| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * ppc64 code to implement the kexec_file_load syscall |
| * |
| * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) |
| * Copyright (C) 2004 IBM Corp. |
| * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation |
| * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) |
| * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) |
| * Copyright (C) 2020 IBM Corporation |
| * |
| * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c. |
| * Heavily modified for the kernel by |
| * Hari Bathini, IBM Corporation. |
| */ |
| |
| #include <linux/kexec.h> |
| #include <linux/of_fdt.h> |
| #include <linux/libfdt.h> |
| #include <linux/of.h> |
| #include <linux/memblock.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <asm/setup.h> |
| #include <asm/drmem.h> |
| #include <asm/firmware.h> |
| #include <asm/kexec_ranges.h> |
| #include <asm/crashdump-ppc64.h> |
| #include <asm/mmzone.h> |
| #include <asm/iommu.h> |
| #include <asm/prom.h> |
| #include <asm/plpks.h> |
| |
| struct umem_info { |
| u64 *buf; /* data buffer for usable-memory property */ |
| u32 size; /* size allocated for the data buffer */ |
| u32 max_entries; /* maximum no. of entries */ |
| u32 idx; /* index of current entry */ |
| |
| /* usable memory ranges to look up */ |
| unsigned int nr_ranges; |
| const struct range *ranges; |
| }; |
| |
| const struct kexec_file_ops * const kexec_file_loaders[] = { |
| &kexec_elf64_ops, |
| NULL |
| }; |
| |
| /** |
| * get_exclude_memory_ranges - Get exclude memory ranges. This list includes |
| * regions like opal/rtas, tce-table, initrd, |
| * kernel, htab which should be avoided while |
| * setting up kexec load segments. |
| * @mem_ranges: Range list to add the memory ranges to. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int get_exclude_memory_ranges(struct crash_mem **mem_ranges) |
| { |
| int ret; |
| |
| ret = add_tce_mem_ranges(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_initrd_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_htab_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_kernel_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_rtas_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_opal_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_reserved_mem_ranges(mem_ranges); |
| if (ret) |
| goto out; |
| |
| /* exclude memory ranges should be sorted for easy lookup */ |
| sort_memory_ranges(*mem_ranges, true); |
| out: |
| if (ret) |
| pr_err("Failed to setup exclude memory ranges\n"); |
| return ret; |
| } |
| |
| /** |
| * get_usable_memory_ranges - Get usable memory ranges. This list includes |
| * regions like crashkernel, opal/rtas & tce-table, |
| * that kdump kernel could use. |
| * @mem_ranges: Range list to add the memory ranges to. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int get_usable_memory_ranges(struct crash_mem **mem_ranges) |
| { |
| int ret; |
| |
| /* |
| * Early boot failure observed on guests when low memory (first memory |
| * block?) is not added to usable memory. So, add [0, crashk_res.end] |
| * instead of [crashk_res.start, crashk_res.end] to workaround it. |
| * Also, crashed kernel's memory must be added to reserve map to |
| * avoid kdump kernel from using it. |
| */ |
| ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); |
| if (ret) |
| goto out; |
| |
| ret = add_rtas_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_opal_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_tce_mem_ranges(mem_ranges); |
| out: |
| if (ret) |
| pr_err("Failed to setup usable memory ranges\n"); |
| return ret; |
| } |
| |
| /** |
| * get_crash_memory_ranges - Get crash memory ranges. This list includes |
| * first/crashing kernel's memory regions that |
| * would be exported via an elfcore. |
| * @mem_ranges: Range list to add the memory ranges to. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int get_crash_memory_ranges(struct crash_mem **mem_ranges) |
| { |
| phys_addr_t base, end; |
| struct crash_mem *tmem; |
| u64 i; |
| int ret; |
| |
| for_each_mem_range(i, &base, &end) { |
| u64 size = end - base; |
| |
| /* Skip backup memory region, which needs a separate entry */ |
| if (base == BACKUP_SRC_START) { |
| if (size > BACKUP_SRC_SIZE) { |
| base = BACKUP_SRC_END + 1; |
| size -= BACKUP_SRC_SIZE; |
| } else |
| continue; |
| } |
| |
| ret = add_mem_range(mem_ranges, base, size); |
| if (ret) |
| goto out; |
| |
