| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include "linux/delay.h" |
| |
| #include "hwmgr.h" |
| #include "fiji_smumgr.h" |
| #include "atombios.h" |
| #include "hardwaremanager.h" |
| #include "ppatomctrl.h" |
| #include "atombios.h" |
| #include "cgs_common.h" |
| #include "fiji_dyn_defaults.h" |
| #include "fiji_powertune.h" |
| #include "smu73.h" |
| #include "smu/smu_7_1_3_d.h" |
| #include "smu/smu_7_1_3_sh_mask.h" |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| #include "dce/dce_10_0_d.h" |
| #include "dce/dce_10_0_sh_mask.h" |
| #include "pppcielanes.h" |
| #include "fiji_hwmgr.h" |
| #include "tonga_processpptables.h" |
| #include "tonga_pptable.h" |
| #include "pp_debug.h" |
| #include "pp_acpi.h" |
| #include "amd_pcie_helpers.h" |
| #include "cgs_linux.h" |
| #include "ppinterrupt.h" |
| |
| #include "fiji_clockpowergating.h" |
| #include "fiji_thermal.h" |
| |
| #define VOLTAGE_SCALE 4 |
| #define SMC_RAM_END 0x40000 |
| #define VDDC_VDDCI_DELTA 300 |
| |
| #define MC_SEQ_MISC0_GDDR5_SHIFT 28 |
| #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 |
| #define MC_SEQ_MISC0_GDDR5_VALUE 5 |
| |
| #define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */ |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| #define MC_CG_ARB_FREQ_F2 0x0c |
| #define MC_CG_ARB_FREQ_F3 0x0d |
| |
| /* From smc_reg.h */ |
| #define SMC_CG_IND_START 0xc0030000 |
| #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */ |
| |
| #define VOLTAGE_SCALE 4 |
| #define VOLTAGE_VID_OFFSET_SCALE1 625 |
| #define VOLTAGE_VID_OFFSET_SCALE2 100 |
| |
| #define VDDC_VDDCI_DELTA 300 |
| |
| #define ixSWRST_COMMAND_1 0x1400103 |
| #define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000 |
| |
| /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ |
| enum DPM_EVENT_SRC { |
| DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */ |
| DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */ |
| DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */ |
| DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */ |
| DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */ |
| }; |
| |
| |
| /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs |
| * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] |
| */ |
| static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = |
| { {600, 1050, 3, 0}, {600, 1050, 6, 1} }; |
| |
| /* [FF, SS] type, [] 4 voltage ranges, and |
| * [Floor Freq, Boundary Freq, VID min , VID max] |
| */ |
| static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = |
| { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
| { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; |
| |
| /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] |
| * (coming from PWR_CKS_CNTL.stretch_amount reg spec) |
| */ |
| static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = |
| { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; |
| |
| static const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic); |
| |
| struct fiji_power_state *cast_phw_fiji_power_state( |
| struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL;); |
| |
| return (struct fiji_power_state *)hw_ps; |
| } |
| |
| const struct fiji_power_state *cast_const_phw_fiji_power_state( |
| const struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL;); |
| |
| return (const struct fiji_power_state *)hw_ps; |
| } |
| |
| static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
| ? true : false; |
| } |
| |
| static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_ulv_parm *ulv = &data->ulv; |
| |
| ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT; |
| data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0; |
| data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1; |
| data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2; |
| data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3; |
| data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4; |
| data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5; |
| data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6; |
| data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7; |
| |
| data->static_screen_threshold_unit = |
| PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT; |
| data->static_screen_threshold = |
| PPFIJI_STATICSCREENTHRESHOLD_DFLT; |
| |
| /* Unset ABM cap as it moved to DAL. |
| * Add PHM_PlatformCaps_NonABMSupportInPPLib |
| * for re-direct ABM related request to DAL |
| */ |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ABM); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_NonABMSupportInPPLib); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicACTiming); |
| |
| fiji_initialize_power_tune_defaults(hwmgr); |
| |
| data->mclk_stutter_mode_threshold = 60000; |
| data->pcie_gen_performance.max = PP_PCIEGen1; |
| data->pcie_gen_performance.min = PP_PCIEGen3; |
| data->pcie_gen_power_saving.max = PP_PCIEGen1; |
| data->pcie_gen_power_saving.min = PP_PCIEGen3; |
| data->pcie_lane_performance.max = 0; |
| data->pcie_lane_performance.min = 16; |
| data->pcie_lane_power_saving.max = 0; |
| data->pcie_lane_power_saving.min = 16; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicUVDState); |
| } |
| |
| static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| uint16_t virtual_voltage_id, int32_t *sclk) |
| { |
| uint8_t entryId; |
| uint8_t voltageId; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL); |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ |
| for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) { |
| voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd; |
| if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id) |
| break; |
| } |
| |
| PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count, |
| "Can't find requested voltage id in vdd_dep_on_sclk table!", |
| return -EINVAL; |
| ); |
| |
| *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk; |
| |
| return 0; |
| } |
| |
| /** |
| * Get Leakage VDDC based on leakage ID. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint16_t vv_id; |
| uint16_t vddc = 0; |
| uint16_t evv_default = 1150; |
| uint16_t i, j; |
| uint32_t sclk = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| int result; |
| |
| for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) { |
| vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; |
| if (!fiji_get_sclk_for_voltage_evv(hwmgr, |
| table_info->vddc_lookup_table, vv_id, &sclk)) { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| for (j = 1; j < sclk_table->count; j++) { |
| if (sclk_table->entries[j].clk == sclk && |
| sclk_table->entries[j].cks_enable == 0) { |
| sclk += 5000; |
| break; |
| } |
| } |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableDriverEVV)) |
| result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr, |
| VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true); |
| else |
| result = -EINVAL; |
| |
| if (result) |
| result = atomctrl_get_voltage_evv_on_sclk(hwmgr, |
| VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc); |
| |
| /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ |
| PP_ASSERT_WITH_CODE((vddc < 2000), |
| "Invalid VDDC value, greater than 2v!", result = -EINVAL;); |
| |
| if (result) |
| /* 1.15V is the default safe value for Fiji */ |
| vddc = evv_default; |
| |
| /* the voltage should not be zero nor equal to leakage ID */ |
| if (vddc != 0 && vddc != vv_id) { |
| data->vddc_leakage.actual_voltage |
| [data->vddc_leakage.count] = vddc; |
| data->vddc_leakage.leakage_id |
| [data->vddc_leakage.count] = vv_id; |
| data->vddc_leakage.count++; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Change virtual leakage voltage to actual value. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to changing voltage |
| * @param pointer to leakage table |
| */ |
| static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, |
| uint16_t *voltage, struct fiji_leakage_voltage *leakage_table) |
| { |
| uint32_t index; |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 */ |
| for (index = 0; index < leakage_table->count; index++) { |
| /* if this voltage matches a leakage voltage ID */ |
| /* patch with actual leakage voltage */ |
| if (leakage_table->leakage_id[index] == *voltage) { |
| *voltage = leakage_table->actual_voltage[index]; |
| break; |
| } |
| } |
| |
| if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) |
| printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n"); |
| } |
| |
| /** |
| * Patch voltage lookup table by EVV leakages. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to voltage lookup table |
| * @param pointer to leakage table |
| * @return always 0 |
| */ |
| static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| struct fiji_leakage_voltage *leakage_table) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < lookup_table->count; i++) |
| fiji_patch_with_vdd_leakage(hwmgr, |
| &lookup_table->entries[i].us_vdd, leakage_table); |
| |
| return 0; |
| } |
| |
| static int fiji_patch_clock_voltage_limits_with_vddc_leakage( |
| struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table, |
| uint16_t *vddc) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = |
| table_info->max_clock_voltage_on_dc.vddc; |
| return 0; |
| } |
| |
| static int fiji_patch_voltage_dependency_tables_with_lookup_table( |
| struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entryId; |
| uint8_t voltageId; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = |
| table_info->vdd_dep_on_mclk; |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| |
| for (entryId = 0; entryId < sclk_table->count; ++entryId) { |
| voltageId = sclk_table->entries[entryId].vddInd; |
| sclk_table->entries[entryId].vddc = |
| table_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| for (entryId = 0; entryId < mclk_table->count; ++entryId) { |
| voltageId = mclk_table->entries[entryId].vddInd; |
| mclk_table->entries[entryId].vddc = |
| table_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| for (entryId = 0; entryId < mm_table->count; ++entryId) { |
| voltageId = mm_table->entries[entryId].vddcInd; |
| mm_table->entries[entryId].vddc = |
| table_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| /* Need to determine if we need calculated voltage. */ |
| return 0; |
| } |
| |
| static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) |
| { |
| /* Need to determine if we need calculated voltage from mm table. */ |
| return 0; |
| } |
| |
| static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table) |
| { |
| uint32_t table_size, i, j; |
| struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; |
| table_size = lookup_table->count; |
| |
| PP_ASSERT_WITH_CODE(0 != lookup_table->count, |
| "Lookup table is empty", return -EINVAL); |
| |
| /* Sorting voltages */ |
| for (i = 0; i < table_size - 1; i++) { |
| for (j = i + 1; j > 0; j--) { |
| if (lookup_table->entries[j].us_vdd < |
| lookup_table->entries[j - 1].us_vdd) { |
| tmp_voltage_lookup_record = lookup_table->entries[j - 1]; |
| lookup_table->entries[j - 1] = lookup_table->entries[j]; |
| lookup_table->entries[j] = tmp_voltage_lookup_record; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| int tmp_result; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr, |
| table_info->vddc_lookup_table, &(data->vddc_leakage)); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, |
| &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = fiji_calc_voltage_dependency_tables(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); |
| if(tmp_result) |
| result = tmp_result; |
| |
| return result; |
| } |
| |
| static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = |
| table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, |
| "VDD dependency on SCLK table is missing. \ |
| This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, |
| "VDD dependency on SCLK table has to have is missing. \ |
| This table is mandatory", return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, |
| "VDD dependency on MCLK table is missing. \ |
| This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, |
| "VDD dependency on MCLK table has to have is missing. \ |
| This table is mandatory", return -EINVAL); |
| |
| data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc; |
| data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table-> |
| entries[allowed_sclk_vdd_table->count - 1].vddc; |
| |
| table_info->max_clock_voltage_on_ac.sclk = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.mclk = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.vddc = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; |
