blob: bb9d44e7bd26acd2ed869c667eba3348e21451bb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <drm/drm_crtc.h>
#include <linux/debugfs.h>
#include <linux/of_irq.h>
#include <linux/dma-buf.h>
#include "msm_drv.h"
#include "msm_mmu.h"
#include "msm_gem.h"
#include "dpu_kms.h"
#include "dpu_core_irq.h"
#include "dpu_formats.h"
#include "dpu_hw_vbif.h"
#include "dpu_vbif.h"
#include "dpu_encoder.h"
#include "dpu_plane.h"
#include "dpu_crtc.h"
#define CREATE_TRACE_POINTS
#include "dpu_trace.h"
static const char * const iommu_ports[] = {
"mdp_0",
};
/*
* To enable overall DRM driver logging
* # echo 0x2 > /sys/module/drm/parameters/debug
*
* To enable DRM driver h/w logging
* # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask
*
* See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_)
*/
#define DPU_DEBUGFS_DIR "msm_dpu"
#define DPU_DEBUGFS_HWMASKNAME "hw_log_mask"
static int dpu_kms_hw_init(struct msm_kms *kms);
static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms);
static unsigned long dpu_iomap_size(struct platform_device *pdev,
const char *name)
{
struct resource *res;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
if (!res) {
DRM_ERROR("failed to get memory resource: %s\n", name);
return 0;
}
return resource_size(res);
}
#ifdef CONFIG_DEBUG_FS
static int _dpu_danger_signal_status(struct seq_file *s,
bool danger_status)
{
struct dpu_kms *kms = (struct dpu_kms *)s->private;
struct msm_drm_private *priv;
struct dpu_danger_safe_status status;
int i;
if (!kms->dev || !kms->dev->dev_private || !kms->hw_mdp) {
DPU_ERROR("invalid arg(s)\n");
return 0;
}
priv = kms->dev->dev_private;
memset(&status, 0, sizeof(struct dpu_danger_safe_status));
pm_runtime_get_sync(&kms->pdev->dev);
if (danger_status) {
seq_puts(s, "\nDanger signal status:\n");
if (kms->hw_mdp->ops.get_danger_status)
kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
&status);
} else {
seq_puts(s, "\nSafe signal status:\n");
if (kms->hw_mdp->ops.get_danger_status)
kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
&status);
}
pm_runtime_put_sync(&kms->pdev->dev);
seq_printf(s, "MDP : 0x%x\n", status.mdp);
for (i = SSPP_VIG0; i < SSPP_MAX; i++)
seq_printf(s, "SSPP%d : 0x%x \t", i - SSPP_VIG0,
status.sspp[i]);
seq_puts(s, "\n");
return 0;
}
#define DEFINE_DPU_DEBUGFS_SEQ_FOPS(__prefix) \
static int __prefix ## _open(struct inode *inode, struct file *file) \
{ \
return single_open(file, __prefix ## _show, inode->i_private); \
} \
static const struct file_operations __prefix ## _fops = { \
.owner = THIS_MODULE, \
.open = __prefix ## _open, \
.release = single_release, \
.read = seq_read, \
.llseek = seq_lseek, \
}
static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v)
{
return _dpu_danger_signal_status(s, true);
}
DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_debugfs_danger_stats);
static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v)
{
return _dpu_danger_signal_status(s, false);
}
DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_debugfs_safe_stats);
static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms,
struct dentry *parent)
{
struct dentry *entry = debugfs_create_dir("danger", parent);
debugfs_create_file("danger_status", 0600, entry,
dpu_kms, &dpu_debugfs_danger_stats_fops);
debugfs_create_file("safe_status", 0600, entry,
dpu_kms, &dpu_debugfs_safe_stats_fops);
}
static int _dpu_debugfs_show_regset32(struct seq_file *s, void *data)
{
struct dpu_debugfs_regset32 *regset = s->private;
struct dpu_kms *dpu_kms = regset->dpu_kms;
struct drm_device *dev;
struct msm_drm_private *priv;
void __iomem *base;
uint32_t i, addr;
if (!dpu_kms->mmio)
return 0;
dev = dpu_kms->dev;
if (!dev)
return 0;
priv = dev->dev_private;
if (!priv)
return 0;
base = dpu_kms->mmio + regset->offset;
/* insert padding spaces, if needed */
if (regset->offset & 0xF) {
seq_printf(s, "[%x]", regset->offset & ~0xF);
for (i = 0; i < (regset->offset & 0xF); i += 4)
seq_puts(s, " ");
}
pm_runtime_get_sync(&dpu_kms->pdev->dev);
/* main register output */
for (i = 0; i < regset->blk_len; i += 4) {
addr = regset->offset + i;
if ((addr & 0xF) == 0x0)
seq_printf(s, i ? "\n[%x]" : "[%x]", addr);
seq_printf(s, " %08x", readl_relaxed(base + i));
}
seq_puts(s, "\n");
pm_runtime_put_sync(&dpu_kms->pdev->dev);
return 0;
}
static int dpu_debugfs_open_regset32(struct inode *inode,
struct file *file)
{