| /* Try merging adjacent ranges before reallocation attempt */ |
| if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges) |
| sort_memory_ranges(*mem_ranges, true); |
| } |
| |
| /* Reallocate memory ranges if there is no space to split ranges */ |
| tmem = *mem_ranges; |
| if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) { |
| tmem = realloc_mem_ranges(mem_ranges); |
| if (!tmem) |
| goto out; |
| } |
| |
| /* Exclude crashkernel region */ |
| ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end); |
| if (ret) |
| goto out; |
| |
| /* |
| * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL |
| * regions are exported to save their context at the time of |
| * crash, they should actually be backed up just like the |
| * first 64K bytes of memory. |
| */ |
| ret = add_rtas_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_opal_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| /* create a separate program header for the backup region */ |
| ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE); |
| if (ret) |
| goto out; |
| |
| sort_memory_ranges(*mem_ranges, false); |
| out: |
| if (ret) |
| pr_err("Failed to setup crash memory ranges\n"); |
| return ret; |
| } |
| |
| /** |
| * get_reserved_memory_ranges - Get reserve memory ranges. This list includes |
| * memory regions that should be added to the |
| * memory reserve map to ensure the region is |
| * protected from any mischief. |
| * @mem_ranges: Range list to add the memory ranges to. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int get_reserved_memory_ranges(struct crash_mem **mem_ranges) |
| { |
| int ret; |
| |
| ret = add_rtas_mem_range(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_tce_mem_ranges(mem_ranges); |
| if (ret) |
| goto out; |
| |
| ret = add_reserved_mem_ranges(mem_ranges); |
| out: |
| if (ret) |
| pr_err("Failed to setup reserved memory ranges\n"); |
| return ret; |
| } |
| |
| /** |
| * __locate_mem_hole_top_down - Looks top down for a large enough memory hole |
| * in the memory regions between buf_min & buf_max |
| * for the buffer. If found, sets kbuf->mem. |
| * @kbuf: Buffer contents and memory parameters. |
| * @buf_min: Minimum address for the buffer. |
| * @buf_max: Maximum address for the buffer. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int __locate_mem_hole_top_down(struct kexec_buf *kbuf, |
| u64 buf_min, u64 buf_max) |
| { |
| int ret = -EADDRNOTAVAIL; |
| phys_addr_t start, end; |
| u64 i; |
| |
| for_each_mem_range_rev(i, &start, &end) { |
| /* |
| * memblock uses [start, end) convention while it is |
| * [start, end] here. Fix the off-by-one to have the |
| * same convention. |
| */ |
| end -= 1; |
| |
| if (start > buf_max) |
| continue; |
| |
| /* Memory hole not found */ |
| if (end < buf_min) |
| break; |
| |
| /* Adjust memory region based on the given range */ |
| if (start < buf_min) |
| start = buf_min; |
| if (end > buf_max) |
| end = buf_max; |
| |
| start = ALIGN(start, kbuf->buf_align); |
| if (start < end && (end - start + 1) >= kbuf->memsz) { |
| /* Suitable memory range found. Set kbuf->mem */ |
| kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1, |
| kbuf->buf_align); |
| ret = 0; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a |
| * suitable buffer with top down approach. |
| * @kbuf: Buffer contents and memory parameters. |
| * @buf_min: Minimum address for the buffer. |
| * @buf_max: Maximum address for the buffer. |
| * @emem: Exclude memory ranges. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf, |
| u64 buf_min, u64 buf_max, |
| const struct crash_mem *emem) |
| { |
| int i, ret = 0, err = -EADDRNOTAVAIL; |
| u64 start, end, tmin, tmax; |
| |
| tmax = buf_max; |
| for (i = (emem->nr_ranges - 1); i >= 0; i--) { |
| start = emem->ranges[i].start; |
| end = emem->ranges[i].end; |
| |
| if (start > tmax) |
| continue; |
| |
| if (end < tmax) { |
| tmin = (end < buf_min ? buf_min : end + 1); |
| ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); |
| if (!ret) |
| return 0; |
| } |
| |
| tmax = start - 1; |
| |
| if (tmax < buf_min) { |
| ret = err; |
| break; |
| } |
| ret = 0; |
| } |
| |
| if (!ret) { |
| tmin = buf_min; |
| ret = __locate_mem_hole_top_down(kbuf, tmin, tmax); |
| } |
| return ret; |
| } |
| |
| /** |
| * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole |
| * in the memory regions between buf_min & buf_max |
| * for the buffer. If found, sets kbuf->mem. |
