blob: 924e90c072e513180ec8991b50333f2af663a3f5 [file] [log] [blame]
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"
#include "../../radeon/cik_reg.h"
/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
static bool is_mem_initialized;
static int init_memory(struct device_queue_manager *dqm);
static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
unsigned int pasid, unsigned int vmid);
static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd);
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
{
BUG_ON(!dqm || !dqm->dev);
return dqm->dev->shared_resources.compute_pipe_count;
}
static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
{
BUG_ON(!dqm);
return dqm->dev->shared_resources.first_compute_pipe;
}
static inline unsigned int get_pipes_num_cpsch(void)
{
return PIPE_PER_ME_CP_SCHEDULING;
}
static inline unsigned int
get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
{
uint32_t nybble;
nybble = (pdd->lds_base >> 60) & 0x0E;
return nybble;
}
static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
{
unsigned int shared_base;
shared_base = (pdd->lds_base >> 16) & 0xFF;
return shared_base;
}
static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
static void init_process_memory(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct kfd_process_device *pdd;
unsigned int temp;
BUG_ON(!dqm || !qpd);
pdd = qpd_to_pdd(qpd);
/* check if sh_mem_config register already configured */
if (qpd->sh_mem_config == 0) {
qpd->sh_mem_config =
ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
DEFAULT_MTYPE(MTYPE_NONCACHED) |
APE1_MTYPE(MTYPE_NONCACHED);
qpd->sh_mem_ape1_limit = 0;
qpd->sh_mem_ape1_base = 0;
}
if (qpd->pqm->process->is_32bit_user_mode) {
temp = get_sh_mem_bases_32(pdd);
qpd->sh_mem_bases = SHARED_BASE(temp);
qpd->sh_mem_config |= PTR32;
} else {
temp = get_sh_mem_bases_nybble_64(pdd);
qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
}
pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
}
static void program_sh_mem_settings(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
qpd->sh_mem_config,
qpd->sh_mem_ape1_base,
qpd->sh_mem_ape1_limit,
qpd->sh_mem_bases);
}
static int allocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int bit, allocated_vmid;
if (dqm->vmid_bitmap == 0)
return -ENOMEM;
bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
/* Kaveri kfd vmid's starts from vmid 8 */
allocated_vmid = bit + KFD_VMID_START_OFFSET;
pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
qpd->vmid = allocated_vmid;
q->properties.vmid = allocated_vmid;
set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
program_sh_mem_settings(dqm, qpd);
return 0;
}
static void deallocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int bit = qpd->vmid - KFD_VMID_START_OFFSET;
set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
qpd->vmid = 0;
q->properties.vmid = 0;
}
static int create_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd,
int *allocated_vmid)
{
int retval;
BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
pr_debug("kfd: In func %s\n", __func__);
print_queue(q);
mutex_lock(&dqm->lock);
if (list_empty(&qpd->queues_list)) {
retval = allocate_vmid(dqm, qpd, q);
if (retval != 0) {
mutex_unlock(&dqm->lock);
return retval;
}
}
*allocated_vmid = qpd->vmid;
q->properties.vmid = qpd->vmid;
retval = create_compute_queue_nocpsch(dqm, q, qpd);
if (retval != 0) {
if (list_empty(&qpd->queues_list)) {
deallocate_vmid(dqm, qpd, q);
*allocated_vmid = 0;
}
mutex_unlock(&dqm->lock);
return retval;
}
list_add(&q->list, &qpd->queues_list);
dqm->queue_count++;
mutex_unlock(&dqm->lock);
return 0;
}
static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
bool set;
int pipe, bit;
set = false;
for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
pipe = (pipe + 1) % get_pipes_num(dqm)) {
if (dqm->allocated_queues[pipe] != 0) {
bit = find_first_bit(
(unsigned long *)&dqm->allocated_queues[pipe],
QUEUES_PER_PIPE);
clear_bit(bit,
(unsigned long *)&dqm->allocated_queues[pipe]);
q->pipe = pipe;
q->queue = bit;
set = true;
break;
}
}
if (set == false)
return -EBUSY;
pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
__func__, q->pipe, q->queue);
/* horizontal hqd allocation */
dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
return 0;
}
static inline void deallocate_hqd(struct device_queue_manager *dqm,
struct queue *q)
{
set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}
