blob: 9d52c3a78621b27b355c07bff905a6df3ad5c86b [file] [log] [blame]
/*
* Keystone NetCP Core driver
*
* Copyright (C) 2014 Texas Instruments Incorporated
* Authors: Sandeep Nair <sandeep_n@ti.com>
* Sandeep Paulraj <s-paulraj@ti.com>
* Cyril Chemparathy <cyril@ti.com>
* Santosh Shilimkar <santosh.shilimkar@ti.com>
* Murali Karicheri <m-karicheri2@ti.com>
* Wingman Kwok <w-kwok2@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/if_vlan.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h>
#include <linux/soc/ti/knav_qmss.h>
#include <linux/soc/ti/knav_dma.h>
#include "netcp.h"
#define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
#define NETCP_NAPI_WEIGHT 64
#define NETCP_TX_TIMEOUT (5 * HZ)
#define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
#define NETCP_MIN_PACKET_SIZE ETH_ZLEN
#define NETCP_MAX_MCAST_ADDR 16
#define NETCP_EFUSE_REG_INDEX 0
#define NETCP_MOD_PROBE_SKIPPED 1
#define NETCP_MOD_PROBE_FAILED 2
#define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
NETIF_MSG_DRV | NETIF_MSG_LINK | \
NETIF_MSG_IFUP | NETIF_MSG_INTR | \
NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
NETIF_MSG_RX_STATUS)
#define NETCP_EFUSE_ADDR_SWAP 2
#define knav_queue_get_id(q) knav_queue_device_control(q, \
KNAV_QUEUE_GET_ID, (unsigned long)NULL)
#define knav_queue_enable_notify(q) knav_queue_device_control(q, \
KNAV_QUEUE_ENABLE_NOTIFY, \
(unsigned long)NULL)
#define knav_queue_disable_notify(q) knav_queue_device_control(q, \
KNAV_QUEUE_DISABLE_NOTIFY, \
(unsigned long)NULL)
#define knav_queue_get_count(q) knav_queue_device_control(q, \
KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
#define for_each_netcp_module(module) \
list_for_each_entry(module, &netcp_modules, module_list)
#define for_each_netcp_device_module(netcp_device, inst_modpriv) \
list_for_each_entry(inst_modpriv, \
&((netcp_device)->modpriv_head), inst_list)
#define for_each_module(netcp, intf_modpriv) \
list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
/* Module management structures */
struct netcp_device {
struct list_head device_list;
struct list_head interface_head;
struct list_head modpriv_head;
struct device *device;
};
struct netcp_inst_modpriv {
struct netcp_device *netcp_device;
struct netcp_module *netcp_module;
struct list_head inst_list;
void *module_priv;
};
struct netcp_intf_modpriv {
struct netcp_intf *netcp_priv;
struct netcp_module *netcp_module;
struct list_head intf_list;
void *module_priv;
};
struct netcp_tx_cb {
void *ts_context;
void (*txtstamp)(void *context, struct sk_buff *skb);
};
static LIST_HEAD(netcp_devices);
static LIST_HEAD(netcp_modules);
static DEFINE_MUTEX(netcp_modules_lock);
static int netcp_debug_level = -1;
module_param(netcp_debug_level, int, 0);
MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
/* Helper functions - Get/Set */
static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
struct knav_dma_desc *desc)
{
*buff_len = le32_to_cpu(desc->buff_len);
*buff = le32_to_cpu(desc->buff);
*ndesc = le32_to_cpu(desc->next_desc);
}
static void get_desc_info(u32 *desc_info, u32 *pkt_info,
struct knav_dma_desc *desc)
{
*desc_info = le32_to_cpu(desc->desc_info);
*pkt_info = le32_to_cpu(desc->packet_info);
}
static u32 get_sw_data(int index, struct knav_dma_desc *desc)
{
/* No Endian conversion needed as this data is untouched by hw */
return desc->sw_data[index];
}
/* use these macros to get sw data */
#define GET_SW_DATA0(desc) get_sw_data(0, desc)
#define GET_SW_DATA1(desc) get_sw_data(1, desc)
#define GET_SW_DATA2(desc) get_sw_data(2, desc)
#define GET_SW_DATA3(desc) get_sw_data(3, desc)
static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
struct knav_dma_desc *desc)
{
*buff = le32_to_cpu(desc->orig_buff);
*buff_len = le32_to_cpu(desc->orig_len);
}
static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
{
int i;
for (i = 0; i < num_words; i++)
words[i] = le32_to_cpu(desc[i]);
}
static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
struct knav_dma_desc *desc)
{
desc->buff_len = cpu_to_le32(buff_len);
desc->buff = cpu_to_le32(buff);
desc->next_desc = cpu_to_le32(ndesc);
}
static void set_desc_info(u32 desc_info, u32 pkt_info,
struct knav_dma_desc *desc)
{
desc->desc_info = cpu_to_le32(desc_info);
desc->packet_info = cpu_to_le32(pkt_info);
}
static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
{
/* No Endian conversion needed as this data is untouched by hw */
desc->sw_data[index] = data;
}
/* use these macros to set sw data */
#define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
#define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
#define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
#define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
struct knav_dma_desc *desc)
{
desc->orig_buff = cpu_to_le32(buff);
desc->orig_len = cpu_to_le32(buff_len);
}
static void set_words(u32 *words, int num_words, __le32 *desc)
{
int i;
for (i = 0; i < num_words; i++)
desc[i] = cpu_to_le32(words[i]);
}
/* Read the e-fuse value as 32 bit values to be endian independent */
static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
{
unsigned int addr0, addr1;
addr1 = readl(efuse_mac + 4);
addr0 = readl(efuse_mac);
switch (swap) {
case NETCP_EFUSE_ADDR_SWAP:
addr0 = addr1;
addr1 = readl(efuse_mac);
break;
default:
break;
}
x[0] = (addr1 & 0x0000ff00) >> 8;
x[1] = addr1 & 0x000000ff;
x[2] = (addr0 & 0xff000000) >> 24;
x[3] = (addr0 & 0x00ff0000) >> 16;
x[4] = (addr0 & 0x0000ff00) >> 8;
x[5] = addr0 & 0x000000ff;
return 0;
}
static const char *netcp_node_name(struct device_node *node)
{
const char *name;
if (of_property_read_string(node, "label", &name) < 0)
name = node->name;
if (!name)
name = "unknown";
return name;
}
/* Module management routines */
static int netcp_register_interface(struct netcp_intf *netcp)
{
int ret;
ret = register_netdev(netcp->ndev);
if (!ret)
netcp->netdev_registered = true;
return ret;
}
static int netcp_module_probe(struct netcp_device *netcp_device,
struct netcp_module *module)
{
struct device *dev = netcp_device->device;
struct device_node *devices, *interface, *node = dev->of_node;
struct device_node *child;
struct netcp_inst_modpriv *inst_modpriv;
struct netcp_intf *netcp_intf;
struct netcp_module *tmp;
bool primary_module_registered = false;
int ret;
/* Find this module in the sub-tree for this device */
devices = of_get_child_by_name(node, "netcp-devices");
if (!devices) {
dev_err(dev, "could not find netcp-devices node\n");
return NETCP_MOD_PROBE_SKIPPED;
}
for_each_available_child_of_node(devices, child) {
const char *name = netcp_node_name(child);
if (!strcasecmp(module->name, name))
break;
}
of_node_put(devices);
/* If module not used for this device, skip it */
if (!child) {
dev_warn(dev, "module(%s) not used for device\n", module->name);