| table_info->max_clock_voltage_on_ac.vddci = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; |
| |
| hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = |
| table_info->max_clock_voltage_on_ac.sclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = |
| table_info->max_clock_voltage_on_ac.mclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = |
| table_info->max_clock_voltage_on_ac.vddc; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = |
| table_info->max_clock_voltage_on_ac.vddci; |
| |
| return 0; |
| } |
| |
| static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t speedCntl = 0; |
| |
| /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ |
| speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, |
| ixPCIE_LC_SPEED_CNTL); |
| return((uint16_t)PHM_GET_FIELD(speedCntl, |
| PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); |
| } |
| |
| static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t link_width; |
| |
| /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ |
| link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, |
| PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); |
| |
| PP_ASSERT_WITH_CODE((7 >= link_width), |
| "Invalid PCIe lane width!", return 0); |
| |
| return decode_pcie_lane_width(link_width); |
| } |
| |
| /** Patch the Boot State to match VBIOS boot clocks and voltage. |
| * |
| * @param hwmgr Pointer to the hardware manager. |
| * @param pPowerState The address of the PowerState instance being created. |
| * |
| */ |
| static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr, |
| struct pp_hw_power_state *hw_ps) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps; |
| ATOM_FIRMWARE_INFO_V2_2 *fw_info; |
| uint16_t size; |
| uint8_t frev, crev; |
| int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); |
| |
| /* First retrieve the Boot clocks and VDDC from the firmware info table. |
| * We assume here that fw_info is unchanged if this call fails. |
| */ |
| fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table( |
| hwmgr->device, index, |
| &size, &frev, &crev); |
| if (!fw_info) |
| /* During a test, there is no firmware info table. */ |
| return 0; |
| |
| /* Patch the state. */ |
| data->vbios_boot_state.sclk_bootup_value = |
| le32_to_cpu(fw_info->ulDefaultEngineClock); |
| data->vbios_boot_state.mclk_bootup_value = |
| le32_to_cpu(fw_info->ulDefaultMemoryClock); |
| data->vbios_boot_state.mvdd_bootup_value = |
| le16_to_cpu(fw_info->usBootUpMVDDCVoltage); |
| data->vbios_boot_state.vddc_bootup_value = |
| le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| data->vbios_boot_state.vddci_bootup_value = |
| le16_to_cpu(fw_info->usBootUpVDDCIVoltage); |
| data->vbios_boot_state.pcie_gen_bootup_value = |
| fiji_get_current_pcie_speed(hwmgr); |
| data->vbios_boot_state.pcie_lane_bootup_value = |
| (uint16_t)fiji_get_current_pcie_lane_number(hwmgr); |
| |
| /* set boot power state */ |
| ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; |
| ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; |
| ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; |
| ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; |
| |
| return 0; |
| } |
| |
| static int fiji_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) |
| { |
| return phm_hwmgr_backend_fini(hwmgr); |
| } |
| |
| static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data; |
| uint32_t i; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| bool stay_in_boot; |
| int result; |
| |
| data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| hwmgr->backend = data; |
| |
| data->dll_default_on = false; |
| data->sram_end = SMC_RAM_END; |
| |
| for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++) |
| data->activity_target[i] = FIJI_AT_DFLT; |
| |
| data->vddc_vddci_delta = VDDC_VDDCI_DELTA; |
| |
| data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT; |
| data->mclk_dpm0_activity_target = 0xa; |
| |
| data->sclk_dpm_key_disabled = 0; |
| data->mclk_dpm_key_disabled = 0; |
| data->pcie_dpm_key_disabled = 0; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UnTabledHardwareInterface); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TablelessHardwareInterface); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep); |
| |
| data->gpio_debug = 0; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicPatchPowerState); |
| |
| /* need to set voltage control types before EVV patching */ |
| data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE; |
| data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE; |
| data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE; |
| |
| data->force_pcie_gen = PP_PCIEGenInvalid; |
| |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) |
| data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl)) |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) |
| data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO; |
| |
| if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI)) { |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) |
| data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO; |
| else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) |
| data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| |
| if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI); |
| |
| if (table_info && table_info->cac_dtp_table->usClockStretchAmount) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| |
| fiji_init_dpm_defaults(hwmgr); |
| |
| /* Get leakage voltage based on leakage ID. */ |
| fiji_get_evv_voltages(hwmgr); |
| |
| /* Patch our voltage dependency table with actual leakage voltage |
| * We need to perform leakage translation before it's used by other functions |
| */ |
| fiji_complete_dependency_tables(hwmgr); |
| |
| /* Parse pptable data read from VBIOS */ |
| fiji_set_private_data_based_on_pptable(hwmgr); |
| |
| /* ULV Support */ |
| data->ulv.ulv_supported = true; /* ULV feature is enabled by default */ |
| |
| /* Initalize Dynamic State Adjustment Rule Settings */ |
| result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr); |
| |
| if (!result) { |
| data->uvd_enabled = false; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableSMU7ThermalManagement); |
| data->vddc_phase_shed_control = false; |
| } |
| |
| stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StayInBootState); |
| |
| if (0 == result) { |
| struct cgs_system_info sys_info = {0}; |
| |
| data->is_tlu_enabled = false; |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = |
| FIJI_MAX_HARDWARE_POWERLEVELS; |
| hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; |
| hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_FanSpeedInTableIsRPM); |
| |
| if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp && |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.ucFanControlMode) { |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = |
| table_info->cac_dtp_table->usOperatingTempMinLimit; |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = |
| table_info->cac_dtp_table->usOperatingTempMaxLimit; |
| hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = |
| table_info->cac_dtp_table->usDefaultTargetOperatingTemp; |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = |
| table_info->cac_dtp_table->usOperatingTempStep; |
| hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = |
| table_info->cac_dtp_table->usTargetOperatingTemp; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ODFuzzyFanControlSupport); |
| } |
| |
| sys_info.size = sizeof(struct cgs_system_info); |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO; |
| result = cgs_query_system_info(hwmgr->device, &sys_info); |
| if (result) |
| data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK; |
| else |
| data->pcie_gen_cap = (uint32_t)sys_info.value; |
| if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) |
| data->pcie_spc_cap = 20; |
| sys_info.size = sizeof(struct cgs_system_info); |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW; |
| result = cgs_query_system_info(hwmgr->device, &sys_info); |
| if (result) |
| data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK; |
| else |
| data->pcie_lane_cap = (uint32_t)sys_info.value; |
| } else { |
| /* Ignore return value in here, we are cleaning up a mess. */ |
| fiji_hwmgr_backend_fini(hwmgr); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Read clock related registers. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| data->clock_registers.vCG_SPLL_FUNC_CNTL = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_SPLL_FUNC_CNTL); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_SPLL_FUNC_CNTL_2); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_SPLL_FUNC_CNTL_3); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_SPLL_FUNC_CNTL_4); |
| data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_SPLL_SPREAD_SPECTRUM); |
| data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_SPLL_SPREAD_SPECTRUM_2); |
| |
| return 0; |
| } |
| |
| /** |
| * Find out if memory is GDDR5. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_get_memory_type(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t temp; |
| |
| temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0); |
| |
| data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE == |
| ((temp & MC_SEQ_MISC0_GDDR5_MASK) >> |
| MC_SEQ_MISC0_GDDR5_SHIFT)); |
| |
| return 0; |
| } |
| |
| /** |
| * Enables Dynamic Power Management by SMC |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, STATIC_PM_EN, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Initialize PowerGating States for different engines |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| data->uvd_power_gated = false; |
| data->vce_power_gated = false; |
| data->samu_power_gated = false; |
| data->acp_power_gated = false; |
| data->pg_acp_init = true; |
| |
| return 0; |
| } |
| |
| static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| data->low_sclk_interrupt_threshold = 0; |
| |
| return 0; |
| } |
| |
| static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = fiji_read_clock_registers(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to read clock registers!", result = tmp_result); |
| |
| tmp_result = fiji_get_memory_type(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get memory type!", result = tmp_result); |
| |
| tmp_result = fiji_enable_acpi_power_management(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable ACPI power management!", result = tmp_result); |
| |
| tmp_result = fiji_init_power_gate_state(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init power gate state!", result = tmp_result); |
| |
| tmp_result = tonga_get_mc_microcode_version(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get MC microcode version!", result = tmp_result); |
| |
| tmp_result = fiji_init_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init sclk threshold!", result = tmp_result); |
| |
| return result; |
| } |
| |
| /** |
| * Checks if we want to support voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| */ |
| static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr) |
| { |
| const struct fiji_hwmgr *data = |
| (const struct fiji_hwmgr *)(hwmgr->backend); |
| |
| return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control); |
| } |
| |
| /** |
| * Enable voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr) |
| { |
| /* enable voltage control */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Remove repeated voltage values and create table with unique values. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param vol_table the pointer to changing voltage table |
| * @return 0 in success |
| */ |
| |
| static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr, |
| struct pp_atomctrl_voltage_table *vol_table) |
| { |
| uint32_t i, j; |
| uint16_t vvalue; |
| bool found = false; |
| struct pp_atomctrl_voltage_table *table; |
| |
| PP_ASSERT_WITH_CODE((NULL != vol_table), |
| "Voltage Table empty.", return -EINVAL); |
| table = kzalloc(sizeof(struct pp_atomctrl_voltage_table), |
| GFP_KERNEL); |
| |
| if (NULL == table) |
| return -ENOMEM; |
| |
| table->mask_low = vol_table->mask_low; |
| table->phase_delay = vol_table->phase_delay; |
| |
| for (i = 0; i < vol_table->count; i++) { |
| vvalue = vol_table->entries[i].value; |
| found = false; |
| |
| for (j = 0; j < table->count; j++) { |