return single_open(file, _dpu_debugfs_show_regset32, inode->i_private);
}
static const struct file_operations dpu_fops_regset32 = {
.open = dpu_debugfs_open_regset32,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
void dpu_debugfs_setup_regset32(struct dpu_debugfs_regset32 *regset,
uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms)
{
if (regset) {
regset->offset = offset;
regset->blk_len = length;
regset->dpu_kms = dpu_kms;
}
}
void dpu_debugfs_create_regset32(const char *name, umode_t mode,
void *parent, struct dpu_debugfs_regset32 *regset)
{
if (!name || !regset || !regset->dpu_kms || !regset->blk_len)
return;
/* make sure offset is a multiple of 4 */
regset->offset = round_down(regset->offset, 4);
debugfs_create_file(name, mode, parent, regset, &dpu_fops_regset32);
}
static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
void *p = dpu_hw_util_get_log_mask_ptr();
struct dentry *entry;
if (!p)
return -EINVAL;
entry = debugfs_create_dir("debug", minor->debugfs_root);
debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p);
dpu_debugfs_danger_init(dpu_kms, entry);
dpu_debugfs_vbif_init(dpu_kms, entry);
dpu_debugfs_core_irq_init(dpu_kms, entry);
return dpu_core_perf_debugfs_init(dpu_kms, entry);
}
#endif
static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
{
return dpu_crtc_vblank(crtc, true);
}
static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
{
dpu_crtc_vblank(crtc, false);
}
static void dpu_kms_prepare_commit(struct msm_kms *kms,
struct drm_atomic_state *state)
{
struct dpu_kms *dpu_kms;
struct msm_drm_private *priv;
struct drm_device *dev;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_encoder *encoder;
int i;
if (!kms)
return;
dpu_kms = to_dpu_kms(kms);
dev = dpu_kms->dev;
if (!dev || !dev->dev_private)
return;
priv = dev->dev_private;
pm_runtime_get_sync(&dpu_kms->pdev->dev);
/* Call prepare_commit for all affected encoders */
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
drm_for_each_encoder_mask(encoder, crtc->dev,
crtc_state->encoder_mask) {
dpu_encoder_prepare_commit(encoder);
}
}
}
/*
* Override the encoder enable since we need to setup the inline rotator and do
* some crtc magic before enabling any bridge that might be present.
*/
void dpu_kms_encoder_enable(struct drm_encoder *encoder)
{
const struct drm_encoder_helper_funcs *funcs = encoder->helper_private;
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc;
/* Forward this enable call to the commit hook */
if (funcs && funcs->commit)
funcs->commit(encoder);
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
drm_for_each_crtc(crtc, dev) {
if (!(crtc->state->encoder_mask & drm_encoder_mask(encoder)))
continue;
trace_dpu_kms_enc_enable(DRMID(crtc));
dpu_crtc_commit_kickoff(crtc, false);
}
}
static void dpu_kms_commit(struct msm_kms *kms, struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int i;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
/* If modeset is required, kickoff is run in encoder_enable */
if (drm_atomic_crtc_needs_modeset(crtc_state))
continue;
if (crtc->state->active) {
trace_dpu_kms_commit(DRMID(crtc));
dpu_crtc_commit_kickoff(crtc,
state->legacy_cursor_update);
}
}
}
static void dpu_kms_complete_commit(struct msm_kms *kms,
struct drm_atomic_state *old_state)
{
struct dpu_kms *dpu_kms;
struct msm_drm_private *priv;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
int i;
if (!kms || !old_state)
return;
dpu_kms = to_dpu_kms(kms);
if (!dpu_kms->dev || !dpu_kms->dev->dev_private)
return;
priv = dpu_kms->dev->dev_private;
DPU_ATRACE_BEGIN("kms_complete_commit");
for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i)
dpu_crtc_complete_commit(crtc, old_crtc_state);
pm_runtime_put_sync(&dpu_kms->pdev->dev);
DPU_ATRACE_END("kms_complete_commit");
}
static void dpu_kms_wait_for_commit_done(struct msm_kms *kms,
struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev;
int ret;
if (!kms || !crtc || !crtc->state) {
DPU_ERROR("invalid params\n");
return;
}
dev = crtc->dev;
if (!crtc->state->enable) {
DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
return;
}
if (!crtc->state->active) {
DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id);
return;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc != crtc)
continue;
/*
* Wait for post-flush if necessary to delay before
* plane_cleanup. For example, wait for vsync in case of video
* mode panels. This may be a no-op for command mode panels.