return NETCP_MOD_PROBE_SKIPPED;
}
inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
if (!inst_modpriv) {
of_node_put(child);
return -ENOMEM;
}
inst_modpriv->netcp_device = netcp_device;
inst_modpriv->netcp_module = module;
list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
ret = module->probe(netcp_device, dev, child,
&inst_modpriv->module_priv);
of_node_put(child);
if (ret) {
dev_err(dev, "Probe of module(%s) failed with %d\n",
module->name, ret);
list_del(&inst_modpriv->inst_list);
devm_kfree(dev, inst_modpriv);
return NETCP_MOD_PROBE_FAILED;
}
/* Attach modules only if the primary module is probed */
for_each_netcp_module(tmp) {
if (tmp->primary)
primary_module_registered = true;
}
if (!primary_module_registered)
return 0;
/* Attach module to interfaces */
list_for_each_entry(netcp_intf, &netcp_device->interface_head,
interface_list) {
struct netcp_intf_modpriv *intf_modpriv;
intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
GFP_KERNEL);
if (!intf_modpriv)
return -ENOMEM;
interface = of_parse_phandle(netcp_intf->node_interface,
module->name, 0);
if (!interface) {
devm_kfree(dev, intf_modpriv);
continue;
}
intf_modpriv->netcp_priv = netcp_intf;
intf_modpriv->netcp_module = module;
list_add_tail(&intf_modpriv->intf_list,
&netcp_intf->module_head);
ret = module->attach(inst_modpriv->module_priv,
netcp_intf->ndev, interface,
&intf_modpriv->module_priv);
of_node_put(interface);
if (ret) {
dev_dbg(dev, "Attach of module %s declined with %d\n",
module->name, ret);
list_del(&intf_modpriv->intf_list);
devm_kfree(dev, intf_modpriv);
continue;
}
}
/* Now register the interface with netdev */
list_for_each_entry(netcp_intf,
&netcp_device->interface_head,
interface_list) {
/* If interface not registered then register now */
if (!netcp_intf->netdev_registered) {
ret = netcp_register_interface(netcp_intf);
if (ret)
return -ENODEV;
}
}
return 0;
}
int netcp_register_module(struct netcp_module *module)
{
struct netcp_device *netcp_device;
struct netcp_module *tmp;
int ret;
if (!module->name) {
WARN(1, "error registering netcp module: no name\n");
return -EINVAL;
}
if (!module->probe) {
WARN(1, "error registering netcp module: no probe\n");
return -EINVAL;
}
mutex_lock(&netcp_modules_lock);
for_each_netcp_module(tmp) {
if (!strcasecmp(tmp->name, module->name)) {
mutex_unlock(&netcp_modules_lock);
return -EEXIST;
}
}
list_add_tail(&module->module_list, &netcp_modules);
list_for_each_entry(netcp_device, &netcp_devices, device_list) {
ret = netcp_module_probe(netcp_device, module);
if (ret < 0)
goto fail;
}
mutex_unlock(&netcp_modules_lock);
return 0;
fail:
mutex_unlock(&netcp_modules_lock);
netcp_unregister_module(module);
return ret;
}
EXPORT_SYMBOL_GPL(netcp_register_module);
static void netcp_release_module(struct netcp_device *netcp_device,
struct netcp_module *module)
{
struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
struct netcp_intf *netcp_intf, *netcp_tmp;
struct device *dev = netcp_device->device;
/* Release the module from each interface */
list_for_each_entry_safe(netcp_intf, netcp_tmp,
&netcp_device->interface_head,
interface_list) {
struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
list_for_each_entry_safe(intf_modpriv, intf_tmp,
&netcp_intf->module_head,
intf_list) {
if (intf_modpriv->netcp_module == module) {
module->release(intf_modpriv->module_priv);
list_del(&intf_modpriv->intf_list);
devm_kfree(dev, intf_modpriv);
break;
}
}
}
/* Remove the module from each instance */
list_for_each_entry_safe(inst_modpriv, inst_tmp,
&netcp_device->modpriv_head, inst_list) {
if (inst_modpriv->netcp_module == module) {
module->remove(netcp_device,
inst_modpriv->module_priv);
list_del(&inst_modpriv->inst_list);
devm_kfree(dev, inst_modpriv);
break;
}
}
}
void netcp_unregister_module(struct netcp_module *module)
{
struct netcp_device *netcp_device;
struct netcp_module *module_tmp;
mutex_lock(&netcp_modules_lock);
list_for_each_entry(netcp_device, &netcp_devices, device_list) {
netcp_release_module(netcp_device, module);
}
/* Remove the module from the module list */
for_each_netcp_module(module_tmp) {
if (module == module_tmp) {
list_del(&module->module_list);
break;
}
}
mutex_unlock(&netcp_modules_lock);
}
EXPORT_SYMBOL_GPL(netcp_unregister_module);
void *netcp_module_get_intf_data(struct netcp_module *module,
struct netcp_intf *intf)
{
struct netcp_intf_modpriv *intf_modpriv;
list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
if (intf_modpriv->netcp_module == module)
return intf_modpriv->module_priv;
return NULL;
}
EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
/* Module TX and RX Hook management */
struct netcp_hook_list {
struct list_head list;
netcp_hook_rtn *hook_rtn;
void *hook_data;
int order;
};
int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
netcp_hook_rtn *hook_rtn, void *hook_data)
{
struct netcp_hook_list *entry;
struct netcp_hook_list *next;
unsigned long flags;
entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->hook_rtn = hook_rtn;
entry->hook_data = hook_data;
entry->order = order;
spin_lock_irqsave(&netcp_priv->lock, flags);
list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
if (next->order > order)
break;
}
__list_add(&entry->list, next->list.prev, &next->list);
spin_unlock_irqrestore(&netcp_priv->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(netcp_register_txhook);
int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
netcp_hook_rtn *hook_rtn, void *hook_data)
{
struct netcp_hook_list *next, *n;
unsigned long flags;
spin_lock_irqsave(&netcp_priv->lock, flags);
list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
if ((next->order == order) &&
(next->hook_rtn == hook_rtn) &&
(next->hook_data == hook_data)) {
list_del(&next->list);
spin_unlock_irqrestore(&netcp_priv->lock, flags);
devm_kfree(netcp_priv->dev, next);
return 0;
}
}
spin_unlock_irqrestore(&netcp_priv->lock, flags);
return -ENOENT;
}
EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
netcp_hook_rtn *hook_rtn, void *hook_data)
{
struct netcp_hook_list *entry;
struct netcp_hook_list *next;
unsigned long flags;
entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->hook_rtn = hook_rtn;
entry->hook_data = hook_data;
entry->order = order;
spin_lock_irqsave(&netcp_priv->lock, flags);
list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
if (next->order > order)
break;
}
__list_add(&entry->list, next->list.prev, &next->list);
spin_unlock_irqrestore(&netcp_priv->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(netcp_register_rxhook);
int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
netcp_hook_rtn *hook_rtn, void *hook_data)
{
struct netcp_hook_list *next, *n;
unsigned long flags;
spin_lock_irqsave(&netcp_priv->lock, flags);
list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