| * @kbuf: Buffer contents and memory parameters. |
| * @buf_min: Minimum address for the buffer. |
| * @buf_max: Maximum address for the buffer. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf, |
| u64 buf_min, u64 buf_max) |
| { |
| int ret = -EADDRNOTAVAIL; |
| phys_addr_t start, end; |
| u64 i; |
| |
| for_each_mem_range(i, &start, &end) { |
| /* |
| * memblock uses [start, end) convention while it is |
| * [start, end] here. Fix the off-by-one to have the |
| * same convention. |
| */ |
| end -= 1; |
| |
| if (end < buf_min) |
| continue; |
| |
| /* Memory hole not found */ |
| if (start > buf_max) |
| break; |
| |
| /* Adjust memory region based on the given range */ |
| if (start < buf_min) |
| start = buf_min; |
| if (end > buf_max) |
| end = buf_max; |
| |
| start = ALIGN(start, kbuf->buf_align); |
| if (start < end && (end - start + 1) >= kbuf->memsz) { |
| /* Suitable memory range found. Set kbuf->mem */ |
| kbuf->mem = start; |
| ret = 0; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a |
| * suitable buffer with bottom up approach. |
| * @kbuf: Buffer contents and memory parameters. |
| * @buf_min: Minimum address for the buffer. |
| * @buf_max: Maximum address for the buffer. |
| * @emem: Exclude memory ranges. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, |
| u64 buf_min, u64 buf_max, |
| const struct crash_mem *emem) |
| { |
| int i, ret = 0, err = -EADDRNOTAVAIL; |
| u64 start, end, tmin, tmax; |
| |
| tmin = buf_min; |
| for (i = 0; i < emem->nr_ranges; i++) { |
| start = emem->ranges[i].start; |
| end = emem->ranges[i].end; |
| |
| if (end < tmin) |
| continue; |
| |
| if (start > tmin) { |
| tmax = (start > buf_max ? buf_max : start - 1); |
| ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); |
| if (!ret) |
| return 0; |
| } |
| |
| tmin = end + 1; |
| |
| if (tmin > buf_max) { |
| ret = err; |
| break; |
| } |
| ret = 0; |
| } |
| |
| if (!ret) { |
| tmax = buf_max; |
| ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax); |
| } |
| return ret; |
| } |
| |
| /** |
| * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries |
| * @um_info: Usable memory buffer and ranges info. |
| * @cnt: No. of entries to accommodate. |
| * |
| * Frees up the old buffer if memory reallocation fails. |
| * |
| * Returns buffer on success, NULL on error. |
| */ |
| static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt) |
| { |
| u32 new_size; |
| u64 *tbuf; |
| |
| if ((um_info->idx + cnt) <= um_info->max_entries) |
| return um_info->buf; |
| |
| new_size = um_info->size + MEM_RANGE_CHUNK_SZ; |
| tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL); |
| if (tbuf) { |
| um_info->buf = tbuf; |
| um_info->size = new_size; |
| um_info->max_entries = (um_info->size / sizeof(u64)); |
| } |
| |
| return tbuf; |
| } |
| |
| /** |
| * add_usable_mem - Add the usable memory ranges within the given memory range |
| * to the buffer |
| * @um_info: Usable memory buffer and ranges info. |
| * @base: Base address of memory range to look for. |
| * @end: End address of memory range to look for. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end) |
| { |
| u64 loc_base, loc_end; |
| bool add; |
| int i; |
| |
| for (i = 0; i < um_info->nr_ranges; i++) { |
| add = false; |
| loc_base = um_info->ranges[i].start; |
| loc_end = um_info->ranges[i].end; |
| if (loc_base >= base && loc_end <= end) |
| add = true; |
| else if (base < loc_end && end > loc_base) { |
| if (loc_base < base) |
| loc_base = base; |
| if (loc_end > end) |
| loc_end = end; |
| add = true; |
| } |
| |
| if (add) { |
| if (!check_realloc_usable_mem(um_info, 2)) |
| return -ENOMEM; |
| |
| um_info->buf[um_info->idx++] = cpu_to_be64(loc_base); |
| um_info->buf[um_info->idx++] = |
| cpu_to_be64(loc_end - loc_base + 1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * kdump_setup_usable_lmb - This is a callback function that gets called by |
| * walk_drmem_lmbs for every LMB to set its |
| * usable memory ranges. |
| * @lmb: LMB info. |
| * @usm: linux,drconf-usable-memory property value. |
| * @data: Pointer to usable memory buffer and ranges info. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm, |
| void *data) |
| { |
| struct umem_info *um_info; |
| int tmp_idx, ret; |
| u64 base, end; |
| |
| /* |
| * kdump load isn't supported on kernels already booted with |
| * linux,drconf-usable-memory property. |
| */ |
| if (*usm) { |
| pr_err("linux,drconf-usable-memory property already exists!"); |