*/
trace_dpu_kms_wait_for_commit_done(DRMID(crtc));
ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE);
if (ret && ret != -EWOULDBLOCK) {
DPU_ERROR("wait for commit done returned %d\n", ret);
break;
}
}
}
static int _dpu_kms_initialize_dsi(struct drm_device *dev,
struct msm_drm_private *priv,
struct dpu_kms *dpu_kms)
{
struct drm_encoder *encoder = NULL;
int i, rc = 0;
if (!(priv->dsi[0] || priv->dsi[1]))
return rc;
/*TODO: Support two independent DSI connectors */
encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI);
if (IS_ERR(encoder)) {
DPU_ERROR("encoder init failed for dsi display\n");
return PTR_ERR(encoder);
}
priv->encoders[priv->num_encoders++] = encoder;
for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
if (!priv->dsi[i])
continue;
rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder);
if (rc) {
DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
i, rc);
break;
}
}
return rc;
}
/**
* _dpu_kms_setup_displays - create encoders, bridges and connectors
* for underlying displays
* @dev: Pointer to drm device structure
* @priv: Pointer to private drm device data
* @dpu_kms: Pointer to dpu kms structure
* Returns: Zero on success
*/
static int _dpu_kms_setup_displays(struct drm_device *dev,
struct msm_drm_private *priv,
struct dpu_kms *dpu_kms)
{
/**
* Extend this function to initialize other
* types of displays
*/
return _dpu_kms_initialize_dsi(dev, priv, dpu_kms);
}
static void _dpu_kms_drm_obj_destroy(struct dpu_kms *dpu_kms)
{
struct msm_drm_private *priv;
int i;
if (!dpu_kms) {
DPU_ERROR("invalid dpu_kms\n");
return;
} else if (!dpu_kms->dev) {
DPU_ERROR("invalid dev\n");
return;
} else if (!dpu_kms->dev->dev_private) {
DPU_ERROR("invalid dev_private\n");
return;
}
priv = dpu_kms->dev->dev_private;
for (i = 0; i < priv->num_crtcs; i++)
priv->crtcs[i]->funcs->destroy(priv->crtcs[i]);
priv->num_crtcs = 0;
for (i = 0; i < priv->num_planes; i++)
priv->planes[i]->funcs->destroy(priv->planes[i]);
priv->num_planes = 0;
for (i = 0; i < priv->num_connectors; i++)
priv->connectors[i]->funcs->destroy(priv->connectors[i]);
priv->num_connectors = 0;
for (i = 0; i < priv->num_encoders; i++)
priv->encoders[i]->funcs->destroy(priv->encoders[i]);
priv->num_encoders = 0;
}
static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms)
{
struct drm_device *dev;
struct drm_plane *primary_planes[MAX_PLANES], *plane;
struct drm_plane *cursor_planes[MAX_PLANES] = { NULL };
struct drm_crtc *crtc;
struct msm_drm_private *priv;
struct dpu_mdss_cfg *catalog;
int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret;
int max_crtc_count;
if (!dpu_kms || !dpu_kms->dev || !dpu_kms->dev->dev) {
DPU_ERROR("invalid dpu_kms\n");
return -EINVAL;
}
dev = dpu_kms->dev;
priv = dev->dev_private;
catalog = dpu_kms->catalog;
/*
* Create encoder and query display drivers to create
* bridges and connectors
*/
ret = _dpu_kms_setup_displays(dev, priv, dpu_kms);
if (ret)
goto fail;
max_crtc_count = min(catalog->mixer_count, priv->num_encoders);
/* Create the planes, keeping track of one primary/cursor per crtc */
for (i = 0; i < catalog->sspp_count; i++) {
enum drm_plane_type type;
if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR))
&& cursor_planes_idx < max_crtc_count)
