| /* Common capabilities, needed by capability.o and root_plug.o |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/capability.h> |
| #include <linux/audit.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/security.h> |
| #include <linux/file.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| #include <linux/skbuff.h> |
| #include <linux/netlink.h> |
| #include <linux/ptrace.h> |
| #include <linux/xattr.h> |
| #include <linux/hugetlb.h> |
| #include <linux/mount.h> |
| #include <linux/sched.h> |
| #include <linux/prctl.h> |
| #include <linux/securebits.h> |
| |
| int cap_netlink_send(struct sock *sk, struct sk_buff *skb) |
| { |
| NETLINK_CB(skb).eff_cap = current->cap_effective; |
| return 0; |
| } |
| |
| int cap_netlink_recv(struct sk_buff *skb, int cap) |
| { |
| if (!cap_raised(NETLINK_CB(skb).eff_cap, cap)) |
| return -EPERM; |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(cap_netlink_recv); |
| |
| /* |
| * NOTE WELL: cap_capable() cannot be used like the kernel's capable() |
| * function. That is, it has the reverse semantics: cap_capable() |
| * returns 0 when a task has a capability, but the kernel's capable() |
| * returns 1 for this case. |
| */ |
| int cap_capable(struct task_struct *tsk, int cap, int audit) |
| { |
| /* Derived from include/linux/sched.h:capable. */ |
| if (cap_raised(tsk->cap_effective, cap)) |
| return 0; |
| return -EPERM; |
| } |
| |
| int cap_settime(struct timespec *ts, struct timezone *tz) |
| { |
| if (!capable(CAP_SYS_TIME)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_ptrace_may_access(struct task_struct *child, unsigned int mode) |
| { |
| /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ |
| if (cap_issubset(child->cap_permitted, current->cap_permitted)) |
| return 0; |
| if (capable(CAP_SYS_PTRACE)) |
| return 0; |
| return -EPERM; |
| } |
| |
| int cap_ptrace_traceme(struct task_struct *parent) |
| { |
| /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ |
| if (cap_issubset(current->cap_permitted, parent->cap_permitted)) |
| return 0; |
| if (has_capability(parent, CAP_SYS_PTRACE)) |
| return 0; |
| return -EPERM; |
| } |
| |
| int cap_capget (struct task_struct *target, kernel_cap_t *effective, |
| kernel_cap_t *inheritable, kernel_cap_t *permitted) |
| { |
| /* Derived from kernel/capability.c:sys_capget. */ |
| *effective = target->cap_effective; |
| *inheritable = target->cap_inheritable; |
| *permitted = target->cap_permitted; |
| return 0; |
| } |
| |
| #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| |
| static inline int cap_block_setpcap(struct task_struct *target) |
| { |
| /* |
| * No support for remote process capability manipulation with |
| * filesystem capability support. |
| */ |
| return (target != current); |
| } |
| |
| static inline int cap_inh_is_capped(void) |
| { |
| /* |
| * Return 1 if changes to the inheritable set are limited |
| * to the old permitted set. That is, if the current task |
| * does *not* possess the CAP_SETPCAP capability. |
| */ |
| return (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0); |
| } |
| |
| static inline int cap_limit_ptraced_target(void) { return 1; } |
| |
| #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */ |
| |
| static inline int cap_block_setpcap(struct task_struct *t) { return 0; } |
| static inline int cap_inh_is_capped(void) { return 1; } |
| static inline int cap_limit_ptraced_target(void) |
| { |
| return !capable(CAP_SETPCAP); |
| } |
| |
| #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ |
| |
| int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, |
| kernel_cap_t *inheritable, kernel_cap_t *permitted) |
| { |
| if (cap_block_setpcap(target)) { |
| return -EPERM; |
| } |
| if (cap_inh_is_capped() |
| && !cap_issubset(*inheritable, |
| cap_combine(target->cap_inheritable, |
| current->cap_permitted))) { |
| /* incapable of using this inheritable set */ |
| return -EPERM; |
| } |
| if (!cap_issubset(*inheritable, |
| cap_combine(target->cap_inheritable, |
| current->cap_bset))) { |
| /* no new pI capabilities outside bounding set */ |