static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !q || !qpd);
mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
if (mqd == NULL)
return -ENOMEM;
retval = allocate_hqd(dqm, q);
if (retval != 0)
return retval;
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval != 0) {
deallocate_hqd(dqm, q);
return retval;
}
return 0;
}
static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !q || !q->mqd || !qpd);
retval = 0;
pr_debug("kfd: In Func %s\n", __func__);
mutex_lock(&dqm->lock);
mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
if (mqd == NULL) {
retval = -ENOMEM;
goto out;
}
retval = mqd->destroy_mqd(mqd, q->mqd,
KFD_PREEMPT_TYPE_WAVEFRONT,
QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
q->pipe, q->queue);
if (retval != 0)
goto out;
deallocate_hqd(dqm, q);
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
list_del(&q->list);
if (list_empty(&qpd->queues_list))
deallocate_vmid(dqm, qpd, q);
dqm->queue_count--;
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !q || !q->mqd);
mutex_lock(&dqm->lock);
mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
if (mqd == NULL) {
mutex_unlock(&dqm->lock);
return -ENOMEM;
}
retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
if (q->properties.is_active == true)
dqm->queue_count++;
else
dqm->queue_count--;
if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
retval = execute_queues_cpsch(dqm, false);
mutex_unlock(&dqm->lock);
return retval;
}
static struct mqd_manager *get_mqd_manager_nocpsch(
struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
struct mqd_manager *mqd;
BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
mqd = dqm->mqds[type];
if (!mqd) {
mqd = mqd_manager_init(type, dqm->dev);
if (mqd == NULL)
pr_err("kfd: mqd manager is NULL");
dqm->mqds[type] = mqd;
}
return mqd;
}
static int register_process_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct device_process_node *n;
BUG_ON(!dqm || !qpd);
pr_debug("kfd: In func %s\n", __func__);
n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
if (!n)
return -ENOMEM;
n->qpd = qpd;
mutex_lock(&dqm->lock);
list_add(&n->list, &dqm->queues);
init_process_memory(dqm, qpd);
dqm->processes_count++;
mutex_unlock(&dqm->lock);
return 0;
}
static int unregister_process_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int retval;
struct device_process_node *cur, *next;
BUG_ON(!dqm || !qpd);
BUG_ON(!list_empty(&qpd->queues_list));
pr_debug("kfd: In func %s\n", __func__);
retval = 0;
mutex_lock(&dqm->lock);
list_for_each_entry_safe(cur, next, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
goto out;
}
}
/* qpd not found in dqm list */
retval = 1;
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
unsigned int vmid)
{
uint32_t pasid_mapping;
pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
ATC_VMID_PASID_MAPPING_VALID;
return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
vmid);
}
static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
{
/* In 64-bit mode, we can only control the top 3 bits of the LDS,
* scratch and GPUVM apertures.
* The hardware fills in the remaining 59 bits according to the
* following pattern:
* LDS: X0000000'00000000 - X0000001'00000000 (4GB)
* Scratch: X0000001'00000000 - X0000002'00000000 (4GB)
* GPUVM: Y0010000'00000000 - Y0020000'00000000 (1TB)
*
* (where X/Y is the configurable nybble with the low-bit 0)
*
* LDS and scratch will have the same top nybble programmed in the
* top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
* GPUVM can have a different top nybble programmed in the
* top 3 bits of SH_MEM_BASES.SHARED_BASE.
* We don't bother to support different top nybbles
* for LDS/Scratch and GPUVM.
*/
BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
top_address_nybble == 0);
return PRIVATE_BASE(top_address_nybble << 12) |
SHARED_BASE(top_address_nybble << 12);
}
static int init_memory(struct device_queue_manager *dqm)
{
int i, retval;
for (i = 8; i < 16; i++)
set_pasid_vmid_mapping(dqm, 0, i);
retval = kfd2kgd->init_memory(dqm->dev->kgd);
if (retval == 0)
is_mem_initialized = true;
return retval;
}
static int init_pipelines(struct device_queue_manager *dqm,
unsigned int pipes_num, unsigned int first_pipe)
{
void *hpdptr;
struct mqd_manager *mqd;
unsigned int i, err, inx;
uint64_t pipe_hpd_addr;
BUG_ON(!dqm || !dqm->dev);
pr_debug("kfd: In func %s\n", __func__);
/*
* Allocate memory for the HPDs. This is hardware-owned per-pipe data.