type = DRM_PLANE_TYPE_CURSOR;
else if (primary_planes_idx < max_crtc_count)
type = DRM_PLANE_TYPE_PRIMARY;
else
type = DRM_PLANE_TYPE_OVERLAY;
DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n",
type, catalog->sspp[i].features,
catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR));
plane = dpu_plane_init(dev, catalog->sspp[i].id, type,
(1UL << max_crtc_count) - 1, 0);
if (IS_ERR(plane)) {
DPU_ERROR("dpu_plane_init failed\n");
ret = PTR_ERR(plane);
goto fail;
}
priv->planes[priv->num_planes++] = plane;
if (type == DRM_PLANE_TYPE_CURSOR)
cursor_planes[cursor_planes_idx++] = plane;
else if (type == DRM_PLANE_TYPE_PRIMARY)
primary_planes[primary_planes_idx++] = plane;
}
max_crtc_count = min(max_crtc_count, primary_planes_idx);
/* Create one CRTC per encoder */
for (i = 0; i < max_crtc_count; i++) {
crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]);
if (IS_ERR(crtc)) {
ret = PTR_ERR(crtc);
goto fail;
}
priv->crtcs[priv->num_crtcs++] = crtc;
}
/* All CRTCs are compatible with all encoders */
for (i = 0; i < priv->num_encoders; i++)
priv->encoders[i]->possible_crtcs = (1 << priv->num_crtcs) - 1;
return 0;
fail:
_dpu_kms_drm_obj_destroy(dpu_kms);
return ret;
}
static long dpu_kms_round_pixclk(struct msm_kms *kms, unsigned long rate,
struct drm_encoder *encoder)
{
return rate;
}
static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms)
{
struct drm_device *dev;
int i;
dev = dpu_kms->dev;
if (!dev)
return;
if (dpu_kms->hw_intr)
dpu_hw_intr_destroy(dpu_kms->hw_intr);
dpu_kms->hw_intr = NULL;
/* safe to call these more than once during shutdown */
_dpu_kms_mmu_destroy(dpu_kms);
if (dpu_kms->catalog) {
for (i = 0; i < dpu_kms->catalog->vbif_count; i++) {
u32 vbif_idx = dpu_kms->catalog->vbif[i].id;
if ((vbif_idx < VBIF_MAX) && dpu_kms->hw_vbif[vbif_idx])
dpu_hw_vbif_destroy(dpu_kms->hw_vbif[vbif_idx]);
}
}
if (dpu_kms->rm_init)
dpu_rm_destroy(&dpu_kms->rm);
dpu_kms->rm_init = false;
if (dpu_kms->catalog)
dpu_hw_catalog_deinit(dpu_kms->catalog);
dpu_kms->catalog = NULL;
if (dpu_kms->vbif[VBIF_NRT])
devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]);
dpu_kms->vbif[VBIF_NRT] = NULL;
if (dpu_kms->vbif[VBIF_RT])
devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]);
dpu_kms->vbif[VBIF_RT] = NULL;
if (dpu_kms->hw_mdp)
dpu_hw_mdp_destroy(dpu_kms->hw_mdp);
dpu_kms->hw_mdp = NULL;
if (dpu_kms->mmio)
devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio);
dpu_kms->mmio = NULL;
}
static void dpu_kms_destroy(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms;
if (!kms) {
DPU_ERROR("invalid kms\n");
return;
}
dpu_kms = to_dpu_kms(kms);
_dpu_kms_hw_destroy(dpu_kms);
}
static void _dpu_kms_set_encoder_mode(struct msm_kms *kms,
struct drm_encoder *encoder,
bool cmd_mode)
{
struct msm_display_info info;
struct msm_drm_private *priv = encoder->dev->dev_private;
int i, rc = 0;
memset(&info, 0, sizeof(info));
info.intf_type = encoder->encoder_type;
info.capabilities = cmd_mode ? MSM_DISPLAY_CAP_CMD_MODE :
MSM_DISPLAY_CAP_VID_MODE;
/* TODO: No support for DSI swap */
for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
if (priv->dsi[i]) {
info.h_tile_instance[info.num_of_h_tiles] = i;
info.num_of_h_tiles++;
}
}