| return -EINVAL; |
| } |
| |
| um_info = data; |
| tmp_idx = um_info->idx; |
| if (!check_realloc_usable_mem(um_info, 1)) |
| return -ENOMEM; |
| |
| um_info->idx++; |
| base = lmb->base_addr; |
| end = base + drmem_lmb_size() - 1; |
| ret = add_usable_mem(um_info, base, end); |
| if (!ret) { |
| /* |
| * Update the no. of ranges added. Two entries (base & size) |
| * for every range added. |
| */ |
| um_info->buf[tmp_idx] = |
| cpu_to_be64((um_info->idx - tmp_idx - 1) / 2); |
| } |
| |
| return ret; |
| } |
| |
| #define NODE_PATH_LEN 256 |
| /** |
| * add_usable_mem_property - Add usable memory property for the given |
| * memory node. |
| * @fdt: Flattened device tree for the kdump kernel. |
| * @dn: Memory node. |
| * @um_info: Usable memory buffer and ranges info. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int add_usable_mem_property(void *fdt, struct device_node *dn, |
| struct umem_info *um_info) |
| { |
| int n_mem_addr_cells, n_mem_size_cells, node; |
| char path[NODE_PATH_LEN]; |
| int i, len, ranges, ret; |
| const __be32 *prop; |
| u64 base, end; |
| |
| of_node_get(dn); |
| |
| if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) { |
| pr_err("Buffer (%d) too small for memory node: %pOF\n", |
| NODE_PATH_LEN, dn); |
| return -EOVERFLOW; |
| } |
| pr_debug("Memory node path: %s\n", path); |
| |
| /* Now that we know the path, find its offset in kdump kernel's fdt */ |
| node = fdt_path_offset(fdt, path); |
| if (node < 0) { |
| pr_err("Malformed device tree: error reading %s\n", path); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Get the address & size cells */ |
| n_mem_addr_cells = of_n_addr_cells(dn); |
| n_mem_size_cells = of_n_size_cells(dn); |
| pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, |
| n_mem_size_cells); |
| |
| um_info->idx = 0; |
| if (!check_realloc_usable_mem(um_info, 2)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| prop = of_get_property(dn, "reg", &len); |
| if (!prop || len <= 0) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * "reg" property represents sequence of (addr,size) tuples |
| * each representing a memory range. |
| */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| |
| for (i = 0; i < ranges; i++) { |
| base = of_read_number(prop, n_mem_addr_cells); |
| prop += n_mem_addr_cells; |
| end = base + of_read_number(prop, n_mem_size_cells) - 1; |
| prop += n_mem_size_cells; |
| |
| ret = add_usable_mem(um_info, base, end); |
| if (ret) |
| goto out; |
| } |
| |
| /* |
| * No kdump kernel usable memory found in this memory node. |
| * Write (0,0) tuple in linux,usable-memory property for |
| * this region to be ignored. |
| */ |
| if (um_info->idx == 0) { |
| um_info->buf[0] = 0; |
| um_info->buf[1] = 0; |
| um_info->idx = 2; |
| } |
| |
| ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, |
| (um_info->idx * sizeof(u64))); |
| |
| out: |
| of_node_put(dn); |
| return ret; |
| } |
| |
| |
| /** |
| * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory |
| * and linux,drconf-usable-memory DT properties as |
| * appropriate to restrict its memory usage. |
| * @fdt: Flattened device tree for the kdump kernel. |
| * @usable_mem: Usable memory ranges for kdump kernel. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem) |
| { |
| struct umem_info um_info; |
| struct device_node *dn; |
| int node, ret = 0; |
| |
| if (!usable_mem) { |
| pr_err("Usable memory ranges for kdump kernel not found\n"); |
| return -ENOENT; |
| } |
| |
| node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); |
| if (node == -FDT_ERR_NOTFOUND) |
| pr_debug("No dynamic reconfiguration memory found\n"); |
| else if (node < 0) { |
| pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n"); |
| return -EINVAL; |
| } |
| |
| um_info.buf = NULL; |
| um_info.size = 0; |
| um_info.max_entries = 0; |
| um_info.idx = 0; |
| /* Memory ranges to look up */ |
| um_info.ranges = &(usable_mem->ranges[0]); |
| um_info.nr_ranges = usable_mem->nr_ranges; |
| |
| dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (dn) { |
| ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb); |
| of_node_put(dn); |
| |
| if (ret) { |
| pr_err("Could not setup linux,drconf-usable-memory property for kdump\n"); |
| goto out; |
| } |
| |
| ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory", |
| um_info.buf, (um_info.idx * sizeof(u64))); |
| if (ret) { |
| pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s", |