| return -EPERM; |
| } |
| |
| /* verify restrictions on target's new Permitted set */ |
| if (!cap_issubset (*permitted, |
| cap_combine (target->cap_permitted, |
| current->cap_permitted))) { |
| return -EPERM; |
| } |
| |
| /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ |
| if (!cap_issubset (*effective, *permitted)) { |
| return -EPERM; |
| } |
| |
| return 0; |
| } |
| |
| void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, |
| kernel_cap_t *inheritable, kernel_cap_t *permitted) |
| { |
| target->cap_effective = *effective; |
| target->cap_inheritable = *inheritable; |
| target->cap_permitted = *permitted; |
| } |
| |
| static inline void bprm_clear_caps(struct linux_binprm *bprm) |
| { |
| cap_clear(bprm->cap_post_exec_permitted); |
| bprm->cap_effective = false; |
| } |
| |
| #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| |
| int cap_inode_need_killpriv(struct dentry *dentry) |
| { |
| struct inode *inode = dentry->d_inode; |
| int error; |
| |
| if (!inode->i_op || !inode->i_op->getxattr) |
| return 0; |
| |
| error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); |
| if (error <= 0) |
| return 0; |
| return 1; |
| } |
| |
| int cap_inode_killpriv(struct dentry *dentry) |
| { |
| struct inode *inode = dentry->d_inode; |
| |
| if (!inode->i_op || !inode->i_op->removexattr) |
| return 0; |
| |
| return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); |
| } |
| |
| static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, |
| struct linux_binprm *bprm) |
| { |
| unsigned i; |
| int ret = 0; |
| |
| if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) |
| bprm->cap_effective = true; |
| else |
| bprm->cap_effective = false; |
| |
| CAP_FOR_EACH_U32(i) { |
| __u32 permitted = caps->permitted.cap[i]; |
| __u32 inheritable = caps->inheritable.cap[i]; |
| |
| /* |
| * pP' = (X & fP) | (pI & fI) |
| */ |
| bprm->cap_post_exec_permitted.cap[i] = |
| (current->cap_bset.cap[i] & permitted) | |
| (current->cap_inheritable.cap[i] & inheritable); |
| |
| if (permitted & ~bprm->cap_post_exec_permitted.cap[i]) { |
| /* |
| * insufficient to execute correctly |
| */ |
| ret = -EPERM; |
| } |
| } |
| |
| /* |
| * For legacy apps, with no internal support for recognizing they |
| * do not have enough capabilities, we return an error if they are |
| * missing some "forced" (aka file-permitted) capabilities. |
| */ |
| return bprm->cap_effective ? ret : 0; |
| } |
| |
| int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) |
| { |
| struct inode *inode = dentry->d_inode; |
| __u32 magic_etc; |
| unsigned tocopy, i; |
| int size; |
| struct vfs_cap_data caps; |
| |
| memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); |
| |
| if (!inode || !inode->i_op || !inode->i_op->getxattr) |
| return -ENODATA; |
| |
| size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps, |
| XATTR_CAPS_SZ); |
| if (size == -ENODATA || size == -EOPNOTSUPP) { |
| /* no data, that's ok */ |
| return -ENODATA; |
| } |
| if (size < 0) |
| return size; |
| |
| if (size < sizeof(magic_etc)) |
| return -EINVAL; |
| |
| cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc); |
| |
| switch ((magic_etc & VFS_CAP_REVISION_MASK)) { |
| case VFS_CAP_REVISION_1: |
| if (size != XATTR_CAPS_SZ_1) |
| return -EINVAL; |
| tocopy = VFS_CAP_U32_1; |
| break; |
| case VFS_CAP_REVISION_2: |
| if (size != XATTR_CAPS_SZ_2) |
| return -EINVAL; |
| tocopy = VFS_CAP_U32_2; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| CAP_FOR_EACH_U32(i) { |
| if (i >= tocopy) |
| break; |
| cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted); |
| cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable); |
| } |
| return 0; |
| } |
| |
| /* Locate any VFS capabilities: */ |
| static int get_file_caps(struct linux_binprm *bprm) |
| { |
| struct dentry *dentry; |
| int rc = 0; |
| struct cpu_vfs_cap_data vcaps; |
| |
| bprm_clear_caps(bprm); |
| |
| if (!file_caps_enabled) |
| return 0; |
| |
| if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) |
| return 0; |
| |
| dentry = dget(bprm->file->f_dentry); |