| if (vvalue == table->entries[j].value) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| table->entries[table->count].value = vvalue; |
| table->entries[table->count].smio_low = |
| vol_table->entries[i].smio_low; |
| table->count++; |
| } |
| } |
| |
| memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table)); |
| kfree(table); |
| |
| return 0; |
| } |
| |
| static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *dep_table) |
| { |
| uint32_t i; |
| int result; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table); |
| |
| PP_ASSERT_WITH_CODE((0 != dep_table->count), |
| "Voltage Dependency Table empty.", return -EINVAL); |
| |
| vol_table->mask_low = 0; |
| vol_table->phase_delay = 0; |
| vol_table->count = dep_table->count; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| vol_table->entries[i].value = dep_table->entries[i].mvdd; |
| vol_table->entries[i].smio_low = 0; |
| } |
| |
| result = fiji_trim_voltage_table(hwmgr, vol_table); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to trim MVDD table.", return result); |
| |
| return 0; |
| } |
| |
| static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *dep_table) |
| { |
| uint32_t i; |
| int result; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table); |
| |
| PP_ASSERT_WITH_CODE((0 != dep_table->count), |
| "Voltage Dependency Table empty.", return -EINVAL); |
| |
| vol_table->mask_low = 0; |
| vol_table->phase_delay = 0; |
| vol_table->count = dep_table->count; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| vol_table->entries[i].value = dep_table->entries[i].vddci; |
| vol_table->entries[i].smio_low = 0; |
| } |
| |
| result = fiji_trim_voltage_table(hwmgr, vol_table); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to trim VDDCI table.", return result); |
| |
| return 0; |
| } |
| |
| static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table) |
| { |
| int i = 0; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table); |
| |
| PP_ASSERT_WITH_CODE((0 != lookup_table->count), |
| "Voltage Lookup Table empty.", return -EINVAL); |
| |
| vol_table->mask_low = 0; |
| vol_table->phase_delay = 0; |
| |
| vol_table->count = lookup_table->count; |
| |
| for (i = 0; i < vol_table->count; i++) { |
| vol_table->entries[i].value = lookup_table->entries[i].us_vdd; |
| vol_table->entries[i].smio_low = 0; |
| } |
| |
| return 0; |
| } |
| |
| /* ---- Voltage Tables ---- |
| * If the voltage table would be bigger than |
| * what will fit into the state table on |
| * the SMC keep only the higher entries. |
| */ |
| static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr, |
| uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table) |
| { |
| unsigned int i, diff; |
| |
| if (vol_table->count <= max_vol_steps) |
| return; |
| |
| diff = vol_table->count - max_vol_steps; |
| |
| for (i = 0; i < max_vol_steps; i++) |
| vol_table->entries[i] = vol_table->entries[i + diff]; |
| |
| vol_table->count = max_vol_steps; |
| |
| return; |
| } |
| |
| /** |
| * Create Voltage Tables. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| int result; |
| |
| if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, |
| &(data->mvdd_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve MVDD table.", |
| return result); |
| } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
| result = fiji_get_svi2_mvdd_voltage_table(hwmgr, |
| table_info->vdd_dep_on_mclk); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 MVDD table from dependancy table.", |
| return result;); |
| } |
| |
| if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, |
| &(data->vddci_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve VDDCI table.", |
| return result); |
| } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| result = fiji_get_svi2_vddci_voltage_table(hwmgr, |
| table_info->vdd_dep_on_mclk); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDCI table from dependancy table.", |
| return result); |
| } |
| |
| if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| result = fiji_get_svi2_vdd_voltage_table(hwmgr, |
| table_info->vddc_lookup_table); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDC table from lookup table.", |
| return result); |
| } |
| |
| PP_ASSERT_WITH_CODE( |
| (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)), |
| "Too many voltage values for VDDC. Trimming to fit state table.", |
| fiji_trim_voltage_table_to_fit_state_table(hwmgr, |
| SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table))); |
| |
| PP_ASSERT_WITH_CODE( |
| (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)), |
| "Too many voltage values for VDDCI. Trimming to fit state table.", |
| fiji_trim_voltage_table_to_fit_state_table(hwmgr, |
| SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table))); |
| |
| PP_ASSERT_WITH_CODE( |
| (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)), |
| "Too many voltage values for MVDD. Trimming to fit state table.", |
| fiji_trim_voltage_table_to_fit_state_table(hwmgr, |
| SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table))); |
| |
| return 0; |
| } |
| |
| static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| /* Program additional LP registers |
| * that are no longer programmed by VBIOS |
| */ |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs static screed detection parameters |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_program_static_screen_threshold_parameters( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| /* Set static screen threshold unit */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, |
| data->static_screen_threshold_unit); |
| /* Set static screen threshold */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, |
| data->static_screen_threshold); |
| |
| return 0; |
| } |
| |
| /** |
| * Setup display gap for glitch free memory clock switching. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t displayGap = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL); |
| |
| displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL, |
| DISP_GAP, DISPLAY_GAP_IGNORE); |
| |
| displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL, |
| DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL, displayGap); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs activity state transition voting clients |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| /* Clear reset for voting clients before enabling DPM */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7); |
| |
| return 0; |
| } |
| |
| static int fiji_clear_voting_clients(struct pp_hwmgr *hwmgr) |
| { |
| /* Reset voting clients before disabling DPM */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_0, 0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_1, 0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_2, 0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_3, 0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_4, 0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_5, 0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_6, 0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_7, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * Get the location of various tables inside the FW image. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t tmp; |
| int result; |
| bool error = false; |
| |
| result = fiji_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, DpmTable), |
| &tmp, data->sram_end); |
| |
| if (0 == result) |
| data->dpm_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = fiji_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, SoftRegisters), |
| &tmp, data->sram_end); |
| |
| if (!result) { |
| data->soft_regs_start = tmp; |
| smu_data->soft_regs_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = fiji_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, mcRegisterTable), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| data->mc_reg_table_start = tmp; |
| |
| result = fiji_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, FanTable), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| data->fan_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = fiji_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, mcArbDramTimingTable), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| data->arb_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = fiji_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, Version), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| hwmgr->microcode_version_info.SMC = tmp; |
| |
| error |= (0 != result); |
| |
| return error ? -1 : 0; |
| } |
| |
| /* Copy one arb setting to another and then switch the active set. |
| * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. |
| */ |
| static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, |
| uint32_t arb_src, uint32_t arb_dest) |
| { |
| uint32_t mc_arb_dram_timing; |
| uint32_t mc_arb_dram_timing2; |
| uint32_t burst_time; |
| uint32_t mc_cg_config; |
| |
| switch (arb_src) { |
| case MC_CG_ARB_FREQ_F0: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| break; |
| case MC_CG_ARB_FREQ_F1: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (arb_dest) { |
| case MC_CG_ARB_FREQ_F0: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); |
| break; |
| case MC_CG_ARB_FREQ_F1: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); |
| mc_cg_config |= 0x0000000F; |
| cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); |
| |
| return 0; |
| } |
| |
| /** |
| * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return if success then 0; |
| */ |
| static int fiji_reset_to_default(struct pp_hwmgr *hwmgr) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults); |
| } |
| |
| /** |
| * Initial switch from ARB F0->F1 |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| * This function is to be called from the SetPowerState table. |
| */ |
| static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) |
| { |
| return fiji_copy_and_switch_arb_sets(hwmgr, |
| MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); |
| } |
| |
| static int fiji_force_switch_to_arbf0(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t tmp; |
| |
| tmp = (cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixSMC_SCRATCH9) & |
| 0x0000ff00) >> 8; |
| |
| if (tmp == MC_CG_ARB_FREQ_F0) |
| return 0; |
| |
| return fiji_copy_and_switch_arb_sets(hwmgr, |
| tmp, MC_CG_ARB_FREQ_F0); |
| } |
| |
| static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr, |
| struct fiji_single_dpm_table *dpm_table, uint32_t count) |
| { |
| int i; |
| PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER, |
| "Fatal error, can not set up single DPM table entries " |
| "to exceed max number!",); |
| |
| dpm_table->count = count; |
| for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) |
| dpm_table->dpm_levels[i].enabled = false; |
| |
| return 0; |
| } |
| |
| static void fiji_setup_pcie_table_entry( |
| struct fiji_single_dpm_table *dpm_table, |
| uint32_t index, uint32_t pcie_gen, |
| uint32_t pcie_lanes) |
| { |
| dpm_table->dpm_levels[index].value = pcie_gen; |
| dpm_table->dpm_levels[index].param1 = pcie_lanes; |
| dpm_table->dpm_levels[index].enabled = true; |
| } |
| |
| static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| uint32_t i, max_entry; |
| |
| PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || |
| data->use_pcie_power_saving_levels), "No pcie performance levels!", |
| return -EINVAL); |
| |
| if (data->use_pcie_performance_levels && |
| !data->use_pcie_power_saving_levels) { |
| data->pcie_gen_power_saving = data->pcie_gen_performance; |
| data->pcie_lane_power_saving = data->pcie_lane_performance; |
| } else if (!data->use_pcie_performance_levels && |
| data->use_pcie_power_saving_levels) { |
| data->pcie_gen_performance = data->pcie_gen_power_saving; |
| data->pcie_lane_performance = data->pcie_lane_power_saving; |
| } |
| |
| fiji_reset_single_dpm_table(hwmgr, |
| &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK); |
| |
| if (pcie_table != NULL) { |
| /* max_entry is used to make sure we reserve one PCIE level |
| * for boot level (fix for A+A PSPP issue). |
| * If PCIE table from PPTable have ULV entry + 8 entries, |
| * then ignore the last entry.*/ |
| max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ? |
| SMU73_MAX_LEVELS_LINK : pcie_table->count; |
| for (i = 1; i < max_entry; i++) { |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| pcie_table->entries[i].gen_speed), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| pcie_table->entries[i].lane_width)); |
| } |