if ((next->order == order) &&
(next->hook_rtn == hook_rtn) &&
(next->hook_data == hook_data)) {
list_del(&next->list);
spin_unlock_irqrestore(&netcp_priv->lock, flags);
devm_kfree(netcp_priv->dev, next);
return 0;
}
}
spin_unlock_irqrestore(&netcp_priv->lock, flags);
return -ENOENT;
}
EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
static void netcp_frag_free(bool is_frag, void *ptr)
{
if (is_frag)
skb_free_frag(ptr);
else
kfree(ptr);
}
static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
struct knav_dma_desc *desc)
{
struct knav_dma_desc *ndesc;
dma_addr_t dma_desc, dma_buf;
unsigned int buf_len, dma_sz = sizeof(*ndesc);
void *buf_ptr;
u32 tmp;
get_words(&dma_desc, 1, &desc->next_desc);
while (dma_desc) {
ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
if (unlikely(!ndesc)) {
dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
break;
}
get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
/* warning!!!! We are retrieving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
buf_ptr = (void *)GET_SW_DATA0(ndesc);
buf_len = (int)GET_SW_DATA1(desc);
dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
__free_page(buf_ptr);
knav_pool_desc_put(netcp->rx_pool, desc);
}
/* warning!!!! We are retrieving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
buf_ptr = (void *)GET_SW_DATA0(desc);
buf_len = (int)GET_SW_DATA1(desc);
if (buf_ptr)
netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
knav_pool_desc_put(netcp->rx_pool, desc);
}
static void netcp_empty_rx_queue(struct netcp_intf *netcp)
{
struct netcp_stats *rx_stats = &netcp->stats;
struct knav_dma_desc *desc;
unsigned int dma_sz;
dma_addr_t dma;
for (; ;) {
dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
if (!dma)
break;
desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
if (unlikely(!desc)) {
dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
__func__);
rx_stats->rx_errors++;
continue;
}
netcp_free_rx_desc_chain(netcp, desc);
rx_stats->rx_dropped++;
}
}
static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
{
struct netcp_stats *rx_stats = &netcp->stats;
unsigned int dma_sz, buf_len, org_buf_len;
struct knav_dma_desc *desc, *ndesc;
unsigned int pkt_sz = 0, accum_sz;
struct netcp_hook_list *rx_hook;
dma_addr_t dma_desc, dma_buff;
struct netcp_packet p_info;
struct sk_buff *skb;
void *org_buf_ptr;
u32 tmp;
dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
if (!dma_desc)
return -1;
desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
if (unlikely(!desc)) {
dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
return 0;
}
get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
/* warning!!!! We are retrieving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
org_buf_ptr = (void *)GET_SW_DATA0(desc);
org_buf_len = (int)GET_SW_DATA1(desc);
if (unlikely(!org_buf_ptr)) {
dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
goto free_desc;
}
pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
accum_sz = buf_len;
dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
/* Build a new sk_buff for the primary buffer */
skb = build_skb(org_buf_ptr, org_buf_len);
if (unlikely(!skb)) {
dev_err(netcp->ndev_dev, "build_skb() failed\n");
goto free_desc;
}
/* update data, tail and len */
skb_reserve(skb, NETCP_SOP_OFFSET);
__skb_put(skb, buf_len);
/* Fill in the page fragment list */
while (dma_desc) {
struct page *page;
ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
if (unlikely(!ndesc)) {
dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
goto free_desc;
}
get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
/* warning!!!! We are retrieving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
page = (struct page *)GET_SW_DATA0(desc);
if (likely(dma_buff && buf_len && page)) {
dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
DMA_FROM_DEVICE);
} else {
dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
&dma_buff, buf_len, page);
goto free_desc;
}
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
offset_in_page(dma_buff), buf_len, PAGE_SIZE);
accum_sz += buf_len;
/* Free the descriptor */
knav_pool_desc_put(netcp->rx_pool, ndesc);
}
/* check for packet len and warn */
if (unlikely(pkt_sz != accum_sz))
dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
pkt_sz, accum_sz);
/* Newer version of the Ethernet switch can trim the Ethernet FCS
* from the packet and is indicated in hw_cap. So trim it only for
* older h/w
*/
if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
__pskb_trim(skb, skb->len - ETH_FCS_LEN);
/* Call each of the RX hooks */
p_info.skb = skb;
skb->dev = netcp->ndev;
p_info.rxtstamp_complete = false;
get_desc_info(&tmp, &p_info.eflags, desc);
p_info.epib = desc->epib;
p_info.psdata = (u32 __force *)desc->psdata;
p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
KNAV_DMA_DESC_EFLAGS_MASK);
list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
int ret;
ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
&p_info);
if (unlikely(ret)) {
dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
rx_hook->order, ret);
/* Free the primary descriptor */
rx_stats->rx_dropped++;
knav_pool_desc_put(netcp->rx_pool, desc);
dev_kfree_skb(skb);
return 0;
}
}
/* Free the primary descriptor */
knav_pool_desc_put(netcp->rx_pool, desc);
u64_stats_update_begin(&rx_stats->syncp_rx);
rx_stats->rx_packets++;
rx_stats->rx_bytes += skb->len;
u64_stats_update_end(&rx_stats->syncp_rx);
/* push skb up the stack */
skb->protocol = eth_type_trans(skb, netcp->ndev);
netif_receive_skb(skb);
return 0;
free_desc:
netcp_free_rx_desc_chain(netcp, desc);
rx_stats->rx_errors++;
return 0;
}
static int netcp_process_rx_packets(struct netcp_intf *netcp,
unsigned int budget)
{
int i;
for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
;
return i;
}
/* Release descriptors and attached buffers from Rx FDQ */
static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
{
struct knav_dma_desc *desc;
unsigned int buf_len, dma_sz;
dma_addr_t dma;
void *buf_ptr;
/* Allocate descriptor */
while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
if (unlikely(!desc)) {
dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
continue;
}
get_org_pkt_info(&dma, &buf_len, desc);
/* warning!!!! We are retrieving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
buf_ptr = (void *)GET_SW_DATA0(desc);
if (unlikely(!dma)) {
dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
knav_pool_desc_put(netcp->rx_pool, desc);
continue;
}
if (unlikely(!buf_ptr)) {
dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
knav_pool_desc_put(netcp->rx_pool, desc);
continue;
}
if (fdq == 0) {
dma_unmap_single(netcp->dev, dma, buf_len,
DMA_FROM_DEVICE);
netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
} else {