* The driver never accesses this memory after zeroing it.
* It doesn't even have to be saved/restored on suspend/resume
* because it contains no data when there are no active queues.
*/
err = kfd2kgd->allocate_mem(dqm->dev->kgd,
CIK_HPD_EOP_BYTES * pipes_num,
PAGE_SIZE,
KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
(struct kgd_mem **) &dqm->pipeline_mem);
if (err) {
pr_err("kfd: error allocate vidmem num pipes: %d\n",
pipes_num);
return -ENOMEM;
}
hpdptr = dqm->pipeline_mem->cpu_ptr;
dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
if (mqd == NULL) {
kfd2kgd->free_mem(dqm->dev->kgd,
(struct kgd_mem *) dqm->pipeline_mem);
return -ENOMEM;
}
for (i = 0; i < pipes_num; i++) {
inx = i + first_pipe;
pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
/* = log2(bytes/4)-1 */
kfd2kgd->init_pipeline(dqm->dev->kgd, i,
CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
}
return 0;
}
static int init_scheduler(struct device_queue_manager *dqm)
{
int retval;
BUG_ON(!dqm);
pr_debug("kfd: In %s\n", __func__);
retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
if (retval != 0)
return retval;
retval = init_memory(dqm);
return retval;
}
static int initialize_nocpsch(struct device_queue_manager *dqm)
{
int i;
BUG_ON(!dqm);
pr_debug("kfd: In func %s num of pipes: %d\n",
__func__, get_pipes_num(dqm));
mutex_init(&dqm->lock);
INIT_LIST_HEAD(&dqm->queues);
dqm->queue_count = dqm->next_pipe_to_allocate = 0;
dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
sizeof(unsigned int), GFP_KERNEL);
if (!dqm->allocated_queues) {
mutex_destroy(&dqm->lock);
return -ENOMEM;
}
for (i = 0; i < get_pipes_num(dqm); i++)
dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
init_scheduler(dqm);
return 0;
}
static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
int i;
BUG_ON(!dqm);
BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
kfree(dqm->allocated_queues);
for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
kfree(dqm->mqds[i]);
mutex_destroy(&dqm->lock);
kfd2kgd->free_mem(dqm->dev->kgd,
(struct kgd_mem *) dqm->pipeline_mem);
}
static int start_nocpsch(struct device_queue_manager *dqm)
{
return 0;
}
static int stop_nocpsch(struct device_queue_manager *dqm)
{
return 0;
}
/*
* Device Queue Manager implementation for cp scheduler
*/
static int set_sched_resources(struct device_queue_manager *dqm)
{
struct scheduling_resources res;
unsigned int queue_num, queue_mask;
BUG_ON(!dqm);
pr_debug("kfd: In func %s\n", __func__);
queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
queue_mask = (1 << queue_num) - 1;
res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
res.vmid_mask <<= KFD_VMID_START_OFFSET;
res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
res.gws_mask = res.oac_mask = res.gds_heap_base =
res.gds_heap_size = 0;
pr_debug("kfd: scheduling resources:\n"
" vmid mask: 0x%8X\n"
" queue mask: 0x%8llX\n",
res.vmid_mask, res.queue_mask);
return pm_send_set_resources(&dqm->packets, &res);
}
static int initialize_cpsch(struct device_queue_manager *dqm)
{
int retval;
BUG_ON(!dqm);
pr_debug("kfd: In func %s num of pipes: %d\n",
__func__, get_pipes_num_cpsch());
mutex_init(&dqm->lock);
INIT_LIST_HEAD(&dqm->queues);
dqm->queue_count = dqm->processes_count = 0;
dqm->active_runlist = false;
retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
if (retval != 0)
goto fail_init_pipelines;
return 0;
fail_init_pipelines:
mutex_destroy(&dqm->lock);
return retval;
}
static int start_cpsch(struct device_queue_manager *dqm)
{
struct device_process_node *node;
int retval;
BUG_ON(!dqm);
retval = 0;
retval = pm_init(&dqm->packets, dqm);
if (retval != 0)
goto fail_packet_manager_init;
retval = set_sched_resources(dqm);
if (retval != 0)
goto fail_set_sched_resources;
pr_debug("kfd: allocating fence memory\n");
/* allocate fence memory on the gart */
retval = kfd2kgd->allocate_mem(dqm->dev->kgd,
sizeof(*dqm->fence_addr),
32,
KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
(struct kgd_mem **) &dqm->fence_mem);
if (retval != 0)
goto fail_allocate_vidmem;
dqm->fence_addr = dqm->fence_mem->cpu_ptr;
dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
list_for_each_entry(node, &dqm->queues, list)
if (node->qpd->pqm->process && dqm->dev)
kfd_bind_process_to_device(dqm->dev,
node->qpd->pqm->process);
execute_queues_cpsch(dqm, true);
return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
pm_uninit(&dqm->packets);
fail_packet_manager_init:
return retval;
}
static int stop_cpsch(struct device_queue_manager *dqm)
{
struct device_process_node *node;
struct kfd_process_device *pdd;
BUG_ON(!dqm);
destroy_queues_cpsch(dqm, true);
list_for_each_entry(node, &dqm->queues, list) {
pdd = qpd_to_pdd(node->qpd);
pdd->bound = false;
}
kfd2kgd->free_mem(dqm->dev->kgd,
(struct kgd_mem *) dqm->fence_mem);
pm_uninit(&dqm->packets);
return 0;
}
static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
BUG_ON(!dqm || !kq || !qpd);
pr_debug("kfd: In func %s\n", __func__);
mutex_lock(&dqm->lock);
list_add(&kq->list, &qpd->priv_queue_list);
dqm->queue_count++;
qpd->is_debug = true;
execute_queues_cpsch(dqm, false);
mutex_unlock(&dqm->lock);
return 0;
}
static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
BUG_ON(!dqm || !kq);
pr_debug("kfd: In %s\n", __func__);
mutex_lock(&dqm->lock);
destroy_queues_cpsch(dqm, false);
list_del(&kq->list);
dqm->queue_count--;
qpd->is_debug = false;
execute_queues_cpsch(dqm, false);
mutex_unlock(&dqm->lock);
}
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
struct qcm_process_device *qpd, int *allocate_vmid)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !q || !qpd);
retval = 0;
if (allocate_vmid)
*allocate_vmid = 0;
mutex_lock(&dqm->lock);
mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
if (mqd == NULL) {
mutex_unlock(&dqm->lock);
return -ENOMEM;
}
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval != 0)
goto out;
list_add(&q->list, &qpd->queues_list);
if (q->properties.is_active) {
dqm->queue_count++;
retval = execute_queues_cpsch(dqm, false);
}
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int fence_wait_timeout(unsigned int *fence_addr,
unsigned int fence_value,
unsigned long timeout)
{
BUG_ON(!fence_addr);
timeout += jiffies;
while (*fence_addr != fence_value) {
if (time_after(jiffies, timeout)) {
pr_err("kfd: qcm fence wait loop timeout expired\n");
return -ETIME;
}
cpu_relax();
}
return 0;
}
static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
int retval;
BUG_ON(!dqm);
retval = 0;
if (lock)
mutex_lock(&dqm->lock);
if (dqm->active_runlist == false)
goto out;
retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
if (retval != 0)
goto out;
*dqm->fence_addr = KFD_FENCE_INIT;
pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
KFD_FENCE_COMPLETED);
/* should be timed out */
fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
pm_release_ib(&dqm->packets);
dqm->active_runlist = false;
out:
if (lock)
mutex_unlock(&dqm->lock);
return retval;
}
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
int retval;
BUG_ON(!dqm);
if (lock)
mutex_lock(&dqm->lock);
retval = destroy_queues_cpsch(dqm, false);
if (retval != 0) {
pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
goto out;
}
if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
retval = 0;
goto out;
}
if (dqm->active_runlist) {
retval = 0;
goto out;
}
retval = pm_send_runlist(&dqm->packets, &dqm->queues);
if (retval != 0) {
pr_err("kfd: failed to execute runlist");
goto out;
}
dqm->active_runlist = true;
out:
if (lock)
mutex_unlock(&dqm->lock);
return retval;
}
static int destroy_queue_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd;
BUG_ON(!dqm || !qpd || !q);
retval = 0;
/* remove queue from list to prevent rescheduling after preemption */
mutex_lock(&dqm->lock);
mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
if (!mqd) {
retval = -ENOMEM;
goto failed;
}
list_del(&q->list);
dqm->queue_count--;
execute_queues_cpsch(dqm, false);
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
mutex_unlock(&dqm->lock);
return 0;
failed:
mutex_unlock(&dqm->lock);
return retval;
}
/*
* Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
* stay in user mode.