rc = dpu_encoder_setup(encoder->dev, encoder, &info);
if (rc)
DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
encoder->base.id, rc);
}
static irqreturn_t dpu_irq(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
return dpu_core_irq(dpu_kms);
}
static void dpu_irq_preinstall(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
dpu_core_irq_preinstall(dpu_kms);
}
static void dpu_irq_uninstall(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
dpu_core_irq_uninstall(dpu_kms);
}
static const struct msm_kms_funcs kms_funcs = {
.hw_init = dpu_kms_hw_init,
.irq_preinstall = dpu_irq_preinstall,
.irq_uninstall = dpu_irq_uninstall,
.irq = dpu_irq,
.prepare_commit = dpu_kms_prepare_commit,
.commit = dpu_kms_commit,
.complete_commit = dpu_kms_complete_commit,
.wait_for_crtc_commit_done = dpu_kms_wait_for_commit_done,
.enable_vblank = dpu_kms_enable_vblank,
.disable_vblank = dpu_kms_disable_vblank,
.check_modified_format = dpu_format_check_modified_format,
.get_format = dpu_get_msm_format,
.round_pixclk = dpu_kms_round_pixclk,
.destroy = dpu_kms_destroy,
.set_encoder_mode = _dpu_kms_set_encoder_mode,
#ifdef CONFIG_DEBUG_FS
.debugfs_init = dpu_kms_debugfs_init,
#endif
};
static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms)
{
struct msm_mmu *mmu;
if (!dpu_kms->base.aspace)
return;
mmu = dpu_kms->base.aspace->mmu;
mmu->funcs->detach(mmu, (const char **)iommu_ports,
ARRAY_SIZE(iommu_ports));
msm_gem_address_space_put(dpu_kms->base.aspace);
dpu_kms->base.aspace = NULL;
}
static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms)
{
struct iommu_domain *domain;
struct msm_gem_address_space *aspace;
int ret;
domain = iommu_domain_alloc(&platform_bus_type);
if (!domain)
return 0;
domain->geometry.aperture_start = 0x1000;
domain->geometry.aperture_end = 0xffffffff;
aspace = msm_gem_address_space_create(dpu_kms->dev->dev,
domain, "dpu1");
if (IS_ERR(aspace)) {
iommu_domain_free(domain);
return PTR_ERR(aspace);
}
ret = aspace->mmu->funcs->attach(aspace->mmu, iommu_ports,
ARRAY_SIZE(iommu_ports));
if (ret) {
DPU_ERROR("failed to attach iommu %d\n", ret);
msm_gem_address_space_put(aspace);
return ret;
}
dpu_kms->base.aspace = aspace;
return 0;
}
static struct dss_clk *_dpu_kms_get_clk(struct dpu_kms *dpu_kms,
char *clock_name)
{
struct dss_module_power *mp = &dpu_kms->mp;
int i;
for (i = 0; i < mp->num_clk; i++) {
if (!strcmp(mp->clk_config[i].clk_name, clock_name))
return &mp->clk_config[i];
}
return NULL;
}
u64 dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name)
{
struct dss_clk *clk;
clk = _dpu_kms_get_clk(dpu_kms, clock_name);
if (!clk)
return -EINVAL;
return clk_get_rate(clk->clk);
}
static int dpu_kms_hw_init(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms;
struct drm_device *dev;
struct msm_drm_private *priv;
int i, rc = -EINVAL;
if (!kms) {
DPU_ERROR("invalid kms\n");
return rc;
}
dpu_kms = to_dpu_kms(kms);
dev = dpu_kms->dev;
if (!dev) {
DPU_ERROR("invalid device\n");
return rc;
}
priv = dev->dev_private;
if (!priv) {
DPU_ERROR("invalid private data\n");
return rc;
}
dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp", "mdp");
if (IS_ERR(dpu_kms->mmio)) {
rc = PTR_ERR(dpu_kms->mmio);
DPU_ERROR("mdp register memory map failed: %d\n", rc);