| fdt_strerror(ret)); |
| goto out; |
| } |
| } |
| |
| /* |
| * Walk through each memory node and set linux,usable-memory property |
| * for the corresponding node in kdump kernel's fdt. |
| */ |
| for_each_node_by_type(dn, "memory") { |
| ret = add_usable_mem_property(fdt, dn, &um_info); |
| if (ret) { |
| pr_err("Failed to set linux,usable-memory property for %s node", |
| dn->full_name); |
| of_node_put(dn); |
| goto out; |
| } |
| } |
| |
| out: |
| kfree(um_info.buf); |
| return ret; |
| } |
| |
| /** |
| * load_backup_segment - Locate a memory hole to place the backup region. |
| * @image: Kexec image. |
| * @kbuf: Buffer contents and memory parameters. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf) |
| { |
| void *buf; |
| int ret; |
| |
| /* |
| * Setup a source buffer for backup segment. |
| * |
| * A source buffer has no meaning for backup region as data will |
| * be copied from backup source, after crash, in the purgatory. |
| * But as load segment code doesn't recognize such segments, |
| * setup a dummy source buffer to keep it happy for now. |
| */ |
| buf = vzalloc(BACKUP_SRC_SIZE); |
| if (!buf) |
| return -ENOMEM; |
| |
| kbuf->buffer = buf; |
| kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; |
| kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE; |
| kbuf->top_down = false; |
| |
| ret = kexec_add_buffer(kbuf); |
| if (ret) { |
| vfree(buf); |
| return ret; |
| } |
| |
| image->arch.backup_buf = buf; |
| image->arch.backup_start = kbuf->mem; |
| return 0; |
| } |
| |
| /** |
| * update_backup_region_phdr - Update backup region's offset for the core to |
| * export the region appropriately. |
| * @image: Kexec image. |
| * @ehdr: ELF core header. |
| * |
| * Assumes an exclusive program header is setup for the backup region |
| * in the ELF headers |
| * |
| * Returns nothing. |
| */ |
| static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr) |
| { |
| Elf64_Phdr *phdr; |
| unsigned int i; |
| |
| phdr = (Elf64_Phdr *)(ehdr + 1); |
| for (i = 0; i < ehdr->e_phnum; i++) { |
| if (phdr->p_paddr == BACKUP_SRC_START) { |
| phdr->p_offset = image->arch.backup_start; |
| pr_debug("Backup region offset updated to 0x%lx\n", |
| image->arch.backup_start); |
| return; |
| } |
| } |
| } |
| |
| /** |
| * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr |
| * segment needed to load kdump kernel. |
| * @image: Kexec image. |
| * @kbuf: Buffer contents and memory parameters. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf) |
| { |
| struct crash_mem *cmem = NULL; |
| unsigned long headers_sz; |
| void *headers = NULL; |
| int ret; |
| |
| ret = get_crash_memory_ranges(&cmem); |
| if (ret) |
| goto out; |
| |
| /* Setup elfcorehdr segment */ |
| ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz); |
| if (ret) { |
| pr_err("Failed to prepare elf headers for the core\n"); |
| goto out; |
| } |
| |
| /* Fix the offset for backup region in the ELF header */ |
| update_backup_region_phdr(image, headers); |
| |
| kbuf->buffer = headers; |
| kbuf->mem = KEXEC_BUF_MEM_UNKNOWN; |
| kbuf->bufsz = kbuf->memsz = headers_sz; |
| kbuf->top_down = false; |
| |
| ret = kexec_add_buffer(kbuf); |
| if (ret) { |
| vfree(headers); |
| goto out; |
| } |
| |
| image->elf_load_addr = kbuf->mem; |
| image->elf_headers_sz = headers_sz; |
| image->elf_headers = headers; |
| out: |
| kfree(cmem); |
| return ret; |
| } |
| |
| /** |
| * load_crashdump_segments_ppc64 - Initialize the additional segements needed |
| * to load kdump kernel. |
| * @image: Kexec image. |
| * @kbuf: Buffer contents and memory parameters. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| int load_crashdump_segments_ppc64(struct kimage *image, |
| struct kexec_buf *kbuf) |
| { |
| int ret; |
| |
| /* Load backup segment - first 64K bytes of the crashing kernel */ |
| ret = load_backup_segment(image, kbuf); |
| if (ret) { |
| pr_err("Failed to load backup segment\n"); |
| return ret; |
| } |
| pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem); |
| |
| /* Load elfcorehdr segment - to export crashing kernel's vmcore */ |
| ret = load_elfcorehdr_segment(image, kbuf); |
| if (ret) { |
| pr_err("Failed to load elfcorehdr segment\n"); |
| return ret; |
| } |
| pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n", |
| image->elf_load_addr, kbuf->bufsz, kbuf->memsz); |
| |
| return 0; |
| } |
| |
| /** |
| * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global |