| |
| rc = get_vfs_caps_from_disk(dentry, &vcaps); |
| if (rc < 0) { |
| if (rc == -EINVAL) |
| printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n", |
| __func__, rc, bprm->filename); |
| else if (rc == -ENODATA) |
| rc = 0; |
| goto out; |
| } |
| |
| rc = bprm_caps_from_vfs_caps(&vcaps, bprm); |
| |
| out: |
| dput(dentry); |
| if (rc) |
| bprm_clear_caps(bprm); |
| |
| return rc; |
| } |
| |
| #else |
| int cap_inode_need_killpriv(struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| int cap_inode_killpriv(struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| static inline int get_file_caps(struct linux_binprm *bprm) |
| { |
| bprm_clear_caps(bprm); |
| return 0; |
| } |
| #endif |
| |
| int cap_bprm_set_security (struct linux_binprm *bprm) |
| { |
| int ret; |
| |
| ret = get_file_caps(bprm); |
| |
| if (!issecure(SECURE_NOROOT)) { |
| /* |
| * To support inheritance of root-permissions and suid-root |
| * executables under compatibility mode, we override the |
| * capability sets for the file. |
| * |
| * If only the real uid is 0, we do not set the effective |
| * bit. |
| */ |
| if (bprm->e_uid == 0 || current_uid() == 0) { |
| /* pP' = (cap_bset & ~0) | (pI & ~0) */ |
| bprm->cap_post_exec_permitted = cap_combine( |
| current->cap_bset, current->cap_inheritable |
| ); |
| bprm->cap_effective = (bprm->e_uid == 0); |
| ret = 0; |
| } |
| } |
| |
| return ret; |
| } |
| |
| void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) |
| { |
| kernel_cap_t pP = current->cap_permitted; |
| kernel_cap_t pE = current->cap_effective; |
| uid_t uid; |
| gid_t gid; |
| |
| current_uid_gid(&uid, &gid); |
| |
| if (bprm->e_uid != uid || bprm->e_gid != gid || |
| !cap_issubset(bprm->cap_post_exec_permitted, |
| current->cap_permitted)) { |
| set_dumpable(current->mm, suid_dumpable); |
| current->pdeath_signal = 0; |
| |
| if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) { |
| if (!capable(CAP_SETUID)) { |
| bprm->e_uid = uid; |
| bprm->e_gid = gid; |
| } |
| if (cap_limit_ptraced_target()) { |
| bprm->cap_post_exec_permitted = cap_intersect( |
| bprm->cap_post_exec_permitted, |
| current->cap_permitted); |
| } |
| } |
| } |
| |
| current->suid = current->euid = current->fsuid = bprm->e_uid; |
| current->sgid = current->egid = current->fsgid = bprm->e_gid; |
| |
| /* For init, we want to retain the capabilities set |
| * in the init_task struct. Thus we skip the usual |
| * capability rules */ |
| if (!is_global_init(current)) { |
| current->cap_permitted = bprm->cap_post_exec_permitted; |
| if (bprm->cap_effective) |
| current->cap_effective = bprm->cap_post_exec_permitted; |
| else |
| cap_clear(current->cap_effective); |
| } |
| |
| /* |
| * Audit candidate if current->cap_effective is set |
| * |
| * We do not bother to audit if 3 things are true: |
| * 1) cap_effective has all caps |
| * 2) we are root |
| * 3) root is supposed to have all caps (SECURE_NOROOT) |
| * Since this is just a normal root execing a process. |
| * |
| * Number 1 above might fail if you don't have a full bset, but I think |
| * that is interesting information to audit. |
| */ |
| if (!cap_isclear(current->cap_effective)) { |
| if (!cap_issubset(CAP_FULL_SET, current->cap_effective) || |
| (bprm->e_uid != 0) || (current->uid != 0) || |
| issecure(SECURE_NOROOT)) |
| audit_log_bprm_fcaps(bprm, &pP, &pE); |
| } |
| |
| current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); |
| } |
| |
| int cap_bprm_secureexec (struct linux_binprm *bprm) |
| { |
| if (current_uid() != 0) { |
| if (bprm->cap_effective) |
| return 1; |
| if (!cap_isclear(bprm->cap_post_exec_permitted)) |
| return 1; |
| } |
| |
| return (current_euid() != current_uid() || |
| current_egid() != current_gid()); |
| } |
| |
| int cap_inode_setxattr(struct dentry *dentry, const char *name, |
| const void *value, size_t size, int flags) |
| { |
| if (!strcmp(name, XATTR_NAME_CAPS)) { |
| if (!capable(CAP_SETFCAP)) |
| return -EPERM; |
| return 0; |
| } else if (!strncmp(name, XATTR_SECURITY_PREFIX, |
| sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_inode_removexattr(struct dentry *dentry, const char *name) |
| { |
| if (!strcmp(name, XATTR_NAME_CAPS)) { |
| if (!capable(CAP_SETFCAP)) |
| return -EPERM; |
| return 0; |
| } else if (!strncmp(name, XATTR_SECURITY_PREFIX, |
| sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return 0; |
| } |
| |
| /* moved from kernel/sys.c. */ |
| /* |
| * cap_emulate_setxuid() fixes the effective / permitted capabilities of |
| * a process after a call to setuid, setreuid, or setresuid. |
| * |
| * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of |
| * {r,e,s}uid != 0, the permitted and effective capabilities are |
| * cleared. |
| * |
| * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective |
| * capabilities of the process are cleared. |
| * |
| * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective |
| * capabilities are set to the permitted capabilities. |
| * |
| * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should |
| * never happen. |
| * |
| * -astor |
| * |
| * cevans - New behaviour, Oct '99 |
| * A process may, via prctl(), elect to keep its capabilities when it |
| * calls setuid() and switches away from uid==0. Both permitted and |
| * effective sets will be retained. |
| * Without this change, it was impossible for a daemon to drop only some |
| * of its privilege. The call to setuid(!=0) would drop all privileges! |
| * Keeping uid 0 is not an option because uid 0 owns too many vital |
| * files.. |
| * Thanks to Olaf Kirch and Peter Benie for spotting this. |
| */ |
| static inline void cap_emulate_setxuid (int old_ruid, int old_euid, |
| int old_suid) |
| { |
| uid_t euid = current_euid(); |
| |
| if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) && |
| (current_uid() != 0 && euid != 0 && current_suid() != 0) && |
| !issecure(SECURE_KEEP_CAPS)) { |
| cap_clear (current->cap_permitted); |
| cap_clear (current->cap_effective); |
| } |
| if (old_euid == 0 && euid != 0) { |
| cap_clear (current->cap_effective); |
| } |
| if (old_euid != 0 && euid == 0) { |
| current->cap_effective = current->cap_permitted; |
| } |
| } |
| |
| int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, |
| int flags) |
| { |
| switch (flags) { |
| case LSM_SETID_RE: |
| case LSM_SETID_ID: |
| case LSM_SETID_RES: |
| /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */ |
| if (!issecure (SECURE_NO_SETUID_FIXUP)) { |
| cap_emulate_setxuid (old_ruid, old_euid, old_suid); |
| } |
| break; |
| case LSM_SETID_FS: |
| { |
| uid_t old_fsuid = old_ruid; |
| |
| /* Copied from kernel/sys.c:setfsuid. */ |
| |
| /* |
| * FIXME - is fsuser used for all CAP_FS_MASK capabilities? |
| * if not, we might be a bit too harsh here. |
| */ |
| |
| if (!issecure (SECURE_NO_SETUID_FIXUP)) { |
| if (old_fsuid == 0 && current_fsuid() != 0) { |
| current->cap_effective = |
| cap_drop_fs_set( |
| current->cap_effective); |
| } |
| if (old_fsuid != 0 && current_fsuid() == 0) { |
| current->cap_effective = |
| cap_raise_fs_set( |
| current->cap_effective, |
| current->cap_permitted); |
| } |
| } |
| break; |
| } |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| /* |
| * Rationale: code calling task_setscheduler, task_setioprio, and |
| * task_setnice, assumes that |
| * . if capable(cap_sys_nice), then those actions should be allowed |
| * . if not capable(cap_sys_nice), but acting on your own processes, |
| * then those actions should be allowed |
| * This is insufficient now since you can call code without suid, but |
| * yet with increased caps. |
| * So we check for increased caps on the target process. |
| */ |
| static int cap_safe_nice(struct task_struct *p) |
| { |
| if (!cap_issubset(p->cap_permitted, current->cap_permitted) && |
| !capable(CAP_SYS_NICE)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_task_setscheduler (struct task_struct *p, int policy, |
| struct sched_param *lp) |
| { |
| return cap_safe_nice(p); |
| } |
| |
| int cap_task_setioprio (struct task_struct *p, int ioprio) |
| { |
| return cap_safe_nice(p); |
| } |
| |
| int cap_task_setnice (struct task_struct *p, int nice) |