| data->dpm_table.pcie_speed_table.count = max_entry - 1; |
| } else { |
| /* Hardcode Pcie Table */ |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| |
| data->dpm_table.pcie_speed_table.count = 6; |
| } |
| /* Populate last level for boot PCIE level, but do not increment count. */ |
| fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, |
| data->dpm_table.pcie_speed_table.count, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| |
| return 0; |
| } |
| |
| /* |
| * This function is to initalize all DPM state tables |
| * for SMU7 based on the dependency table. |
| * Dynamic state patching function will then trim these |
| * state tables to the allowed range based |
| * on the power policy or external client requests, |
| * such as UVD request, etc. |
| */ |
| static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i; |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, |
| "SCLK dependency table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, |
| "SCLK dependency table has to have is missing. " |
| "This table is mandatory", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, |
| "MCLK dependency table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, |
| "MCLK dependency table has to have is missing. " |
| "This table is mandatory", |
| return -EINVAL); |
| |
| /* clear the state table to reset everything to default */ |
| fiji_reset_single_dpm_table(hwmgr, |
| &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS); |
| fiji_reset_single_dpm_table(hwmgr, |
| &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY); |
| |
| /* Initialize Sclk DPM table based on allow Sclk values */ |
| data->dpm_table.sclk_table.count = 0; |
| for (i = 0; i < dep_sclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.sclk_table.dpm_levels |
| [data->dpm_table.sclk_table.count - 1].value != |
| dep_sclk_table->entries[i].clk) { |
| data->dpm_table.sclk_table.dpm_levels |
| [data->dpm_table.sclk_table.count].value = |
| dep_sclk_table->entries[i].clk; |
| data->dpm_table.sclk_table.dpm_levels |
| [data->dpm_table.sclk_table.count].enabled = |
| (i == 0) ? true : false; |
| data->dpm_table.sclk_table.count++; |
| } |
| } |
| |
| /* Initialize Mclk DPM table based on allow Mclk values */ |
| data->dpm_table.mclk_table.count = 0; |
| for (i=0; i<dep_mclk_table->count; i++) { |
| if ( i==0 || data->dpm_table.mclk_table.dpm_levels |
| [data->dpm_table.mclk_table.count - 1].value != |
| dep_mclk_table->entries[i].clk) { |
| data->dpm_table.mclk_table.dpm_levels |
| [data->dpm_table.mclk_table.count].value = |
| dep_mclk_table->entries[i].clk; |
| data->dpm_table.mclk_table.dpm_levels |
| [data->dpm_table.mclk_table.count].enabled = |
| (i == 0) ? true : false; |
| data->dpm_table.mclk_table.count++; |
| } |
| } |
| |
| /* setup PCIE gen speed levels */ |
| fiji_setup_default_pcie_table(hwmgr); |
| |
| /* save a copy of the default DPM table */ |
| memcpy(&(data->golden_dpm_table), &(data->dpm_table), |
| sizeof(struct fiji_dpm_table)); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief PhwFiji_GetVoltageOrder |
| * Returns index of requested voltage record in lookup(table) |
| * @param lookup_table - lookup list to search in |
| * @param voltage - voltage to look for |
| * @return 0 on success |
| */ |
| uint8_t fiji_get_voltage_index( |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage) |
| { |
| uint8_t count = (uint8_t) (lookup_table->count); |
| uint8_t i; |
| |
| PP_ASSERT_WITH_CODE((NULL != lookup_table), |
| "Lookup Table empty.", return 0); |
| PP_ASSERT_WITH_CODE((0 != count), |
| "Lookup Table empty.", return 0); |
| |
| for (i = 0; i < lookup_table->count; i++) { |
| /* find first voltage equal or bigger than requested */ |
| if (lookup_table->entries[i].us_vdd >= voltage) |
| return i; |
| } |
| /* voltage is bigger than max voltage in the table */ |
| return i - 1; |
| } |
| |
| /** |
| * Preparation of vddc and vddgfx CAC tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| uint32_t count; |
| uint8_t index; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
| table_info->vddc_lookup_table; |
| /* tables is already swapped, so in order to use the value from it, |
| * we need to swap it back. |
| * We are populating vddc CAC data to BapmVddc table |
| * in split and merged mode |
| */ |
| for( count = 0; count<lookup_table->count; count++) { |
| index = fiji_get_voltage_index(lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 - |
| (lookup_table->entries[index].us_cac_low * |
| VOLTAGE_SCALE)) / 25); |
| table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 - |
| (lookup_table->entries[index].us_cac_high * |
| VOLTAGE_SCALE)) / 25); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Preparation of voltage tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| |
| int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| int result; |
| |
| result = fiji_populate_cac_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate CAC voltage tables to SMC", |
| return -EINVAL); |
| |
| return 0; |
| } |
| |
| static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_Ulv *state) |
| { |
| int result = 0; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| state->CcPwrDynRm = 0; |
| state->CcPwrDynRm1 = 0; |
| |
| state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
| state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset * |
| VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 ); |
| |
| state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1; |
| |
| if (!result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| return fiji_populate_ulv_level(hwmgr, &table->Ulv); |
| } |
| |
| static int32_t fiji_get_dpm_level_enable_mask_value( |
| struct fiji_single_dpm_table* dpm_table) |
| { |
| int32_t i; |
| int32_t mask = 0; |
| |
| for (i = dpm_table->count; i > 0; i--) { |
| mask = mask << 1; |
| if (dpm_table->dpm_levels[i - 1].enabled) |
| mask |= 0x1; |
| else |
| mask &= 0xFFFFFFFE; |
| } |
| return mask; |
| } |
| |
| static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_dpm_table *dpm_table = &data->dpm_table; |
| int i; |
| |
| /* Index (dpm_table->pcie_speed_table.count) |
| * is reserved for PCIE boot level. */ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
| dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = 1; |
| table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
| table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); |
| } |
| |
| data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| /** |
| * Calculates the SCLK dividers using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk) |
| { |
| const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| uint32_t ref_clock; |
| uint32_t ref_divider; |
| uint32_t fbdiv; |
| int result; |
| |
| /* get the engine clock dividers for this clock value */ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", |
| return result); |
| |
| /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ |
| ref_clock = atomctrl_get_reference_clock(hwmgr); |
| ref_divider = 1 + dividers.uc_pll_ref_div; |
| |
| /* low 14 bits is fraction and high 12 bits is divider */ |
| fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| |
| /* SPLL_FUNC_CNTL setup */ |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_REF_DIV, dividers.uc_pll_ref_div); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_PDIV_A, dividers.uc_pll_post_div); |
| |
| /* SPLL_FUNC_CNTL_3 setup*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
| SPLL_FB_DIV, fbdiv); |
| |
| /* set to use fractional accumulation*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
| SPLL_DITHEN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| struct pp_atomctrl_internal_ss_info ssInfo; |
| |
| uint32_t vco_freq = clock * dividers.uc_pll_post_div; |
| if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, |
| vco_freq, &ssInfo)) { |
| /* |
| * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
| * ss_info.speed_spectrum_rate -- in unit of khz |
| * |
| * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 |
| */ |
| uint32_t clk_s = ref_clock * 5 / |
| (ref_divider * ssInfo.speed_spectrum_rate); |
| /* clkv = 2 * D * fbdiv / NS */ |
| uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage * |
| fbdiv / (clk_s * 10000); |
| |
| cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
| CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); |
| cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
| CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
| cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, |
| CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); |
| } |
| } |
| |
| sclk->SclkFrequency = clock; |
| sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| |
| return 0; |
| } |
| |
| static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci) |
| { |
| uint32_t i; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_voltage_table *vddci_table = |
| &(data->vddci_voltage_table); |
| |
| for (i = 0; i < vddci_table->count; i++) { |
| if (vddci_table->entries[i].value >= vddci) |
| return vddci_table->entries[i].value; |
| } |
| |
| PP_ASSERT_WITH_CODE(false, |
| "VDDCI is larger than max VDDCI in VDDCI Voltage Table!", |
| return vddci_table->entries[i-1].value); |
| } |
| |
| static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_clock_voltage_dependency_table* dep_table, |
| uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
| { |
| uint32_t i; |
| uint16_t vddci; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| *voltage = *mvdd = 0; |
| |
| /* clock - voltage dependency table is empty table */ |
| if (dep_table->count == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| /* find first sclk bigger than request */ |
| if (dep_table->entries[i].clk >= clock) { |
| *voltage |= (dep_table->entries[i].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i].vddci) |
| *voltage |= (dep_table->entries[i].vddci * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else { |
| vddci = fiji_find_closest_vddci(hwmgr, |
| (dep_table->entries[i].vddc - |
| (uint16_t)data->vddc_vddci_delta)); |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| } |
| |
| if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
| VOLTAGE_SCALE; |
| |
| *voltage |= 1 << PHASES_SHIFT; |
| return 0; |
| } |
| } |
| |
| /* sclk is bigger than max sclk in the dependence table */ |
| *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i-1].vddci) { |
| vddci = fiji_find_closest_vddci(hwmgr, |
| (dep_table->entries[i].vddc - |
| (uint16_t)data->vddc_vddci_delta)); |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| } |
| |
| if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; |
| |
| return 0; |
| } |
| |
| static uint8_t fiji_get_sleep_divider_id_from_clock(uint32_t clock, |
| uint32_t clock_insr) |
| { |
| uint8_t i; |
| uint32_t temp; |
| uint32_t min = max(clock_insr, (uint32_t)FIJI_MINIMUM_ENGINE_CLOCK); |
| |
| PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); |
| for (i = FIJI_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { |
| temp = clock >> i; |
| |
| if (temp >= min || i == 0) |
| break; |
| } |
| return i; |
| } |
| /** |
| * Populates single SMC SCLK structure using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| |
| static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, uint16_t sclk_al_threshold, |
| struct SMU73_Discrete_GraphicsLevel *level) |
| { |
| int result; |
| /* PP_Clocks minClocks; */ |
| uint32_t threshold, mvdd; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| result = fiji_calculate_sclk_params(hwmgr, clock, level); |
| |
| /* populate graphics levels */ |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, clock, |
| &level->MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find VDDC voltage value for " |
| "VDDC engine clock dependency table", |
| return result); |
| |
| level->SclkFrequency = clock; |
| level->ActivityLevel = sclk_al_threshold; |
| level->CcPwrDynRm = 0; |
| level->CcPwrDynRm1 = 0; |
| level->EnabledForActivity = 0; |
| level->EnabledForThrottle = 1; |
| level->UpHyst = 10; |
| level->DownHyst = 0; |
| level->VoltageDownHyst = 0; |
| level->PowerThrottle = 0; |
| |
| threshold = clock * data->fast_watermark_threshold / 100; |
| |
| |
| data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
| level->DeepSleepDivId = fiji_get_sleep_divider_id_from_clock(clock, |
| hwmgr->display_config.min_core_set_clock_in_sr); |
| |
| |
| /* Default to slow, highest DPM level will be |
| * set to PPSMC_DISPLAY_WATERMARK_LOW later. |