| * variables and call setup_purgatory() to initialize |
| * common global variable. |
| * @image: kexec image. |
| * @slave_code: Slave code for the purgatory. |
| * @fdt: Flattened device tree for the next kernel. |
| * @kernel_load_addr: Address where the kernel is loaded. |
| * @fdt_load_addr: Address where the flattened device tree is loaded. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| int setup_purgatory_ppc64(struct kimage *image, const void *slave_code, |
| const void *fdt, unsigned long kernel_load_addr, |
| unsigned long fdt_load_addr) |
| { |
| struct device_node *dn = NULL; |
| int ret; |
| |
| ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, |
| fdt_load_addr); |
| if (ret) |
| goto out; |
| |
| if (image->type == KEXEC_TYPE_CRASH) { |
| u32 my_run_at_load = 1; |
| |
| /* |
| * Tell relocatable kernel to run at load address |
| * via the word meant for that at 0x5c. |
| */ |
| ret = kexec_purgatory_get_set_symbol(image, "run_at_load", |
| &my_run_at_load, |
| sizeof(my_run_at_load), |
| false); |
| if (ret) |
| goto out; |
| } |
| |
| /* Tell purgatory where to look for backup region */ |
| ret = kexec_purgatory_get_set_symbol(image, "backup_start", |
| &image->arch.backup_start, |
| sizeof(image->arch.backup_start), |
| false); |
| if (ret) |
| goto out; |
| |
| /* Setup OPAL base & entry values */ |
| dn = of_find_node_by_path("/ibm,opal"); |
| if (dn) { |
| u64 val; |
| |
| of_property_read_u64(dn, "opal-base-address", &val); |
| ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val, |
| sizeof(val), false); |
| if (ret) |
| goto out; |
| |
| of_property_read_u64(dn, "opal-entry-address", &val); |
| ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val, |
| sizeof(val), false); |
| } |
| out: |
| if (ret) |
| pr_err("Failed to setup purgatory symbols"); |
| of_node_put(dn); |
| return ret; |
| } |
| |
| /** |
| * cpu_node_size - Compute the size of a CPU node in the FDT. |
| * This should be done only once and the value is stored in |
| * a static variable. |
| * Returns the max size of a CPU node in the FDT. |
| */ |
| static unsigned int cpu_node_size(void) |
| { |
| static unsigned int size; |
| struct device_node *dn; |
| struct property *pp; |
| |
| /* |
| * Don't compute it twice, we are assuming that the per CPU node size |
| * doesn't change during the system's life. |
| */ |
| if (size) |
| return size; |
| |
| dn = of_find_node_by_type(NULL, "cpu"); |
| if (WARN_ON_ONCE(!dn)) { |
| // Unlikely to happen |
| return 0; |
| } |
| |
| /* |
| * We compute the sub node size for a CPU node, assuming it |
| * will be the same for all. |
| */ |
| size += strlen(dn->name) + 5; |
| for_each_property_of_node(dn, pp) { |
| size += strlen(pp->name); |
| size += pp->length; |
| } |
| |
| of_node_put(dn); |
| return size; |
| } |
| |
| /** |
| * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to |
| * setup FDT for kexec/kdump kernel. |
| * @image: kexec image being loaded. |
| * |
| * Returns the estimated extra size needed for kexec/kdump kernel FDT. |
| */ |
| unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image) |
| { |
| unsigned int cpu_nodes, extra_size = 0; |
| struct device_node *dn; |
| u64 usm_entries; |
| |
| // Budget some space for the password blob. There's already extra space |
| // for the key name |
| if (plpks_is_available()) |
| extra_size += (unsigned int)plpks_get_passwordlen(); |
| |
| if (image->type != KEXEC_TYPE_CRASH) |
| return extra_size; |
| |
| /* |
| * For kdump kernel, account for linux,usable-memory and |
| * linux,drconf-usable-memory properties. Get an approximate on the |
| * number of usable memory entries and use for FDT size estimation. |
| */ |
| if (drmem_lmb_size()) { |
| usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) + |
| (2 * (resource_size(&crashk_res) / drmem_lmb_size()))); |
| extra_size += (unsigned int)(usm_entries * sizeof(u64)); |
| } |
| |
| /* |
| * Get the number of CPU nodes in the current DT. This allows to |
| * reserve places for CPU nodes added since the boot time. |
| */ |
| cpu_nodes = 0; |
| for_each_node_by_type(dn, "cpu") { |
| cpu_nodes++; |
| } |
| |
| if (cpu_nodes > boot_cpu_node_count) |
| extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size(); |
| |
| return extra_size; |
| } |
| |
| /** |
| * add_node_props - Reads node properties from device node structure and add |
| * them to fdt. |