dma_unmap_page(netcp->dev, dma, buf_len,
DMA_FROM_DEVICE);
__free_page(buf_ptr);
}
knav_pool_desc_put(netcp->rx_pool, desc);
}
}
static void netcp_rxpool_free(struct netcp_intf *netcp)
{
int i;
for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
!IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
netcp_free_rx_buf(netcp, i);
if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
knav_pool_destroy(netcp->rx_pool);
netcp->rx_pool = NULL;
}
static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
{
struct knav_dma_desc *hwdesc;
unsigned int buf_len, dma_sz;
u32 desc_info, pkt_info;
struct page *page;
dma_addr_t dma;
void *bufptr;
u32 sw_data[2];
/* Allocate descriptor */
hwdesc = knav_pool_desc_get(netcp->rx_pool);
if (IS_ERR_OR_NULL(hwdesc)) {
dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
return -ENOMEM;
}
if (likely(fdq == 0)) {
unsigned int primary_buf_len;
/* Allocate a primary receive queue entry */
buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
primary_buf_len = SKB_DATA_ALIGN(buf_len) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
bufptr = netdev_alloc_frag(primary_buf_len);
sw_data[1] = primary_buf_len;
if (unlikely(!bufptr)) {
dev_warn_ratelimited(netcp->ndev_dev,
"Primary RX buffer alloc failed\n");
goto fail;
}
dma = dma_map_single(netcp->dev, bufptr, buf_len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(netcp->dev, dma)))
goto fail;
/* warning!!!! We are saving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
sw_data[0] = (u32)bufptr;
} else {
/* Allocate a secondary receive queue entry */
page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
if (unlikely(!page)) {
dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
goto fail;
}
buf_len = PAGE_SIZE;
dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
/* warning!!!! We are saving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
sw_data[0] = (u32)page;
sw_data[1] = 0;
}
desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
pkt_info = KNAV_DMA_DESC_HAS_EPIB;
pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
KNAV_DMA_DESC_RETQ_SHIFT;
set_org_pkt_info(dma, buf_len, hwdesc);
SET_SW_DATA0(sw_data[0], hwdesc);
SET_SW_DATA1(sw_data[1], hwdesc);
set_desc_info(desc_info, pkt_info, hwdesc);
/* Push to FDQs */
knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
&dma_sz);
knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
return 0;
fail:
knav_pool_desc_put(netcp->rx_pool, hwdesc);
return -ENOMEM;
}
/* Refill Rx FDQ with descriptors & attached buffers */
static void netcp_rxpool_refill(struct netcp_intf *netcp)
{
u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
int i, ret = 0;
/* Calculate the FDQ deficit and refill */
for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
fdq_deficit[i] = netcp->rx_queue_depths[i] -
knav_queue_get_count(netcp->rx_fdq[i]);
while (fdq_deficit[i]-- && !ret)
ret = netcp_allocate_rx_buf(netcp, i);
} /* end for fdqs */
}
/* NAPI poll */
static int netcp_rx_poll(struct napi_struct *napi, int budget)
{
struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
rx_napi);
unsigned int packets;
packets = netcp_process_rx_packets(netcp, budget);
netcp_rxpool_refill(netcp);
if (packets < budget) {
napi_complete_done(&netcp->rx_napi, packets);
knav_queue_enable_notify(netcp->rx_queue);
}
return packets;
}
static void netcp_rx_notify(void *arg)
{
struct netcp_intf *netcp = arg;
knav_queue_disable_notify(netcp->rx_queue);
napi_schedule(&netcp->rx_napi);
}
static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
struct knav_dma_desc *desc,
unsigned int desc_sz)
{
struct knav_dma_desc *ndesc = desc;
dma_addr_t dma_desc, dma_buf;
unsigned int buf_len;
while (ndesc) {
get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
if (dma_buf && buf_len)
dma_unmap_single(netcp->dev, dma_buf, buf_len,
DMA_TO_DEVICE);
else
dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
&dma_buf, buf_len);
knav_pool_desc_put(netcp->tx_pool, ndesc);
ndesc = NULL;
if (dma_desc) {
ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
desc_sz);
if (!ndesc)
dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
}
}
}
static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
unsigned int budget)
{
struct netcp_stats *tx_stats = &netcp->stats;
struct knav_dma_desc *desc;
struct netcp_tx_cb *tx_cb;
struct sk_buff *skb;
unsigned int dma_sz;
dma_addr_t dma;
int pkts = 0;
while (budget--) {
dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
if (!dma)
break;
desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
if (unlikely(!desc)) {
dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
tx_stats->tx_errors++;
continue;
}
/* warning!!!! We are retrieving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
skb = (struct sk_buff *)GET_SW_DATA0(desc);
netcp_free_tx_desc_chain(netcp, desc, dma_sz);
if (!skb) {
dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
tx_stats->tx_errors++;
continue;
}
tx_cb = (struct netcp_tx_cb *)skb->cb;
if (tx_cb->txtstamp)
tx_cb->txtstamp(tx_cb->ts_context, skb);
if (netif_subqueue_stopped(netcp->ndev, skb) &&
netif_running(netcp->ndev) &&
(knav_pool_count(netcp->tx_pool) >
netcp->tx_resume_threshold)) {
u16 subqueue = skb_get_queue_mapping(skb);
netif_wake_subqueue(netcp->ndev, subqueue);
}
u64_stats_update_begin(&tx_stats->syncp_tx);
tx_stats->tx_packets++;
tx_stats->tx_bytes += skb->len;
u64_stats_update_end(&tx_stats->syncp_tx);
dev_kfree_skb(skb);
pkts++;
}
return pkts;
}
static int netcp_tx_poll(struct napi_struct *napi, int budget)
{
int packets;
struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
tx_napi);
packets = netcp_process_tx_compl_packets(netcp, budget);
if (packets < budget) {
napi_complete(&netcp->tx_napi);
knav_queue_enable_notify(netcp->tx_compl_q);
}
return packets;
}
static void netcp_tx_notify(void *arg)
{
struct netcp_intf *netcp = arg;
knav_queue_disable_notify(netcp->tx_compl_q);
napi_schedule(&netcp->tx_napi);
}
static struct knav_dma_desc*
netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
{
struct knav_dma_desc *desc, *ndesc, *pdesc;
unsigned int pkt_len = skb_headlen(skb);
struct device *dev = netcp->dev;
dma_addr_t dma_addr;
unsigned int dma_sz;
int i;
/* Map the linear buffer */
dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, dma_addr))) {
dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
return NULL;
}
desc = knav_pool_desc_get(netcp->tx_pool);
if (IS_ERR_OR_NULL(desc)) {
dev_err(netcp->ndev_dev, "out of TX desc\n");
dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
return NULL;
}
set_pkt_info(dma_addr, pkt_len, 0, desc);
if (skb_is_nonlinear(skb)) {
prefetchw(skb_shinfo(skb));
} else {
desc->next_desc = 0;
goto upd_pkt_len;
}
pdesc = desc;
/* Handle the case where skb is fragmented in pages */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