| */ |
| level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); |
| |
| return 0; |
| } |
| /** |
| * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_dpm_table *dpm_table = &data->dpm_table; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; |
| int result = 0; |
| uint32_t array = data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); |
| uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) * |
| SMU73_MAX_LEVELS_GRAPHICS; |
| struct SMU73_Discrete_GraphicsLevel *levels = |
| data->smc_state_table.GraphicsLevel; |
| uint32_t i, max_entry; |
| uint8_t hightest_pcie_level_enabled = 0, |
| lowest_pcie_level_enabled = 0, |
| mid_pcie_level_enabled = 0, |
| count = 0; |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| result = fiji_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| (uint16_t)data->activity_target[i], |
| &levels[i]); |
| if (result) |
| return result; |
| |
| /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| if (i > 1) |
| levels[i].DeepSleepDivId = 0; |
| } |
| |
| /* Only enable level 0 for now.*/ |
| levels[0].EnabledForActivity = 1; |
| |
| /* set highest level watermark to high */ |
| levels[dpm_table->sclk_table.count - 1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| data->smc_state_table.GraphicsDpmLevelCount = |
| (uint8_t)dpm_table->sclk_table.count; |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| if (pcie_table != NULL) { |
| PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| max_entry = pcie_entry_cnt - 1; |
| for (i = 0; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = |
| (uint8_t) ((i < max_entry)? i : max_entry); |
| } else { |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (hightest_pcie_level_enabled + 1))) != 0 )) |
| hightest_pcie_level_enabled++; |
| |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << lowest_pcie_level_enabled)) == 0 )) |
| lowest_pcie_level_enabled++; |
| |
| while ((count < hightest_pcie_level_enabled) && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 )) |
| count++; |
| |
| mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) < |
| hightest_pcie_level_enabled? |
| (lowest_pcie_level_enabled + 1 + count) : |
| hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
| for(i = 2; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
| levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to mid_pcie_level_enabled */ |
| levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
| } |
| /* level count will send to smc once at init smc table and never change */ |
| result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, data->sram_end); |
| |
| return result; |
| } |
| |
| /** |
| * MCLK Frequency Ratio |
| * SEQ_CG_RESP Bit[31:24] - 0x0 |
| * Bit[27:24] \96 DDR3 Frequency ratio |
| * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz |
| * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz |
| * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz |
| * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz |
| * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz |
| * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz |
| * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz |
| * 400 < 0x7 <= 450MHz, 800 < 0xF |
| */ |
| static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock) |
| { |
| if (mem_clock <= 10000) return 0x0; |
| if (mem_clock <= 15000) return 0x1; |
| if (mem_clock <= 20000) return 0x2; |
| if (mem_clock <= 25000) return 0x3; |
| if (mem_clock <= 30000) return 0x4; |
| if (mem_clock <= 35000) return 0x5; |
| if (mem_clock <= 40000) return 0x6; |
| if (mem_clock <= 45000) return 0x7; |
| if (mem_clock <= 50000) return 0x8; |
| if (mem_clock <= 55000) return 0x9; |
| if (mem_clock <= 60000) return 0xa; |
| if (mem_clock <= 65000) return 0xb; |
| if (mem_clock <= 70000) return 0xc; |
| if (mem_clock <= 75000) return 0xd; |
| if (mem_clock <= 80000) return 0xe; |
| /* mem_clock > 800MHz */ |
| return 0xf; |
| } |
| |
| /** |
| * Populates the SMC MCLK structure using the provided memory clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the memory clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk) |
| { |
| struct pp_atomctrl_memory_clock_param mem_param; |
| int result; |
| |
| result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to get Memory PLL Dividers.",); |
| |
| /* Save the result data to outpupt memory level structure */ |
| mclk->MclkFrequency = clock; |
| mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider; |
| mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock); |
| |
| return result; |
| } |
| |
| static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int result = 0; |
| |
| if (table_info->vdd_dep_on_mclk) { |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, clock, |
| &mem_level->MinVoltage, &mem_level->MinMvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddc voltage value from memory " |
| "VDDC voltage dependency table", return result); |
| } |
| |
| mem_level->EnabledForThrottle = 1; |
| mem_level->EnabledForActivity = 0; |
| mem_level->UpHyst = 0; |
| mem_level->DownHyst = 100; |
| mem_level->VoltageDownHyst = 0; |
| mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target; |
| mem_level->StutterEnable = false; |
| |
| mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| /* enable stutter mode if all the follow condition applied |
| * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI, |
| * &(data->DisplayTiming.numExistingDisplays)); |
| */ |
| data->display_timing.num_existing_displays = 1; |
| |
| if ((data->mclk_stutter_mode_threshold) && |
| (clock <= data->mclk_stutter_mode_threshold) && |
| (!data->is_uvd_enabled) && |
| (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, |
| STUTTER_ENABLE) & 0x1)) |
| mem_level->StutterEnable = true; |
| |
| result = fiji_calculate_mclk_params(hwmgr, clock, mem_level); |
| if (!result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); |
| } |
| return result; |
| } |
| |
| /** |
| * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_dpm_table *dpm_table = &data->dpm_table; |
| int result; |
| /* populate MCLK dpm table to SMU7 */ |
| uint32_t array = data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, MemoryLevel); |
| uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) * |
| SMU73_MAX_LEVELS_MEMORY; |
| struct SMU73_Discrete_MemoryLevel *levels = |
| data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", |
| return -EINVAL); |
| result = fiji_populate_single_memory_level(hwmgr, |
| dpm_table->mclk_table.dpm_levels[i].value, |
| &levels[i]); |
| if (result) |
| return result; |
| } |
| |
| /* Only enable level 0 for now. */ |
| levels[0].EnabledForActivity = 1; |
| |
| /* in order to prevent MC activity from stutter mode to push DPM up. |
| * the UVD change complements this by putting the MCLK in |
| * a higher state by default such that we are not effected by |
| * up threshold or and MCLK DPM latency. |
| */ |
| levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; |
| CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); |
| |
| data->smc_state_table.MemoryDpmLevelCount = |
| (uint8_t)dpm_table->mclk_table.count; |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| /* set highest level watermark to high */ |
| levels[dpm_table->mclk_table.count - 1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| /* level count will send to smc once at init smc table and never change */ |
| result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, data->sram_end); |
| |
| return result; |
| } |
| |
| /** |
| * Populates the SMC MVDD structure using the provided memory clock. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. |
| * @param voltage the SMC VOLTAGE structure to be populated |
| */ |
| int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
| uint32_t mclk, SMIO_Pattern *smio_pat) |
| { |
| const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i = 0; |
| |
| if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
| if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
| smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", |
| return -EINVAL); |
| } else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| SMIO_Pattern vol_level; |
| uint32_t mvdd; |
| uint16_t us_mvdd; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| if (!data->sclk_dpm_key_disabled) { |
| /* Get MinVoltage and Frequency from DPM0, |
| * already converted to SMC_UL */ |
| table->ACPILevel.SclkFrequency = |
| data->dpm_table.sclk_table.dpm_levels[0].value; |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, |
| table->ACPILevel.SclkFrequency, |
| &table->ACPILevel.MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Cannot find ACPI VDDC voltage value " |
| "in Clock Dependency Table",); |
| } else { |
| table->ACPILevel.SclkFrequency = |
| data->vbios_boot_state.sclk_bootup_value; |
| table->ACPILevel.MinVoltage = |
| data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; |
| } |
| |
| /* get the engine clock dividers for this clock value */ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| table->ACPILevel.SclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", |
| return result); |
| |
| table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| table->ACPILevel.DeepSleepDivId = 0; |
| |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_PWRON, 0); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_RESET, 1); |
| spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, |
| SCLK_MUX_SEL, 4); |
| |
| table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| if (!data->mclk_dpm_key_disabled) { |
| /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
| table->MemoryACPILevel.MclkFrequency = |
| data->dpm_table.mclk_table.dpm_levels[0].value; |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, |
| table->MemoryACPILevel.MclkFrequency, |
| &table->MemoryACPILevel.MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Cannot find ACPI VDDCI voltage value " |
| "in Clock Dependency Table",); |
| } else { |
| table->MemoryACPILevel.MclkFrequency = |
| data->vbios_boot_state.mclk_bootup_value; |
| table->MemoryACPILevel.MinVoltage = |
| data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; |
| } |
| |
| us_mvdd = 0; |
| if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) || |
| (data->mclk_dpm_key_disabled)) |
| us_mvdd = data->vbios_boot_state.mvdd_bootup_value; |
| else { |
| if (!fiji_populate_mvdd_value(hwmgr, |
| data->dpm_table.mclk_table.dpm_levels[0].value, |
| &vol_level)) |
| us_mvdd = vol_level.Voltage; |
| } |
| |
| table->MemoryACPILevel.MinMvdd = |
| PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE); |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpHyst = 0; |
| table->MemoryACPILevel.DownHyst = 100; |
| table->MemoryACPILevel.VoltageDownHyst = 0; |
| table->MemoryACPILevel.ActivityLevel = |
| PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); |
| |
| table->MemoryACPILevel.StutterEnable = false; |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); |
| |
| return result; |
| } |
| |
| static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| table->VceLevelCount = (uint8_t)(mm_table->count); |
| table->VceBootLevel = 0; |
| |
| for(count = 0; count < table->VceLevelCount; count++) { |
| table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
| table->VceLevel[count].MinVoltage = 0; |
| table->VceLevel[count].MinVoltage |= |
| (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->VceLevel[count].MinVoltage |= |
| ((mm_table->entries[count].vddc - data->vddc_vddci_delta) * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /*retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->VceLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for VCE engine clock", |
| return result); |
| |
| table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| table->AcpLevelCount = (uint8_t)(mm_table->count); |
| table->AcpBootLevel = 0; |
| |
| for (count = 0; count < table->AcpLevelCount; count++) { |
| table->AcpLevel[count].Frequency = mm_table->entries[count].aclk; |
| table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
| data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->AcpLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for engine clock", return result); |
| |
| table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| table->SamuBootLevel = 0; |
| table->SamuLevelCount = (uint8_t)(mm_table->count); |
| |
| for (count = 0; count < table->SamuLevelCount; count++) { |
| /* not sure whether we need evclk or not */ |