| * @fdt: Flattened device tree of the kernel |
| * @node_offset: offset of the node to add a property at |
| * @dn: device node pointer |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) |
| { |
| int ret = 0; |
| struct property *pp; |
| |
| if (!dn) |
| return -EINVAL; |
| |
| for_each_property_of_node(dn, pp) { |
| ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); |
| if (ret < 0) { |
| pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| /** |
| * update_cpus_node - Update cpus node of flattened device tree using of_root |
| * device node. |
| * @fdt: Flattened device tree of the kernel. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| static int update_cpus_node(void *fdt) |
| { |
| struct device_node *cpus_node, *dn; |
| int cpus_offset, cpus_subnode_offset, ret = 0; |
| |
| cpus_offset = fdt_path_offset(fdt, "/cpus"); |
| if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { |
| pr_err("Malformed device tree: error reading /cpus node: %s\n", |
| fdt_strerror(cpus_offset)); |
| return cpus_offset; |
| } |
| |
| if (cpus_offset > 0) { |
| ret = fdt_del_node(fdt, cpus_offset); |
| if (ret < 0) { |
| pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret)); |
| return -EINVAL; |
| } |
| } |
| |
| /* Add cpus node to fdt */ |
| cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); |
| if (cpus_offset < 0) { |
| pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset)); |
| return -EINVAL; |
| } |
| |
| /* Add cpus node properties */ |
| cpus_node = of_find_node_by_path("/cpus"); |
| ret = add_node_props(fdt, cpus_offset, cpus_node); |
| of_node_put(cpus_node); |
| if (ret < 0) |
| return ret; |
| |
| /* Loop through all subnodes of cpus and add them to fdt */ |
| for_each_node_by_type(dn, "cpu") { |
| cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); |
| if (cpus_subnode_offset < 0) { |
| pr_err("Unable to add %s subnode: %s\n", dn->full_name, |
| fdt_strerror(cpus_subnode_offset)); |
| ret = cpus_subnode_offset; |
| goto out; |
| } |
| |
| ret = add_node_props(fdt, cpus_subnode_offset, dn); |
| if (ret < 0) |
| goto out; |
| } |
| out: |
| of_node_put(dn); |
| return ret; |
| } |
| |
| static int copy_property(void *fdt, int node_offset, const struct device_node *dn, |
| const char *propname) |
| { |
| const void *prop, *fdtprop; |
| int len = 0, fdtlen = 0; |
| |
| prop = of_get_property(dn, propname, &len); |
| fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen); |
| |
| if (fdtprop && !prop) |
| return fdt_delprop(fdt, node_offset, propname); |
| else if (prop) |
| return fdt_setprop(fdt, node_offset, propname, prop, len); |
| else |
| return -FDT_ERR_NOTFOUND; |
| } |
| |
| static int update_pci_dma_nodes(void *fdt, const char *dmapropname) |
| { |
| struct device_node *dn; |
| int pci_offset, root_offset, ret = 0; |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) |
| return 0; |
| |
| root_offset = fdt_path_offset(fdt, "/"); |
| for_each_node_with_property(dn, dmapropname) { |
| pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn)); |
| if (pci_offset < 0) |
| continue; |
| |
| ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window"); |
| if (ret < 0) |
| break; |
| ret = copy_property(fdt, pci_offset, dn, dmapropname); |
| if (ret < 0) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel |
| * being loaded. |
| * @image: kexec image being loaded. |
| * @fdt: Flattened device tree for the next kernel. |
| * @initrd_load_addr: Address where the next initrd will be loaded. |
| * @initrd_len: Size of the next initrd, or 0 if there will be none. |
| * @cmdline: Command line for the next kernel, or NULL if there will |
| * be none. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, |
| unsigned long initrd_load_addr, |
| unsigned long initrd_len, const char *cmdline) |
| { |
| struct crash_mem *umem = NULL, *rmem = NULL; |
| int i, nr_ranges, ret; |
| |
| /* |
| * Restrict memory usage for kdump kernel by setting up |
| * usable memory ranges and memory reserve map. |
| */ |
| if (image->type == KEXEC_TYPE_CRASH) { |
| ret = get_usable_memory_ranges(&umem); |
| if (ret) |
| goto out; |
| |
| ret = update_usable_mem_fdt(fdt, umem); |
| if (ret) { |
| pr_err("Error setting up usable-memory property for kdump kernel\n"); |
| goto out; |
| } |
| |
| /* |
| * Ensure we don't touch crashed kernel's memory except the |
| * first 64K of RAM, which will be backed up. |
| */ |
| ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1, |