struct page *page = skb_frag_page(frag);
u32 page_offset = frag->page_offset;
u32 buf_len = skb_frag_size(frag);
dma_addr_t desc_dma;
u32 desc_dma_32;
dma_addr = dma_map_page(dev, page, page_offset, buf_len,
DMA_TO_DEVICE);
if (unlikely(!dma_addr)) {
dev_err(netcp->ndev_dev, "Failed to map skb page\n");
goto free_descs;
}
ndesc = knav_pool_desc_get(netcp->tx_pool);
if (IS_ERR_OR_NULL(ndesc)) {
dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
goto free_descs;
}
desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
set_pkt_info(dma_addr, buf_len, 0, ndesc);
desc_dma_32 = (u32)desc_dma;
set_words(&desc_dma_32, 1, &pdesc->next_desc);
pkt_len += buf_len;
if (pdesc != desc)
knav_pool_desc_map(netcp->tx_pool, pdesc,
sizeof(*pdesc), &desc_dma, &dma_sz);
pdesc = ndesc;
}
if (pdesc != desc)
knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
&dma_addr, &dma_sz);
/* frag list based linkage is not supported for now. */
if (skb_shinfo(skb)->frag_list) {
dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
goto free_descs;
}
upd_pkt_len:
WARN_ON(pkt_len != skb->len);
pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
set_words(&pkt_len, 1, &desc->desc_info);
return desc;
free_descs:
netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
return NULL;
}
static int netcp_tx_submit_skb(struct netcp_intf *netcp,
struct sk_buff *skb,
struct knav_dma_desc *desc)
{
struct netcp_tx_pipe *tx_pipe = NULL;
struct netcp_hook_list *tx_hook;
struct netcp_packet p_info;
struct netcp_tx_cb *tx_cb;
unsigned int dma_sz;
dma_addr_t dma;
u32 tmp = 0;
int ret = 0;
p_info.netcp = netcp;
p_info.skb = skb;
p_info.tx_pipe = NULL;
p_info.psdata_len = 0;
p_info.ts_context = NULL;
p_info.txtstamp = NULL;
p_info.epib = desc->epib;
p_info.psdata = (u32 __force *)desc->psdata;
memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
/* Find out where to inject the packet for transmission */
list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
&p_info);
if (unlikely(ret != 0)) {
dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
tx_hook->order, ret);
ret = (ret < 0) ? ret : NETDEV_TX_OK;
goto out;
}
}
/* Make sure some TX hook claimed the packet */
tx_pipe = p_info.tx_pipe;
if (!tx_pipe) {
dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
ret = -ENXIO;
goto out;
}
tx_cb = (struct netcp_tx_cb *)skb->cb;
tx_cb->ts_context = p_info.ts_context;
tx_cb->txtstamp = p_info.txtstamp;
/* update descriptor */
if (p_info.psdata_len) {
/* psdata points to both native-endian and device-endian data */
__le32 *psdata = (void __force *)p_info.psdata;
set_words((u32 *)psdata +
(KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
p_info.psdata_len, psdata);
tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
KNAV_DMA_DESC_PSLEN_SHIFT;
}
tmp |= KNAV_DMA_DESC_HAS_EPIB |
((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
KNAV_DMA_DESC_RETQ_SHIFT);
if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
KNAV_DMA_DESC_PSFLAG_SHIFT);
}
set_words(&tmp, 1, &desc->packet_info);
/* warning!!!! We are saving the virtual ptr in the sw_data
* field as a 32bit value. Will not work on 64bit machines
*/
SET_SW_DATA0((u32)skb, desc);
if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
tmp = tx_pipe->switch_to_port;
set_words(&tmp, 1, &desc->tag_info);
}
/* submit packet descriptor */
ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
&dma_sz);
if (unlikely(ret)) {
dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
ret = -ENOMEM;
goto out;
}
skb_tx_timestamp(skb);
knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
out:
return ret;
}
/* Submit the packet */
static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_stats *tx_stats = &netcp->stats;
int subqueue = skb_get_queue_mapping(skb);
struct knav_dma_desc *desc;
int desc_count, ret = 0;
if (unlikely(skb->len <= 0)) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
if (ret < 0) {
/* If we get here, the skb has already been dropped */
dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
ret);
tx_stats->tx_dropped++;
return ret;
}
skb->len = NETCP_MIN_PACKET_SIZE;
}
desc = netcp_tx_map_skb(skb, netcp);
if (unlikely(!desc)) {
netif_stop_subqueue(ndev, subqueue);
ret = -ENOBUFS;
goto drop;
}
ret = netcp_tx_submit_skb(netcp, skb, desc);
if (ret)
goto drop;
/* Check Tx pool count & stop subqueue if needed */
desc_count = knav_pool_count(netcp->tx_pool);
if (desc_count < netcp->tx_pause_threshold) {
dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
netif_stop_subqueue(ndev, subqueue);
}
return NETDEV_TX_OK;
drop:
tx_stats->tx_dropped++;
if (desc)
netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
dev_kfree_skb(skb);
return ret;
}
int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
{
if (tx_pipe->dma_channel) {
knav_dma_close_channel(tx_pipe->dma_channel);
tx_pipe->dma_channel = NULL;
}
return 0;
}
EXPORT_SYMBOL_GPL(netcp_txpipe_close);
int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
{
struct device *dev = tx_pipe->netcp_device->device;
struct knav_dma_cfg config;
int ret = 0;
u8 name[16];
memset(&config, 0, sizeof(config));
config.direction = DMA_MEM_TO_DEV;
config.u.tx.filt_einfo = false;
config.u.tx.filt_pswords = false;
config.u.tx.priority = DMA_PRIO_MED_L;
tx_pipe->dma_channel = knav_dma_open_channel(dev,
tx_pipe->dma_chan_name, &config);
if (IS_ERR(tx_pipe->dma_channel)) {
dev_err(dev, "failed opening tx chan(%s)\n",
tx_pipe->dma_chan_name);
ret = PTR_ERR(tx_pipe->dma_channel);
goto err;
}
snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
KNAV_QUEUE_SHARED);
if (IS_ERR(tx_pipe->dma_queue)) {
dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
name, ret);
ret = PTR_ERR(tx_pipe->dma_queue);
goto err;
}
dev_dbg(dev, "opened tx pipe %s\n", name);
return 0;
err:
if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
knav_dma_close_channel(tx_pipe->dma_channel);
tx_pipe->dma_channel = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(netcp_txpipe_open);
int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
struct netcp_device *netcp_device,
const char *dma_chan_name, unsigned int dma_queue_id)
{
memset(tx_pipe, 0, sizeof(*tx_pipe));
tx_pipe->netcp_device = netcp_device;
tx_pipe->dma_chan_name = dma_chan_name;
tx_pipe->dma_queue_id = dma_queue_id;
return 0;
}
EXPORT_SYMBOL_GPL(netcp_txpipe_init);
static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
const u8 *addr,
enum netcp_addr_type type)
{
struct netcp_addr *naddr;
list_for_each_entry(naddr, &netcp->addr_list, node) {
if (naddr->type != type)
continue;
if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
continue;
return naddr;
}
return NULL;
}
static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
const u8 *addr,
enum netcp_addr_type type)
{
struct netcp_addr *naddr;
naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
if (!naddr)
return NULL;
naddr->type = type;
naddr->flags = 0;
naddr->netcp = netcp;
if (addr)
ether_addr_copy(naddr->addr, addr);
else
eth_zero_addr(naddr->addr);
list_add_tail(&naddr->node, &netcp->addr_list);
return naddr;
}
static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
{
list_del(&naddr->node);
devm_kfree(netcp->dev, naddr);
}
static void netcp_addr_clear_mark(struct netcp_intf *netcp)
{
struct netcp_addr *naddr;
list_for_each_entry(naddr, &netcp->addr_list, node)
naddr->flags = 0;
}
static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
enum netcp_addr_type type)
{
struct netcp_addr *naddr;
naddr = netcp_addr_find(netcp, addr, type);
if (naddr) {
naddr->flags |= ADDR_VALID;
return;
}
naddr = netcp_addr_add(netcp, addr, type);
if (!WARN_ON(!naddr))
naddr->flags |= ADDR_NEW;
}
static void netcp_addr_sweep_del(struct netcp_intf *netcp)
{
struct netcp_addr *naddr, *tmp;
struct netcp_intf_modpriv *priv;
struct netcp_module *module;
int error;
list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
if (naddr->flags & (ADDR_VALID | ADDR_NEW))
continue;
dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
naddr->addr, naddr->type);
for_each_module(netcp, priv) {
module = priv->netcp_module;
if (!module->del_addr)
continue;
error = module->del_addr(priv->module_priv,
naddr);
WARN_ON(error);
}
netcp_addr_del(netcp, naddr);
}
}
static void netcp_addr_sweep_add(struct netcp_intf *netcp)
{
struct netcp_addr *naddr, *tmp;
struct netcp_intf_modpriv *priv;
struct netcp_module *module;
int error;
list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
if (!(naddr->flags & ADDR_NEW))
continue;
dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
naddr->addr, naddr->type);
for_each_module(netcp, priv) {
module = priv->netcp_module;
if (!module->add_addr)
continue;
error = module->add_addr(priv->module_priv, naddr);
WARN_ON(error);
}
}
}
static void netcp_set_rx_mode(struct net_device *ndev)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netdev_hw_addr *ndev_addr;
bool promisc;
promisc = (ndev->flags & IFF_PROMISC ||
ndev->flags & IFF_ALLMULTI ||
netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
spin_lock(&netcp->lock);
/* first clear all marks */
netcp_addr_clear_mark(netcp);
/* next add new entries, mark existing ones */
netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
for_each_dev_addr(ndev, ndev_addr)
netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
netdev_for_each_uc_addr(ndev_addr, ndev)
netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
netdev_for_each_mc_addr(ndev_addr, ndev)
netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
if (promisc)
netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
/* finally sweep and callout into modules */
netcp_addr_sweep_del(netcp);
netcp_addr_sweep_add(netcp);
spin_unlock(&netcp->lock);
}
static void netcp_free_navigator_resources(struct netcp_intf *netcp)
{
int i;
if (netcp->rx_channel) {
knav_dma_close_channel(netcp->rx_channel);
netcp->rx_channel = NULL;
}
if (!IS_ERR_OR_NULL(netcp->rx_pool))
netcp_rxpool_free(netcp);
if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
knav_queue_close(netcp->rx_queue);
netcp->rx_queue = NULL;
}
for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
!IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
knav_queue_close(netcp->rx_fdq[i]);
netcp->rx_fdq[i] = NULL;
}
if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
knav_queue_close(netcp->tx_compl_q);
netcp->tx_compl_q = NULL;
}
if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
knav_pool_destroy(netcp->tx_pool);
netcp->tx_pool = NULL;
}
}
static int netcp_setup_navigator_resources(struct net_device *ndev)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct knav_queue_notify_config notify_cfg;
struct knav_dma_cfg config;
u32 last_fdq = 0;
u8 name[16];
int ret;
int i;
/* Create Rx/Tx descriptor pools */
snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
netcp->rx_pool_region_id);
if (IS_ERR_OR_NULL(netcp->rx_pool)) {
dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
ret = PTR_ERR(netcp->rx_pool);
goto fail;
}
snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
netcp->tx_pool_region_id);
if (IS_ERR_OR_NULL(netcp->tx_pool)) {
dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
ret = PTR_ERR(netcp->tx_pool);
goto fail;
}
/* open Tx completion queue */
snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
if (IS_ERR(netcp->tx_compl_q)) {
ret = PTR_ERR(netcp->tx_compl_q);
goto fail;
}
netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
/* Set notification for Tx completion */
notify_cfg.fn = netcp_tx_notify;
notify_cfg.fn_arg = netcp;
ret = knav_queue_device_control(netcp->tx_compl_q,
KNAV_QUEUE_SET_NOTIFIER,
(unsigned long)&notify_cfg);
if (ret)
goto fail;
knav_queue_disable_notify(netcp->tx_compl_q);
/* open Rx completion queue */
snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
if (IS_ERR(netcp->rx_queue)) {
ret = PTR_ERR(netcp->rx_queue);
goto fail;
}
netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
/* Set notification for Rx completion */
notify_cfg.fn = netcp_rx_notify;
notify_cfg.fn_arg = netcp;
ret = knav_queue_device_control(netcp->rx_queue,
KNAV_QUEUE_SET_NOTIFIER,
(unsigned long)&notify_cfg);
if (ret)
goto fail;
knav_queue_disable_notify(netcp->rx_queue);
/* open Rx FDQs */
for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
++i) {
snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
if (IS_ERR(netcp->rx_fdq[i])) {
ret = PTR_ERR(netcp->rx_fdq[i]);
goto fail;
}
}
memset(&config, 0, sizeof(config));
config.direction = DMA_DEV_TO_MEM;
config.u.rx.einfo_present = true;
config.u.rx.psinfo_present = true;
config.u.rx.err_mode = DMA_DROP;
config.u.rx.desc_type = DMA_DESC_HOST;
config.u.rx.psinfo_at_sop = false;
config.u.rx.sop_offset = NETCP_SOP_OFFSET;
config.u.rx.dst_q = netcp->rx_queue_id;
config.u.rx.thresh = DMA_THRESH_NONE;
for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
if (netcp->rx_fdq[i])
last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
config.u.rx.fdq[i] = last_fdq;
}
netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
netcp->dma_chan_name, &config);
if (IS_ERR(netcp->rx_channel)) {
dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
netcp->dma_chan_name);
ret = PTR_ERR(netcp->rx_channel);
goto fail;
}
dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
return 0;
fail:
netcp_free_navigator_resources(netcp);
return ret;
}
/* Open the device */
static int netcp_ndo_open(struct net_device *ndev)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_intf_modpriv *intf_modpriv;
struct netcp_module *module;
int ret;
netif_carrier_off(ndev);
ret = netcp_setup_navigator_resources(ndev);
if (ret) {
dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