| table->SamuLevel[count].MinVoltage = 0; |
| table->SamuLevel[count].Frequency = mm_table->entries[count].samclock; |
| table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
| data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->SamuLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for samu clock", return result); |
| |
| table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
| int32_t eng_clock, int32_t mem_clock, |
| struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs) |
| { |
| uint32_t dram_timing; |
| uint32_t dram_timing2; |
| uint32_t burstTime; |
| ULONG state, trrds, trrdl; |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| eng_clock, mem_clock); |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", return result); |
| |
| dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); |
| |
| state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0); |
| trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0); |
| trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0); |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); |
| arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| arb_regs->TRRDS = (uint8_t)trrds; |
| arb_regs->TRRDL = (uint8_t)trrdl; |
| |
| return 0; |
| } |
| |
| static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct SMU73_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| int result = 0; |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| result = fiji_populate_memory_timing_parameters(hwmgr, |
| data->dpm_table.sclk_table.dpm_levels[i].value, |
| data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| if (result) |
| break; |
| } |
| } |
| |
| if (!result) |
| result = fiji_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| data->arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU73_Discrete_MCArbDramTimingTable), |
| data->sram_end); |
| return result; |
| } |
| |
| static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| table->UvdLevelCount = (uint8_t)(mm_table->count); |
| table->UvdBootLevel = 0; |
| |
| for (count = 0; count < table->UvdLevelCount; count++) { |
| table->UvdLevel[count].MinVoltage = 0; |
| table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
| table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
| table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
| data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].VclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Vclk clock", return result); |
| |
| table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].DclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Dclk clock", return result); |
| |
| table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); |
| |
| } |
| return result; |
| } |
| |
| static int fiji_find_boot_level(struct fiji_single_dpm_table *table, |
| uint32_t value, uint32_t *boot_level) |
| { |
| int result = -EINVAL; |
| uint32_t i; |
| |
| for (i = 0; i < table->count; i++) { |
| if (value == table->dpm_levels[i].value) { |
| *boot_level = i; |
| result = 0; |
| } |
| } |
| return result; |
| } |
| |
| static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| /* find boot level from dpm table */ |
| result = fiji_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(table->GraphicsBootLevel)); |
| |
| result = fiji_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(table->MemoryBootLevel)); |
| |
| table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
| |
| return 0; |
| } |
| |
| static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint8_t count, level; |
| |
| count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
| for (level = 0; level < count; level++) { |
| if(table_info->vdd_dep_on_sclk->entries[level].clk >= |
| data->vbios_boot_state.sclk_bootup_value) { |
| data->smc_state_table.GraphicsBootLevel = level; |
| break; |
| } |
| } |
| |
| count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
| for (level = 0; level < count; level++) { |
| if(table_info->vdd_dep_on_mclk->entries[level].clk >= |
| data->vbios_boot_state.mclk_bootup_value) { |
| data->smc_state_table.MemoryBootLevel = level; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, |
| volt_with_cks, value; |
| uint16_t clock_freq_u16; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, |
| volt_offset = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| |
| stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
| |
| /* Read SMU_Eefuse to read and calculate RO and determine |
| * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
| */ |
| efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (146 * 4)); |
| efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (148 * 4)); |
| efuse &= 0xFF000000; |
| efuse = efuse >> 24; |
| efuse2 &= 0xF; |
| |
| if (efuse2 == 1) |
| ro = (2300 - 1350) * efuse / 255 + 1350; |
| else |
| ro = (2500 - 1000) * efuse / 255 + 1000; |
| |
| if (ro >= 1660) |
| type = 0; |
| else |
| type = 1; |
| |
| /* Populate Stretch amount */ |
| data->smc_state_table.ClockStretcherAmount = stretch_amount; |
| |
| /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
| for (i = 0; i < sclk_table->count; i++) { |
| data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
| sclk_table->entries[i].cks_enable << i; |
| volt_without_cks = (uint32_t)((14041 * |
| (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / |
| (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); |
| volt_with_cks = (uint32_t)((13946 * |
| (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / |
| (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); |
| if (volt_without_cks >= volt_with_cks) |
| volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
| sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); |
| data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
| } |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| STRETCH_ENABLE, 0x0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| masterReset, 0x1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| staticEnable, 0x1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| masterReset, 0x0); |
| |
| /* Populate CKS Lookup Table */ |
| if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
| stretch_amount2 = 0; |
| else if (stretch_amount == 3 || stretch_amount == 4) |
| stretch_amount2 = 1; |
| else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| PP_ASSERT_WITH_CODE(false, |
| "Stretch Amount in PPTable not supported\n", |
| return -EINVAL); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL); |
| value &= 0xFFC2FF87; |
| data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = |
| fiji_clock_stretcher_lookup_table[stretch_amount2][0]; |
| data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = |
| fiji_clock_stretcher_lookup_table[stretch_amount2][1]; |
| clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table. |
| GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1]. |
| SclkFrequency) / 100); |
| if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] < |
| clock_freq_u16 && |
| fiji_clock_stretcher_lookup_table[stretch_amount2][1] > |
| clock_freq_u16) { |
| /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ |
| value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; |
| /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ |
| value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; |
| /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ |
| value |= (fiji_clock_stretch_amount_conversion |
| [fiji_clock_stretcher_lookup_table[stretch_amount2][3]] |
| [stretch_amount]) << 3; |
| } |
| CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable. |
| CKS_LOOKUPTableEntry[0].minFreq); |
| CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable. |
| CKS_LOOKUPTableEntry[0].maxFreq); |
| data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = |
| fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; |
| data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= |
| (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL, value); |
| |
| /* Populate DDT Lookup Table */ |
| for (i = 0; i < 4; i++) { |
| /* Assign the minimum and maximum VID stored |
| * in the last row of Clock Stretcher Voltage Table. |
| */ |
| data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].minVID = |
| (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2]; |
| data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].maxVID = |
| (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3]; |
| /* Loop through each SCLK and check the frequency |
| * to see if it lies within the frequency for clock stretcher. |
| */ |
| for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) { |
| cks_setting = 0; |
| clock_freq = PP_SMC_TO_HOST_UL( |
| data->smc_state_table.GraphicsLevel[j].SclkFrequency); |
| /* Check the allowed frequency against the sclk level[j]. |
| * Sclk's endianness has already been converted, |
| * and it's in 10Khz unit, |
| * as opposed to Data table, which is in Mhz unit. |
| */ |
| if (clock_freq >= |
| (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) { |
| cks_setting |= 0x2; |
| if (clock_freq < |
| (fiji_clock_stretcher_ddt_table[type][i][1]) * 100) |
| cks_setting |= 0x1; |
| } |
| data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); |
| } |
| CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table. |
| ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].setting); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); |
| value &= 0xFFFFFFFE; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); |
| |
| return 0; |
| } |
| |
| /** |
| * Populates the SMC VRConfig field in DPM table. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint16_t config; |
| |
| config = VR_MERGED_WITH_VDDC; |
| table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); |
| |
| /* Set Vddc Voltage Controller */ |
| if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= config; |
| } else { |
| PP_ASSERT_WITH_CODE(false, |
| "VDDC should be on SVI2 control in merged mode!",); |
| } |
| /* Set Vddci Voltage Controller */ |
| if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| config = VR_SVI2_PLANE_2; /* only in merged mode */ |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| config = VR_SMIO_PATTERN_1; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } |
| /* Set Mvdd Voltage Controller */ |
| if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| config = VR_SMIO_PATTERN_2; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data (PowerState) |
| * @return always 0 |
| */ |
| static int fiji_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table); |
| const struct fiji_ulv_parm *ulv = &(data->ulv); |
| uint8_t i; |
| struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
| |
| result = fiji_setup_default_dpm_tables(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to setup default DPM tables!", return result); |
| |
| if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control) |
| fiji_populate_smc_voltage_tables(hwmgr, table); |
| |
| table->SystemFlags = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| |
| if (data->is_memory_gddr5) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| |
| if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) { |
| result = fiji_populate_ulv_state(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ULV state!", return result); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter); |
| } |
| |
| result = fiji_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Link Level!", return result); |
| |
| result = fiji_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Graphics Level!", return result); |
| |
| result = fiji_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Memory Level!", return result); |
| |
| result = fiji_populate_smc_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACPI Level!", return result); |
| |
| result = fiji_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize VCE Level!", return result); |
| |
| result = fiji_populate_smc_acp_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACP Level!", return result); |
| |
| result = fiji_populate_smc_samu_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize SAMU Level!", return result); |
| |
| /* Since only the initial state is completely set up at this point |
| * (the other states are just copies of the boot state) we only |
| * need to populate the ARB settings for the initial state. |
| */ |
| result = fiji_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to Write ARB settings for the initial state.", return result); |