dpu_kms->mmio = NULL;
goto error;
}
DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio);
dpu_kms->mmio_len = dpu_iomap_size(dpu_kms->pdev, "mdp");
dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif", "vbif");
if (IS_ERR(dpu_kms->vbif[VBIF_RT])) {
rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]);
DPU_ERROR("vbif register memory map failed: %d\n", rc);
dpu_kms->vbif[VBIF_RT] = NULL;
goto error;
}
dpu_kms->vbif_len[VBIF_RT] = dpu_iomap_size(dpu_kms->pdev, "vbif");
dpu_kms->vbif[VBIF_NRT] = msm_ioremap(dpu_kms->pdev, "vbif_nrt", "vbif_nrt");
if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) {
dpu_kms->vbif[VBIF_NRT] = NULL;
DPU_DEBUG("VBIF NRT is not defined");
} else {
dpu_kms->vbif_len[VBIF_NRT] = dpu_iomap_size(dpu_kms->pdev,
"vbif_nrt");
}
dpu_kms->reg_dma = msm_ioremap(dpu_kms->pdev, "regdma", "regdma");
if (IS_ERR(dpu_kms->reg_dma)) {
dpu_kms->reg_dma = NULL;
DPU_DEBUG("REG_DMA is not defined");
} else {
dpu_kms->reg_dma_len = dpu_iomap_size(dpu_kms->pdev, "regdma");
}
pm_runtime_get_sync(&dpu_kms->pdev->dev);
dpu_kms->core_rev = readl_relaxed(dpu_kms->mmio + 0x0);
pr_info("dpu hardware revision:0x%x\n", dpu_kms->core_rev);
dpu_kms->catalog = dpu_hw_catalog_init(dpu_kms->core_rev);
if (IS_ERR_OR_NULL(dpu_kms->catalog)) {
rc = PTR_ERR(dpu_kms->catalog);
if (!dpu_kms->catalog)
rc = -EINVAL;
DPU_ERROR("catalog init failed: %d\n", rc);
dpu_kms->catalog = NULL;
goto power_error;
}
/*
* Now we need to read the HW catalog and initialize resources such as
* clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc
*/
rc = _dpu_kms_mmu_init(dpu_kms);
if (rc) {
DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc);
goto power_error;
}
rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio);
if (rc) {
DPU_ERROR("rm init failed: %d\n", rc);
goto power_error;
}
dpu_kms->rm_init = true;
dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio,
dpu_kms->catalog);
if (IS_ERR(dpu_kms->hw_mdp)) {
rc = PTR_ERR(dpu_kms->hw_mdp);
DPU_ERROR("failed to get hw_mdp: %d\n", rc);
dpu_kms->hw_mdp = NULL;
goto power_error;
}
for (i = 0; i < dpu_kms->catalog->vbif_count; i++) {
u32 vbif_idx = dpu_kms->catalog->vbif[i].id;
dpu_kms->hw_vbif[i] = dpu_hw_vbif_init(vbif_idx,
dpu_kms->vbif[vbif_idx], dpu_kms->catalog);
if (IS_ERR_OR_NULL(dpu_kms->hw_vbif[vbif_idx])) {
rc = PTR_ERR(dpu_kms->hw_vbif[vbif_idx]);
if (!dpu_kms->hw_vbif[vbif_idx])
rc = -EINVAL;
DPU_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc);
dpu_kms->hw_vbif[vbif_idx] = NULL;
goto power_error;
}
}
rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog,
_dpu_kms_get_clk(dpu_kms, "core"));
if (rc) {
DPU_ERROR("failed to init perf %d\n", rc);
goto perf_err;
}
dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog);
if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) {
rc = PTR_ERR(dpu_kms->hw_intr);
DPU_ERROR("hw_intr init failed: %d\n", rc);
dpu_kms->hw_intr = NULL;
goto hw_intr_init_err;
}
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
/*
* max crtc width is equal to the max mixer width * 2 and max height is
* is 4K
*/
dev->mode_config.max_width =
dpu_kms->catalog->caps->max_mixer_width * 2;
dev->mode_config.max_height = 4096;
/*
* Support format modifiers for compression etc.
