
{
return i915_pde_index(addr, GEN6_PDE_SHIFT);
}
static inline struct i915_page_table *
i915_pt_entry(const struct i915_page_directory * const pd,
const unsigned short n)
{
return pd->entry[n];
}
static inline struct i915_page_directory *
i915_pd_entry(const struct i915_page_directory * const pdp,
const unsigned short n)
{
return pdp->entry[n];
}
static inline dma_addr_t
i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n)
{
struct i915_page_dma *pt = ppgtt->pd->entry[n];
return px_dma(pt ?: px_base(&ppgtt->vm.scratch[ppgtt->vm.top]));
}
static inline struct i915_ggtt *
i915_vm_to_ggtt(struct i915_address_space *vm)
{
BUILD_BUG_ON(offsetof(struct i915_ggtt, vm));
GEM_BUG_ON(!i915_is_ggtt(vm));
return container_of(vm, struct i915_ggtt, vm);
}
static inline struct i915_ppgtt *
i915_vm_to_ppgtt(struct i915_address_space *vm)
{
BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm));
GEM_BUG_ON(i915_is_ggtt(vm));
return container_of(vm, struct i915_ppgtt, vm);
}
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
void i915_ggtt_enable_guc(struct i915_ggtt *ggtt);
void i915_ggtt_disable_guc(struct i915_ggtt *ggtt);
int i915_init_ggtt(struct drm_i915_private *dev_priv);
void i915_ggtt_driver_release(struct drm_i915_private *dev_priv);
int i915_ppgtt_init_hw(struct intel_gt *gt);
struct i915_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv);
static inline struct i915_address_space *
i915_vm_get(struct i915_address_space *vm)
{
kref_get(&vm->ref);
return vm;
}
void i915_vm_release(struct kref *kref);
static inline void i915_vm_put(struct i915_address_space *vm)
{
kref_put(&vm->ref, i915_vm_release);
}
int gen6_ppgtt_pin(struct i915_ppgtt *base);
void gen6_ppgtt_unpin(struct i915_ppgtt *base);
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base);
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv);
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv);
int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages);
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages);
int i915_gem_gtt_reserve(struct i915_address_space *vm,
struct drm_mm_node *node,
u64 size, u64 offset, unsigned long color,
unsigned int flags);
int i915_gem_gtt_insert(struct i915_address_space *vm,
struct drm_mm_node *node,
u64 size, u64 alignment, unsigned long color,
u64 start, u64 end, unsigned int flags);
/* Flags used by pin/bind&friends. */
#define PIN_NONBLOCK BIT_ULL(0)
#define PIN_NONFAULT BIT_ULL(1)
#define PIN_NOEVICT BIT_ULL(2)
#define PIN_MAPPABLE BIT_ULL(3)
#define PIN_ZONE_4G BIT_ULL(4)
#define PIN_HIGH BIT_ULL(5)
#define PIN_OFFSET_BIAS BIT_ULL(6)
#define PIN_OFFSET_FIXED BIT_ULL(7)
#define PIN_MBZ BIT_ULL(8) /* I915_VMA_PIN_OVERFLOW */
#define PIN_GLOBAL BIT_ULL(9) /* I915_VMA_GLOBAL_BIND */
#define PIN_USER BIT_ULL(10) /* I915_VMA_LOCAL_BIND */
#define PIN_UPDATE BIT_ULL(11)
#define PIN_OFFSET_MASK (-I915_GTT_PAGE_SIZE)
#endif