| |
| result = fiji_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize UVD Level!", return result); |
| |
| result = fiji_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot Level!", return result); |
| |
| result = fiji_populate_smc_initailial_state(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot State!", return result); |
| |
| result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate BAPM Parameters!", return result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| result = fiji_populate_clock_stretcher_data_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate Clock Stretcher Data Table!", |
| return result); |
| } |
| |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| table->TemperatureLimitHigh = |
| table_info->cac_dtp_table->usTargetOperatingTemp * |
| FIJI_Q88_FORMAT_CONVERSION_UNIT; |
| table->TemperatureLimitLow = |
| (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
| FIJI_Q88_FORMAT_CONVERSION_UNIT; |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/ |
| table->PCIeGenInterval = 1; |
| table->VRConfig = 0; |
| |
| result = fiji_populate_vr_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate VRConfig setting!", return result); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { |
| table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } else { |
| table->VRHotGpio = FIJI_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, |
| &gpio_pin)) { |
| table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } else { |
| table->AcDcGpio = FIJI_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } |
| |
| /* Thermal Output GPIO */ |
| if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, |
| &gpio_pin)) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| |
| table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| |
| /* For porlarity read GPIOPAD_A with assigned Gpio pin |
| * since VBIOS will program this register to set 'inactive state', |
| * driver can then determine 'active state' from this and |
| * program SMU with correct polarity |
| */ |
| table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
| (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
| |
| /* if required, combine VRHot/PCC with thermal out GPIO */ |
| if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot) && |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
| } else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| table->ThermOutGpio = 17; |
| table->ThermOutPolarity = 1; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
| } |
| |
| for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++) |
| table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = fiji_copy_bytes_to_smc(hwmgr->smumgr, |
| data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController), |
| data->sram_end); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to upload dpm data to SMC memory!", return result); |
| |
| return 0; |
| } |
| |
| /** |
| * Initialize the ARB DRAM timing table's index field. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr) |
| { |
| const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t tmp; |
| int result; |
| |
| /* This is a read-modify-write on the first byte of the ARB table. |
| * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure |
| * is the field 'current'. |
| * This solution is ugly, but we never write the whole table only |
| * individual fields in it. |
| * In reality this field should not be in that structure |
| * but in a soft register. |
| */ |
| result = fiji_read_smc_sram_dword(hwmgr->smumgr, |
| data->arb_table_start, &tmp, data->sram_end); |
| |
| if (result) |
| return result; |
| |
| tmp &= 0x00FFFFFF; |
| tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; |
| |
| return fiji_write_smc_sram_dword(hwmgr->smumgr, |
| data->arb_table_start, tmp, data->sram_end); |
| } |
| |
| static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) |
| { |
| if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot)) |
| return smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_EnableVRHotGPIOInterrupt); |
| |
| return 0; |
| } |
| |
| static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| SCLK_PWRMGT_OFF, 0); |
| return 0; |
| } |
| |
| static int fiji_enable_ulv(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_ulv_parm *ulv = &(data->ulv); |
| |
| if (ulv->ulv_supported) |
| return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV); |
| |
| return 0; |
| } |
| |
| static int fiji_disable_ulv(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_ulv_parm *ulv = &(data->ulv); |
| |
| if (ulv->ulv_supported) |
| return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableULV); |
| |
| return 0; |
| } |
| |
| static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
| { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) { |
| if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to enable Master Deep Sleep switch failed!", |
| return -1); |
| } else { |
| if (smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MASTER_DeepSleep_OFF)) { |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to disable Master Deep Sleep switch failed!", |
| return -1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
| { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) { |
| if (smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MASTER_DeepSleep_OFF)) { |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to disable Master Deep Sleep switch failed!", |
| return -1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t val, val0, val2; |
| uint32_t i, cpl_cntl, cpl_threshold, mc_threshold; |
| |
| /* enable SCLK dpm */ |
| if(!data->sclk_dpm_key_disabled) |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)), |
| "Failed to enable SCLK DPM during DPM Start Function!", |
| return -1); |
| |
| /* enable MCLK dpm */ |
| if(0 == data->mclk_dpm_key_disabled) { |
| cpl_threshold = 0; |
| mc_threshold = 0; |
| |
| /* Read per MCD tile (0 - 7) */ |
| for (i = 0; i < 8; i++) { |
| PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i); |
| val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000; |
| if (0xf0000000 != val) { |
| /* count number of MCQ that has channel(s) enabled */ |
| cpl_threshold++; |
| /* only harvest 3 or full 4 supported */ |
| mc_threshold = val ? 3 : 4; |
| } |
| } |
| PP_ASSERT_WITH_CODE(0 != cpl_threshold, |
| "Number of MCQ is zero!", return -EINVAL;); |
| |
| mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) << |
| LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) | |
| LCAC_MC0_CNTL__MC0_ENABLE_MASK; |
| cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) << |
| LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) | |
| LCAC_CPL_CNTL__CPL_ENABLE_MASK; |
| cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT)); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC0_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC1_CNTL, mc_threshold); |
| if (8 == cpl_threshold) { |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC2_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC3_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC4_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC5_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC6_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC7_CNTL, mc_threshold); |
| } |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_CPL_CNTL, cpl_cntl); |
| |
| udelay(5); |
| |
| mc_threshold = mc_threshold | |
| (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT); |
| cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC0_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC1_CNTL, mc_threshold); |
| if (8 == cpl_threshold) { |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC2_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC3_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC4_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC5_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC6_CNTL, mc_threshold); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_MC7_CNTL, mc_threshold); |
| } |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixLCAC_CPL_CNTL, cpl_cntl); |
| |
| /* Program CAC_EN per MCD (0-7) Tile */ |
| val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD); |
| val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK | |
| MC_CONFIG_MCD__MC_RD_ENABLE_MASK); |
| |
| for (i = 0; i < 8; i++) { |
| /* Enable MCD i Tile read & write */ |
| val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) | |
| (1 << i)); |
| cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2); |
| /* Enbale CAC_ON MCD i Tile */ |
| val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL); |
| val2 |= MC_SEQ_CNTL__CAC_EN_MASK; |
| cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2); |
| } |
| /* Set MC_CONFIG_MCD back to its default setting val0 */ |
| cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_Enable)), |
| "Failed to enable MCLK DPM during DPM Start Function!", |
| return -1); |
| } |
| return 0; |
| } |
| |
| static int fiji_start_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| /*enable general power management */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| GLOBAL_PWRMGT_EN, 1); |
| /* enable sclk deep sleep */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| DYNAMIC_PM_EN, 1); |
| /* prepare for PCIE DPM */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + offsetof(SMU73_SoftRegisters, |
| VoltageChangeTimeout), 0x1000); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, |
| SWRST_COMMAND_1, RESETLC, 0x0); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_Voltage_Cntl_Enable)), |
| "Failed to enable voltage DPM during DPM Start Function!", |
| return -1); |
| |
| if (fiji_enable_sclk_mclk_dpm(hwmgr)) { |
| printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!"); |
| return -1; |
| } |
| |
| /* enable PCIE dpm */ |
| if(!data->pcie_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_Enable)), |
| "Failed to enable pcie DPM during DPM Start Function!", |
| return -1); |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| /* disable SCLK dpm */ |
| if (!data->sclk_dpm_key_disabled) |
| PP_ASSERT_WITH_CODE( |
| (smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_DPM_Disable) == 0), |
| "Failed to disable SCLK DPM!", |
| return -1); |
| |
| /* disable MCLK dpm */ |
| if (!data->mclk_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, 1) == 0), |
| "Failed to force MCLK DPM0!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE( |
| (smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_Disable) == 0), |
| "Failed to disable MCLK DPM!", |
| return -1); |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_stop_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| /* disable general power management */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| GLOBAL_PWRMGT_EN, 0); |
| /* disable sclk deep sleep */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| DYNAMIC_PM_EN, 0); |
| |
| /* disable PCIE dpm */ |
| if (!data->pcie_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_Disable) == 0), |
| "Failed to disable pcie DPM during DPM Stop Function!", |
| return -1); |
| } |
| |
| if (fiji_disable_sclk_mclk_dpm(hwmgr)) { |
| printk(KERN_ERR "Failed to disable Sclk DPM and Mclk DPM!"); |
| return -1; |
| } |
| |
| PP_ASSERT_WITH_CODE( |
| (smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_Voltage_Cntl_Disable) == 0), |
| "Failed to disable voltage DPM during DPM Stop Function!", |
| return -1); |
| |
| return 0; |
| } |
| |
| static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr, |
| uint32_t sources) |
| { |
| bool protection; |
| enum DPM_EVENT_SRC src; |
| |
| switch (sources) { |
| default: |
| printk(KERN_ERR "Unknown throttling event sources."); |
| /* fall through */ |
| case 0: |
| protection = false; |
| /* src is unused */ |
| break; |
| case (1 << PHM_AutoThrottleSource_Thermal): |
| protection = true; |
| src = DPM_EVENT_SRC_DIGITAL; |
| break; |
| case (1 << PHM_AutoThrottleSource_External): |
| protection = true; |
| src = DPM_EVENT_SRC_EXTERNAL; |
| break; |
| case (1 << PHM_AutoThrottleSource_External) | |
| (1 << PHM_AutoThrottleSource_Thermal): |
| protection = true; |
| src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; |
| break; |
| } |
| /* Order matters - don't enable thermal protection for the wrong source. */ |
| if (protection) { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, |