*/
dev->mode_config.allow_fb_modifiers = true;
/*
* _dpu_kms_drm_obj_init should create the DRM related objects
* i.e. CRTCs, planes, encoders, connectors and so forth
*/
rc = _dpu_kms_drm_obj_init(dpu_kms);
if (rc) {
DPU_ERROR("modeset init failed: %d\n", rc);
goto drm_obj_init_err;
}
dpu_vbif_init_memtypes(dpu_kms);
pm_runtime_put_sync(&dpu_kms->pdev->dev);
return 0;
drm_obj_init_err:
dpu_core_perf_destroy(&dpu_kms->perf);
hw_intr_init_err:
perf_err:
power_error:
pm_runtime_put_sync(&dpu_kms->pdev->dev);
error:
_dpu_kms_hw_destroy(dpu_kms);
return rc;
}
struct msm_kms *dpu_kms_init(struct drm_device *dev)
{
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms;
int irq;
if (!dev || !dev->dev_private) {
DPU_ERROR("drm device node invalid\n");
return ERR_PTR(-EINVAL);
}
priv = dev->dev_private;
dpu_kms = to_dpu_kms(priv->kms);
irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0);
if (irq < 0) {
DPU_ERROR("failed to get irq: %d\n", irq);
return ERR_PTR(irq);
}
dpu_kms->base.irq = irq;
return &dpu_kms->base;
}
static int dpu_bind(struct device *dev, struct device *master, void *data)
{
struct drm_device *ddev = dev_get_drvdata(master);
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = ddev->dev_private;
struct dpu_kms *dpu_kms;
struct dss_module_power *mp;
int ret = 0;
dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL);
if (!dpu_kms)
return -ENOMEM;
mp = &dpu_kms->mp;
ret = msm_dss_parse_clock(pdev, mp);
if (ret) {
DPU_ERROR("failed to parse clocks, ret=%d\n", ret);
return ret;
}
platform_set_drvdata(pdev, dpu_kms);
msm_kms_init(&dpu_kms->base, &kms_funcs);
dpu_kms->dev = ddev;
dpu_kms->pdev = pdev;
pm_runtime_enable(&pdev->dev);
dpu_kms->rpm_enabled = true;
priv->kms = &dpu_kms->base;
return ret;
}
static void dpu_unbind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct dpu_kms *dpu_kms = platform_get_drvdata(pdev);
struct dss_module_power *mp = &dpu_kms->mp;
msm_dss_put_clk(mp->clk_config, mp->num_clk);
devm_kfree(&pdev->dev, mp->clk_config);
mp->num_clk = 0;
if (dpu_kms->rpm_enabled)
pm_runtime_disable(&pdev->dev);
}
static const struct component_ops dpu_ops = {
.bind = dpu_bind,
.unbind = dpu_unbind,
};
static int dpu_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &dpu_ops);
}
static int dpu_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &dpu_ops);
return 0;
}
static int __maybe_unused dpu_runtime_suspend(struct device *dev)
{
int rc = -1;
struct platform_device *pdev = to_platform_device(dev);
struct dpu_kms *dpu_kms = platform_get_drvdata(pdev);
struct drm_device *ddev;
struct dss_module_power *mp = &dpu_kms->mp;
ddev = dpu_kms->dev;
if (!ddev) {
DPU_ERROR("invalid drm_device\n");
return rc;
}
rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, false);
if (rc)
DPU_ERROR("clock disable failed rc:%d\n", rc);
return rc;
}
static int __maybe_unused dpu_runtime_resume(struct device *dev)
{
int rc = -1;
struct platform_device *pdev = to_platform_device(dev);
struct dpu_kms *dpu_kms = platform_get_drvdata(pdev);
struct drm_encoder *encoder;
struct drm_device *ddev;
struct dss_module_power *mp = &dpu_kms->mp;
ddev = dpu_kms->dev;
if (!ddev) {
DPU_ERROR("invalid drm_device\n");
return rc;
}
rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, true);
if (rc) {
DPU_ERROR("clock enable failed rc:%d\n", rc);
return rc;
}
dpu_vbif_init_memtypes(dpu_kms);
drm_for_each_encoder(encoder, ddev)
dpu_encoder_virt_runtime_resume(encoder);
return rc;
}
static const struct dev_pm_ops dpu_pm_ops = {
SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL)
};
static const struct of_device_id dpu_dt_match[] = {
{ .compatible = "qcom,sdm845-dpu", },
{}
};
MODULE_DEVICE_TABLE(of, dpu_dt_match);
static struct platform_driver dpu_driver = {
.probe = dpu_dev_probe,
.remove = dpu_dev_remove,
.driver = {
.name = "msm_dpu",
.of_match_table = dpu_dt_match,
.pm = &dpu_pm_ops,
},
};
void __init msm_dpu_register(void)
{
platform_driver_register(&dpu_driver);
}
void __exit msm_dpu_unregister(void)
{
platform_driver_unregister(&dpu_driver);
}