goto fail;
}
for_each_module(netcp, intf_modpriv) {
module = intf_modpriv->netcp_module;
if (module->open) {
ret = module->open(intf_modpriv->module_priv, ndev);
if (ret != 0) {
dev_err(netcp->ndev_dev, "module open failed\n");
goto fail_open;
}
}
}
napi_enable(&netcp->rx_napi);
napi_enable(&netcp->tx_napi);
knav_queue_enable_notify(netcp->tx_compl_q);
knav_queue_enable_notify(netcp->rx_queue);
netcp_rxpool_refill(netcp);
netif_tx_wake_all_queues(ndev);
dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
return 0;
fail_open:
for_each_module(netcp, intf_modpriv) {
module = intf_modpriv->netcp_module;
if (module->close)
module->close(intf_modpriv->module_priv, ndev);
}
fail:
netcp_free_navigator_resources(netcp);
return ret;
}
/* Close the device */
static int netcp_ndo_stop(struct net_device *ndev)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_intf_modpriv *intf_modpriv;
struct netcp_module *module;
int err = 0;
netif_tx_stop_all_queues(ndev);
netif_carrier_off(ndev);
netcp_addr_clear_mark(netcp);
netcp_addr_sweep_del(netcp);
knav_queue_disable_notify(netcp->rx_queue);
knav_queue_disable_notify(netcp->tx_compl_q);
napi_disable(&netcp->rx_napi);
napi_disable(&netcp->tx_napi);
for_each_module(netcp, intf_modpriv) {
module = intf_modpriv->netcp_module;
if (module->close) {
err = module->close(intf_modpriv->module_priv, ndev);
if (err != 0)
dev_err(netcp->ndev_dev, "Close failed\n");
}
}
/* Recycle Rx descriptors from completion queue */
netcp_empty_rx_queue(netcp);
/* Recycle Tx descriptors from completion queue */
netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
netcp_free_navigator_resources(netcp);
dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
return 0;
}
static int netcp_ndo_ioctl(struct net_device *ndev,
struct ifreq *req, int cmd)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_intf_modpriv *intf_modpriv;
struct netcp_module *module;
int ret = -1, err = -EOPNOTSUPP;
if (!netif_running(ndev))
return -EINVAL;
for_each_module(netcp, intf_modpriv) {
module = intf_modpriv->netcp_module;
if (!module->ioctl)
continue;
err = module->ioctl(intf_modpriv->module_priv, req, cmd);
if ((err < 0) && (err != -EOPNOTSUPP)) {
ret = err;
goto out;
}
if (err == 0)
ret = err;
}
out:
return (ret == 0) ? 0 : err;
}
static void netcp_ndo_tx_timeout(struct net_device *ndev)
{
struct netcp_intf *netcp = netdev_priv(ndev);
unsigned int descs = knav_pool_count(netcp->tx_pool);
dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
netif_trans_update(ndev);
netif_tx_wake_all_queues(ndev);
}
static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_intf_modpriv *intf_modpriv;
struct netcp_module *module;
unsigned long flags;
int err = 0;
dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
spin_lock_irqsave(&netcp->lock, flags);
for_each_module(netcp, intf_modpriv) {
module = intf_modpriv->netcp_module;
if ((module->add_vid) && (vid != 0)) {
err = module->add_vid(intf_modpriv->module_priv, vid);
if (err != 0) {
dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
vid);
break;
}
}
}
spin_unlock_irqrestore(&netcp->lock, flags);
return err;
}
static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_intf_modpriv *intf_modpriv;
struct netcp_module *module;
unsigned long flags;
int err = 0;
dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
spin_lock_irqsave(&netcp->lock, flags);
for_each_module(netcp, intf_modpriv) {
module = intf_modpriv->netcp_module;
if (module->del_vid) {
err = module->del_vid(intf_modpriv->module_priv, vid);
if (err != 0) {
dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
vid);
break;
}
}
}
spin_unlock_irqrestore(&netcp->lock, flags);
return err;
}
static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
void *accel_priv,
select_queue_fallback_t fallback)
{
return 0;
}
static int netcp_setup_tc(struct net_device *dev, u32 handle, u32 chain_index,
__be16 proto, struct tc_to_netdev *tc)
{
u8 num_tc;
int i;
/* setup tc must be called under rtnl lock */
ASSERT_RTNL();
if (tc->type != TC_SETUP_MQPRIO)
return -EINVAL;
tc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
num_tc = tc->mqprio->num_tc;
/* Sanity-check the number of traffic classes requested */
if ((dev->real_num_tx_queues <= 1) ||
(dev->real_num_tx_queues < num_tc))
return -EINVAL;
/* Configure traffic class to queue mappings */
if (num_tc) {
netdev_set_num_tc(dev, num_tc);
for (i = 0; i < num_tc; i++)
netdev_set_tc_queue(dev, i, 1, i);
} else {
netdev_reset_tc(dev);
}
return 0;
}
static void
netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
{
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_stats *p = &netcp->stats;
u64 rxpackets, rxbytes, txpackets, txbytes;
unsigned int start;
do {
start = u64_stats_fetch_begin_irq(&p->syncp_rx);
rxpackets = p->rx_packets;
rxbytes = p->rx_bytes;
} while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
do {
start = u64_stats_fetch_begin_irq(&p->syncp_tx);
txpackets = p->tx_packets;
txbytes = p->tx_bytes;
} while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
stats->rx_packets = rxpackets;
stats->rx_bytes = rxbytes;
stats->tx_packets = txpackets;
stats->tx_bytes = txbytes;
/* The following are stored as 32 bit */
stats->rx_errors = p->rx_errors;
stats->rx_dropped = p->rx_dropped;
stats->tx_dropped = p->tx_dropped;
}
static const struct net_device_ops netcp_netdev_ops = {
.ndo_open = netcp_ndo_open,
.ndo_stop = netcp_ndo_stop,
.ndo_start_xmit = netcp_ndo_start_xmit,
.ndo_set_rx_mode = netcp_set_rx_mode,
.ndo_do_ioctl = netcp_ndo_ioctl,
.ndo_get_stats64 = netcp_get_stats,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = netcp_rx_add_vid,
.ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
.ndo_tx_timeout = netcp_ndo_tx_timeout,
.ndo_select_queue = netcp_select_queue,
.ndo_setup_tc = netcp_setup_tc,
};
static int netcp_create_interface(struct netcp_device *netcp_device,
struct device_node *node_interface)
{
struct device *dev = netcp_device->device;
struct device_node *node = dev->of_node;
struct netcp_intf *netcp;
struct net_device *ndev;
resource_size_t size;
struct resource res;
void __iomem *efuse = NULL;
u32 efuse_mac = 0;
const void *mac_addr;
u8 efuse_mac_addr[6];
u32 temp[2];
int ret = 0;
ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
if (!ndev) {
dev_err(dev, "Error allocating netdev\n");
return -ENOMEM;
}
ndev->features |= NETIF_F_SG;
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
ndev->hw_features = ndev->features;
ndev->vlan_features |= NETIF_F_SG;
/* MTU range: 68 - 9486 */
ndev->min_mtu = ETH_MIN_MTU;
ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
netcp = netdev_priv(ndev);
spin_lock_init(&netcp->lock);
INIT_LIST_HEAD(&netcp->module_head);
INIT_LIST_HEAD(&netcp->txhook_list_head);
INIT_LIST_HEAD(&netcp->rxhook_list_head);