| crashk_res.start - BACKUP_SRC_SIZE); |
| if (ret) { |
| pr_err("Error reserving crash memory: %s\n", |
| fdt_strerror(ret)); |
| goto out; |
| } |
| |
| /* Ensure backup region is not used by kdump/capture kernel */ |
| ret = fdt_add_mem_rsv(fdt, image->arch.backup_start, |
| BACKUP_SRC_SIZE); |
| if (ret) { |
| pr_err("Error reserving memory for backup: %s\n", |
| fdt_strerror(ret)); |
| goto out; |
| } |
| } |
| |
| /* Update cpus nodes information to account hotplug CPUs. */ |
| ret = update_cpus_node(fdt); |
| if (ret < 0) |
| goto out; |
| |
| ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME); |
| if (ret < 0) |
| goto out; |
| |
| ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME); |
| if (ret < 0) |
| goto out; |
| |
| /* Update memory reserve map */ |
| ret = get_reserved_memory_ranges(&rmem); |
| if (ret) |
| goto out; |
| |
| nr_ranges = rmem ? rmem->nr_ranges : 0; |
| for (i = 0; i < nr_ranges; i++) { |
| u64 base, size; |
| |
| base = rmem->ranges[i].start; |
| size = rmem->ranges[i].end - base + 1; |
| ret = fdt_add_mem_rsv(fdt, base, size); |
| if (ret) { |
| pr_err("Error updating memory reserve map: %s\n", |
| fdt_strerror(ret)); |
| goto out; |
| } |
| } |
| |
| // If we have PLPKS active, we need to provide the password to the new kernel |
| if (plpks_is_available()) |
| ret = plpks_populate_fdt(fdt); |
| |
| out: |
| kfree(rmem); |
| kfree(umem); |
| return ret; |
| } |
| |
| /** |
| * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal, |
| * tce-table, reserved-ranges & such (exclude |
| * memory ranges) as they can't be used for kexec |
| * segment buffer. Sets kbuf->mem when a suitable |
| * memory hole is found. |
| * @kbuf: Buffer contents and memory parameters. |
| * |
| * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) |
| { |
| struct crash_mem **emem; |
| u64 buf_min, buf_max; |
| int ret; |
| |
| /* Look up the exclude ranges list while locating the memory hole */ |
| emem = &(kbuf->image->arch.exclude_ranges); |
| if (!(*emem) || ((*emem)->nr_ranges == 0)) { |
| pr_warn("No exclude range list. Using the default locate mem hole method\n"); |
| return kexec_locate_mem_hole(kbuf); |
| } |
| |
| buf_min = kbuf->buf_min; |
| buf_max = kbuf->buf_max; |
| /* Segments for kdump kernel should be within crashkernel region */ |
| if (kbuf->image->type == KEXEC_TYPE_CRASH) { |
| buf_min = (buf_min < crashk_res.start ? |
| crashk_res.start : buf_min); |
| buf_max = (buf_max > crashk_res.end ? |
| crashk_res.end : buf_max); |
| } |
| |
| if (buf_min > buf_max) { |
| pr_err("Invalid buffer min and/or max values\n"); |
| return -EINVAL; |
| } |
| |
| if (kbuf->top_down) |
| ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max, |
| *emem); |
| else |
| ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max, |
| *emem); |
| |
| /* Add the buffer allocated to the exclude list for the next lookup */ |
| if (!ret) { |
| add_mem_range(emem, kbuf->mem, kbuf->memsz); |
| sort_memory_ranges(*emem, true); |
| } else { |
| pr_err("Failed to locate memory buffer of size %lu\n", |
| kbuf->memsz); |
| } |
| return ret; |
| } |
| |
| /** |
| * arch_kexec_kernel_image_probe - Does additional handling needed to setup |
| * kexec segments. |
| * @image: kexec image being loaded. |
| * @buf: Buffer pointing to elf data. |
| * @buf_len: Length of the buffer. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, |
| unsigned long buf_len) |
| { |
| int ret; |
| |
| /* Get exclude memory ranges needed for setting up kexec segments */ |
| ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges)); |
| if (ret) { |
| pr_err("Failed to setup exclude memory ranges for buffer lookup\n"); |
| return ret; |
| } |
| |
| return kexec_image_probe_default(image, buf, buf_len); |
| } |
| |
| /** |
| * arch_kimage_file_post_load_cleanup - Frees up all the allocations done |
| * while loading the image. |
| * @image: kexec image being loaded. |
| * |
| * Returns 0 on success, negative errno on error. |
| */ |
| int arch_kimage_file_post_load_cleanup(struct kimage *image) |
| { |
| kfree(image->arch.exclude_ranges); |
| image->arch.exclude_ranges = NULL; |
| |
| vfree(image->arch.backup_buf); |
| image->arch.backup_buf = NULL; |
| |
| vfree(image->elf_headers); |
| image->elf_headers = NULL; |
| image->elf_headers_sz = 0; |
| |
| kvfree(image->arch.fdt); |
| image->arch.fdt = NULL; |
| |
| return kexec_image_post_load_cleanup_default(image); |
| } |