*/
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF
static bool set_cache_memory_policy(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
enum cache_policy default_policy,
enum cache_policy alternate_policy,
void __user *alternate_aperture_base,
uint64_t alternate_aperture_size)
{
uint32_t default_mtype;
uint32_t ape1_mtype;
pr_debug("kfd: In func %s\n", __func__);
mutex_lock(&dqm->lock);
if (alternate_aperture_size == 0) {
/* base > limit disables APE1 */
qpd->sh_mem_ape1_base = 1;
qpd->sh_mem_ape1_limit = 0;
} else {
/*
* In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
* SH_MEM_APE1_BASE[31:0], 0x0000 }
* APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
* SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
* Verify that the base and size parameters can be
* represented in this format and convert them.
* Additionally restrict APE1 to user-mode addresses.
*/
uint64_t base = (uintptr_t)alternate_aperture_base;
uint64_t limit = base + alternate_aperture_size - 1;
if (limit <= base)
goto out;
if ((base & APE1_FIXED_BITS_MASK) != 0)
goto out;
if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
goto out;
qpd->sh_mem_ape1_base = base >> 16;
qpd->sh_mem_ape1_limit = limit >> 16;
}
default_mtype = (default_policy == cache_policy_coherent) ?
MTYPE_NONCACHED :
MTYPE_CACHED;
ape1_mtype = (alternate_policy == cache_policy_coherent) ?
MTYPE_NONCACHED :
MTYPE_CACHED;
qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
| ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
| DEFAULT_MTYPE(default_mtype)
| APE1_MTYPE(ape1_mtype);
if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
program_sh_mem_settings(dqm, qpd);
pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
qpd->sh_mem_config, qpd->sh_mem_ape1_base,
qpd->sh_mem_ape1_limit);
mutex_unlock(&dqm->lock);
return true;
out:
mutex_unlock(&dqm->lock);
return false;
}
struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
struct device_queue_manager *dqm;
BUG_ON(!dev);
dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
if (!dqm)
return NULL;
dqm->dev = dev;
switch (sched_policy) {
case KFD_SCHED_POLICY_HWS:
case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
/* initialize dqm for cp scheduling */
dqm->create_queue = create_queue_cpsch;
dqm->initialize = initialize_cpsch;
dqm->start = start_cpsch;
dqm->stop = stop_cpsch;
dqm->destroy_queue = destroy_queue_cpsch;
dqm->update_queue = update_queue;
dqm->get_mqd_manager = get_mqd_manager_nocpsch;
dqm->register_process = register_process_nocpsch;
dqm->unregister_process = unregister_process_nocpsch;
dqm->uninitialize = uninitialize_nocpsch;
dqm->create_kernel_queue = create_kernel_queue_cpsch;
dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
dqm->set_cache_memory_policy = set_cache_memory_policy;
break;
case KFD_SCHED_POLICY_NO_HWS:
/* initialize dqm for no cp scheduling */
dqm->start = start_nocpsch;
dqm->stop = stop_nocpsch;
dqm->create_queue = create_queue_nocpsch;
dqm->destroy_queue = destroy_queue_nocpsch;
dqm->update_queue = update_queue;
dqm->get_mqd_manager = get_mqd_manager_nocpsch;
dqm->register_process = register_process_nocpsch;
dqm->unregister_process = unregister_process_nocpsch;
dqm->initialize = initialize_nocpsch;
dqm->uninitialize = uninitialize_nocpsch;
dqm->set_cache_memory_policy = set_cache_memory_policy;
break;
default:
BUG();
break;
}
if (dqm->initialize(dqm) != 0) {
kfree(dqm);
return NULL;
}
return dqm;
}
void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
BUG_ON(!dqm);
dqm->uninitialize(dqm);
kfree(dqm);
}