INIT_LIST_HEAD(&netcp->addr_list);
u64_stats_init(&netcp->stats.syncp_rx);
u64_stats_init(&netcp->stats.syncp_tx);
netcp->netcp_device = netcp_device;
netcp->dev = netcp_device->device;
netcp->ndev = ndev;
netcp->ndev_dev = &ndev->dev;
netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
netcp->tx_pause_threshold = MAX_SKB_FRAGS;
netcp->tx_resume_threshold = netcp->tx_pause_threshold;
netcp->node_interface = node_interface;
ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
if (efuse_mac) {
if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
dev_err(dev, "could not find efuse-mac reg resource\n");
ret = -ENODEV;
goto quit;
}
size = resource_size(&res);
if (!devm_request_mem_region(dev, res.start, size,
dev_name(dev))) {
dev_err(dev, "could not reserve resource\n");
ret = -ENOMEM;
goto quit;
}
efuse = devm_ioremap_nocache(dev, res.start, size);
if (!efuse) {
dev_err(dev, "could not map resource\n");
devm_release_mem_region(dev, res.start, size);
ret = -ENOMEM;
goto quit;
}
emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
if (is_valid_ether_addr(efuse_mac_addr))
ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
else
random_ether_addr(ndev->dev_addr);
devm_iounmap(dev, efuse);
devm_release_mem_region(dev, res.start, size);
} else {
mac_addr = of_get_mac_address(node_interface);
if (mac_addr)
ether_addr_copy(ndev->dev_addr, mac_addr);
else
random_ether_addr(ndev->dev_addr);
}
ret = of_property_read_string(node_interface, "rx-channel",
&netcp->dma_chan_name);
if (ret < 0) {
dev_err(dev, "missing \"rx-channel\" parameter\n");
ret = -ENODEV;
goto quit;
}
ret = of_property_read_u32(node_interface, "rx-queue",
&netcp->rx_queue_id);
if (ret < 0) {
dev_warn(dev, "missing \"rx-queue\" parameter\n");
netcp->rx_queue_id = KNAV_QUEUE_QPEND;
}
ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
netcp->rx_queue_depths,
KNAV_DMA_FDQ_PER_CHAN);
if (ret < 0) {
dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
netcp->rx_queue_depths[0] = 128;
}
ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
if (ret < 0) {
dev_err(dev, "missing \"rx-pool\" parameter\n");
ret = -ENODEV;
goto quit;
}
netcp->rx_pool_size = temp[0];
netcp->rx_pool_region_id = temp[1];
ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
if (ret < 0) {
dev_err(dev, "missing \"tx-pool\" parameter\n");
ret = -ENODEV;
goto quit;
}
netcp->tx_pool_size = temp[0];
netcp->tx_pool_region_id = temp[1];
if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
MAX_SKB_FRAGS);
ret = -ENODEV;
goto quit;
}
ret = of_property_read_u32(node_interface, "tx-completion-queue",
&netcp->tx_compl_qid);
if (ret < 0) {
dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
}
/* NAPI register */
netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
/* Register the network device */
ndev->dev_id = 0;
ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
ndev->netdev_ops = &netcp_netdev_ops;
SET_NETDEV_DEV(ndev, dev);
list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
return 0;
quit:
free_netdev(ndev);
return ret;
}
static void netcp_delete_interface(struct netcp_device *netcp_device,
struct net_device *ndev)
{
struct netcp_intf_modpriv *intf_modpriv, *tmp;
struct netcp_intf *netcp = netdev_priv(ndev);
struct netcp_module *module;
dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
ndev->name);
/* Notify each of the modules that the interface is going away */
list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
intf_list) {
module = intf_modpriv->netcp_module;
dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
module->name);
if (module->release)
module->release(intf_modpriv->module_priv);
list_del(&intf_modpriv->intf_list);
}
WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
ndev->name);
list_del(&netcp->interface_list);
of_node_put(netcp->node_interface);
unregister_netdev(ndev);
netif_napi_del(&netcp->rx_napi);
free_netdev(ndev);
}
static int netcp_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct netcp_intf *netcp_intf, *netcp_tmp;
struct device_node *child, *interfaces;
struct netcp_device *netcp_device;
struct device *dev = &pdev->dev;
int ret;
if (!node) {
dev_err(dev, "could not find device info\n");
return -ENODEV;
}
/* Allocate a new NETCP device instance */
netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
if (!netcp_device)
return -ENOMEM;
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(dev, "Failed to enable NETCP power-domain\n");
pm_runtime_disable(&pdev->dev);
return ret;
}
/* Initialize the NETCP device instance */
INIT_LIST_HEAD(&netcp_device->interface_head);
INIT_LIST_HEAD(&netcp_device->modpriv_head);
netcp_device->device = dev;
platform_set_drvdata(pdev, netcp_device);
/* create interfaces */
interfaces = of_get_child_by_name(node, "netcp-interfaces");
if (!interfaces) {
dev_err(dev, "could not find netcp-interfaces node\n");
ret = -ENODEV;
goto probe_quit;
}
for_each_available_child_of_node(interfaces, child) {
ret = netcp_create_interface(netcp_device, child);
if (ret) {
dev_err(dev, "could not create interface(%s)\n",
child->name);
goto probe_quit_interface;
}
}
of_node_put(interfaces);
/* Add the device instance to the list */
list_add_tail(&netcp_device->device_list, &netcp_devices);
return 0;
probe_quit_interface:
list_for_each_entry_safe(netcp_intf, netcp_tmp,
&netcp_device->interface_head,
interface_list) {
netcp_delete_interface(netcp_device, netcp_intf->ndev);
}
of_node_put(interfaces);
probe_quit:
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
platform_set_drvdata(pdev, NULL);
return ret;
}
static int netcp_remove(struct platform_device *pdev)
{
struct netcp_device *netcp_device = platform_get_drvdata(pdev);
struct netcp_intf *netcp_intf, *netcp_tmp;
struct netcp_inst_modpriv *inst_modpriv, *tmp;
struct netcp_module *module;
list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
inst_list) {
module = inst_modpriv->netcp_module;
dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
module->remove(netcp_device, inst_modpriv->module_priv);
list_del(&inst_modpriv->inst_list);
}
/* now that all modules are removed, clean up the interfaces */
list_for_each_entry_safe(netcp_intf, netcp_tmp,
&netcp_device->interface_head,
interface_list) {
netcp_delete_interface(netcp_device, netcp_intf->ndev);
}
WARN(!list_empty(&netcp_device->interface_head),
"%s interface list not empty!\n", pdev->name);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static const struct of_device_id of_match[] = {
{ .compatible = "ti,netcp-1.0", },
{},
};
MODULE_DEVICE_TABLE(of, of_match);
static struct platform_driver netcp_driver = {
.driver = {
.name = "netcp-1.0",
.of_match_table = of_match,
},
.probe = netcp_probe,
.remove = netcp_remove,
};
module_platform_driver(netcp_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");