| { |
| return cap_safe_nice(p); |
| } |
| |
| /* |
| * called from kernel/sys.c for prctl(PR_CABSET_DROP) |
| * done without task_capability_lock() because it introduces |
| * no new races - i.e. only another task doing capget() on |
| * this task could get inconsistent info. There can be no |
| * racing writer bc a task can only change its own caps. |
| */ |
| static long cap_prctl_drop(unsigned long cap) |
| { |
| if (!capable(CAP_SETPCAP)) |
| return -EPERM; |
| if (!cap_valid(cap)) |
| return -EINVAL; |
| cap_lower(current->cap_bset, cap); |
| return 0; |
| } |
| |
| #else |
| int cap_task_setscheduler (struct task_struct *p, int policy, |
| struct sched_param *lp) |
| { |
| return 0; |
| } |
| int cap_task_setioprio (struct task_struct *p, int ioprio) |
| { |
| return 0; |
| } |
| int cap_task_setnice (struct task_struct *p, int nice) |
| { |
| return 0; |
| } |
| #endif |
| |
| int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, |
| unsigned long arg4, unsigned long arg5, long *rc_p) |
| { |
| long error = 0; |
| |
| switch (option) { |
| case PR_CAPBSET_READ: |
| if (!cap_valid(arg2)) |
| error = -EINVAL; |
| else |
| error = !!cap_raised(current->cap_bset, arg2); |
| break; |
| #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| case PR_CAPBSET_DROP: |
| error = cap_prctl_drop(arg2); |
| break; |
| |
| /* |
| * The next four prctl's remain to assist with transitioning a |
| * system from legacy UID=0 based privilege (when filesystem |
| * capabilities are not in use) to a system using filesystem |
| * capabilities only - as the POSIX.1e draft intended. |
| * |
| * Note: |
| * |
| * PR_SET_SECUREBITS = |
| * issecure_mask(SECURE_KEEP_CAPS_LOCKED) |
| * | issecure_mask(SECURE_NOROOT) |
| * | issecure_mask(SECURE_NOROOT_LOCKED) |
| * | issecure_mask(SECURE_NO_SETUID_FIXUP) |
| * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) |
| * |
| * will ensure that the current process and all of its |
| * children will be locked into a pure |
| * capability-based-privilege environment. |
| */ |
| case PR_SET_SECUREBITS: |
| if ((((current->securebits & SECURE_ALL_LOCKS) >> 1) |
| & (current->securebits ^ arg2)) /*[1]*/ |
| || ((current->securebits & SECURE_ALL_LOCKS |
| & ~arg2)) /*[2]*/ |
| || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ |
| || (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0)) { /*[4]*/ |
| /* |
| * [1] no changing of bits that are locked |
| * [2] no unlocking of locks |
| * [3] no setting of unsupported bits |
| * [4] doing anything requires privilege (go read about |
| * the "sendmail capabilities bug") |
| */ |
| error = -EPERM; /* cannot change a locked bit */ |
| } else { |
| current->securebits = arg2; |
| } |
| break; |
| case PR_GET_SECUREBITS: |
| error = current->securebits; |
| break; |
| |
| #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ |
| |
| case PR_GET_KEEPCAPS: |
| if (issecure(SECURE_KEEP_CAPS)) |
| error = 1; |
| break; |
| case PR_SET_KEEPCAPS: |
| if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ |
| error = -EINVAL; |
| else if (issecure(SECURE_KEEP_CAPS_LOCKED)) |
| error = -EPERM; |
| else if (arg2) |
| current->securebits |= issecure_mask(SECURE_KEEP_CAPS); |
| else |
| current->securebits &= |
| ~issecure_mask(SECURE_KEEP_CAPS); |
| break; |
| |
| default: |
| /* No functionality available - continue with default */ |
| return 0; |
| } |
| |
| /* Functionality provided */ |
| *rc_p = error; |
| return 1; |
| } |
| |
| void cap_task_reparent_to_init (struct task_struct *p) |
| { |
| cap_set_init_eff(p->cap_effective); |
| cap_clear(p->cap_inheritable); |
| cap_set_full(p->cap_permitted); |
| p->securebits = SECUREBITS_DEFAULT; |
| return; |
| } |
| |
| int cap_syslog (int type) |
| { |
| if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return 0; |
| } |
| |
| int cap_vm_enough_memory(struct mm_struct *mm, long pages) |
| { |
| int cap_sys_admin = 0; |
| |
| if (cap_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0) |
| cap_sys_admin = 1; |
| return __vm_enough_memory(mm, pages, cap_sys_admin); |
| } |
| |