| DPM_EVENT_SRC, src); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| THERMAL_PROTECTION_DIS, |
| !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)); |
| } else |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| THERMAL_PROTECTION_DIS, 1); |
| } |
| |
| static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, |
| PHM_AutoThrottleSource source) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| if (!(data->active_auto_throttle_sources & (1 << source))) { |
| data->active_auto_throttle_sources |= 1 << source; |
| fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); |
| } |
| return 0; |
| } |
| |
| static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) |
| { |
| return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); |
| } |
| |
| static int fiji_disable_auto_throttle_source(struct pp_hwmgr *hwmgr, |
| PHM_AutoThrottleSource source) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| if (data->active_auto_throttle_sources & (1 << source)) { |
| data->active_auto_throttle_sources &= ~(1 << source); |
| fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); |
| } |
| return 0; |
| } |
| |
| static int fiji_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) |
| { |
| return fiji_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); |
| } |
| |
| static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1; |
| PP_ASSERT_WITH_CODE(result == 0, |
| "DPM is already running right now, no need to enable DPM!", |
| return 0); |
| |
| if (fiji_voltage_control(hwmgr)) { |
| tmp_result = fiji_enable_voltage_control(hwmgr); |
| PP_ASSERT_WITH_CODE(tmp_result == 0, |
| "Failed to enable voltage control!", |
| result = tmp_result); |
| } |
| |
| if (fiji_voltage_control(hwmgr)) { |
| tmp_result = fiji_construct_voltage_tables(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to contruct voltage tables!", |
| result = tmp_result); |
| } |
| |
| tmp_result = fiji_initialize_mc_reg_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize MC reg table!", result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); |
| |
| tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program static screen threshold parameters!", |
| result = tmp_result); |
| |
| tmp_result = fiji_enable_display_gap(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable display gap!", result = tmp_result); |
| |
| tmp_result = fiji_program_voting_clients(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program voting clients!", result = tmp_result); |
| |
| tmp_result = fiji_process_firmware_header(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to process firmware header!", result = tmp_result); |
| |
| tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize switch from ArbF0 to F1!", |
| result = tmp_result); |
| |
| tmp_result = fiji_init_smc_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize SMC table!", result = tmp_result); |
| |
| tmp_result = fiji_init_arb_table_index(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize ARB table index!", result = tmp_result); |
| |
| tmp_result = fiji_populate_pm_fuses(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to populate PM fuses!", result = tmp_result); |
| |
| tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable VR hot GPIO interrupt!", result = tmp_result); |
| |
| tmp_result = tonga_notify_smc_display_change(hwmgr, false); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to notify no display!", result = tmp_result); |
| |
| tmp_result = fiji_enable_sclk_control(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable SCLK control!", result = tmp_result); |
| |
| tmp_result = fiji_enable_ulv(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable ULV!", result = tmp_result); |
| |
| tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable deep sleep master switch!", result = tmp_result); |
| |
| tmp_result = fiji_start_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to start DPM!", result = tmp_result); |
| |
| tmp_result = fiji_enable_smc_cac(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable SMC CAC!", result = tmp_result); |
| |
| tmp_result = fiji_enable_power_containment(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable power containment!", result = tmp_result); |
| |
| tmp_result = fiji_power_control_set_level(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to power control set level!", result = tmp_result); |
| |
| tmp_result = fiji_enable_thermal_auto_throttle(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable thermal auto throttle!", result = tmp_result); |
| |
| return result; |
| } |
| |
| static int fiji_disable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = (fiji_is_dpm_running(hwmgr)) ? 0 : -1; |
| PP_ASSERT_WITH_CODE(tmp_result == 0, |
| "DPM is not running right now, no need to disable DPM!", |
| return 0); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); |
| |
| tmp_result = fiji_disable_power_containment(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable power containment!", result = tmp_result); |
| |
| tmp_result = fiji_disable_smc_cac(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable SMC CAC!", result = tmp_result); |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_SPLL_SPREAD_SPECTRUM, SSEN, 0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0); |
| |
| tmp_result = fiji_disable_thermal_auto_throttle(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable thermal auto throttle!", result = tmp_result); |
| |
| tmp_result = fiji_stop_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to stop DPM!", result = tmp_result); |
| |
| tmp_result = fiji_disable_deep_sleep_master_switch(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable deep sleep master switch!", result = tmp_result); |
| |
| tmp_result = fiji_disable_ulv(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable ULV!", result = tmp_result); |
| |
| tmp_result = fiji_clear_voting_clients(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to clear voting clients!", result = tmp_result); |
| |
| tmp_result = fiji_reset_to_default(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to reset to default!", result = tmp_result); |
| |
| tmp_result = fiji_force_switch_to_arbf0(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to force to switch arbf0!", result = tmp_result); |
| |
| return result; |
| } |
| |
| static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t level, tmp; |
| |
| if (!data->sclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| (1 << level)); |
| } |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| (1 << level)); |
| } |
| } |
| |
| if (!data->pcie_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, |
| (1 << level)); |
| } |
| } |
| return 0; |
| } |
| |
| static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| phm_apply_dal_min_voltage_request(hwmgr); |
| |
| if (!data->sclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| } |
| return 0; |
| } |
| |
| static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| if (!fiji_is_dpm_running(hwmgr)) |
| return -EINVAL; |
| |
| if (!data->pcie_dpm_key_disabled) { |
| smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_UnForceLevel); |
| } |
| |
| return fiji_upload_dpmlevel_enable_mask(hwmgr); |
| } |
| |
| static uint32_t fiji_get_lowest_enabled_level( |
| struct pp_hwmgr *hwmgr, uint32_t mask) |
| { |
| uint32_t level = 0; |
| |
| while(0 == (mask & (1 << level))) |
| level++; |
| |
| return level; |
| } |
| |
| static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = |
| (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t level; |
| |
| if (!data->sclk_dpm_key_disabled) |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = fiji_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| (1 << level)); |
| |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| level = fiji_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| (1 << level)); |
| } |
| } |
| |
| if (!data->pcie_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { |
| level = fiji_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, |
| (1 << level)); |
| } |
| } |
| |
| return 0; |
| |
| } |
| static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, |
| enum amd_dpm_forced_level level) |
| { |
| int ret = 0; |
| |
| switch (level) { |
| case AMD_DPM_FORCED_LEVEL_HIGH: |
| ret = fiji_force_dpm_highest(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| case AMD_DPM_FORCED_LEVEL_LOW: |
| ret = fiji_force_dpm_lowest(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| case AMD_DPM_FORCED_LEVEL_AUTO: |
| ret = fiji_unforce_dpm_levels(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| default: |
| break; |
| } |
| |
| hwmgr->dpm_level = level; |
| |
| return ret; |
| } |
| |
| static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr) |
| { |
| return sizeof(struct fiji_power_state); |
| } |
| |
| static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, |
| void *state, struct pp_power_state *power_state, |
| void *pp_table, uint32_t classification_flag) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_power_state *fiji_power_state = |
| (struct fiji_power_state *)(&(power_state->hardware)); |
| struct fiji_performance_level *performance_level; |
| ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; |
| ATOM_Tonga_POWERPLAYTABLE *powerplay_table = |
| (ATOM_Tonga_POWERPLAYTABLE *)pp_table; |
| ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = |
| (ATOM_Tonga_SCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); |
| ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = |
| (ATOM_Tonga_MCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); |
| |
| /* The following fields are not initialized here: id orderedList allStatesList */ |
| power_state->classification.ui_label = |
| (le16_to_cpu(state_entry->usClassification) & |
| ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> |
| ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; |
| power_state->classification.flags = classification_flag; |
| /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ |
| |
| power_state->classification.temporary_state = false; |
| power_state->classification.to_be_deleted = false; |
| |
| power_state->validation.disallowOnDC = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Tonga_DISALLOW_ON_DC)); |
| |
| power_state->pcie.lanes = 0; |
| |
| power_state->display.disableFrameModulation = false; |
| power_state->display.limitRefreshrate = false; |
| power_state->display.enableVariBright = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Tonga_ENABLE_VARIBRIGHT)); |
| |
| power_state->validation.supportedPowerLevels = 0; |
| power_state->uvd_clocks.VCLK = 0; |
| power_state->uvd_clocks.DCLK = 0; |
| power_state->temperatures.min = 0; |
| power_state->temperatures.max = 0; |
| |
| performance_level = &(fiji_power_state->performance_levels |
| [fiji_power_state->performance_level_count++]); |
| |
| PP_ASSERT_WITH_CODE( |
| (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS), |
| "Performance levels exceeds SMC limit!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE( |
| (fiji_power_state->performance_level_count <= |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), |
| "Performance levels exceeds Driver limit!", |
| return -1); |
| |
| /* Performance levels are arranged from low to high. */ |
| performance_level->memory_clock = mclk_dep_table->entries |
| [state_entry->ucMemoryClockIndexLow].ulMclk; |
| performance_level->engine_clock = sclk_dep_table->entries |
| [state_entry->ucEngineClockIndexLow].ulSclk; |
| performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, |
| state_entry->ucPCIEGenLow); |
| performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, |
| state_entry->ucPCIELaneHigh); |
| |
| performance_level = &(fiji_power_state->performance_levels |
| [fiji_power_state->performance_level_count++]); |
| performance_level->memory_clock = mclk_dep_table->entries |
| [state_entry->ucMemoryClockIndexHigh].ulMclk; |
| performance_level->engine_clock = sclk_dep_table->entries |
| [state_entry->ucEngineClockIndexHigh].ulSclk; |
| performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, |
| state_entry->ucPCIEGenHigh); |
| performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, |
| state_entry->ucPCIELaneHigh); |
| |
| return 0; |
| } |
| |
| static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, struct pp_power_state *state) |
| { |
| int result; |
| struct fiji_power_state *ps; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| |
| state->hardware.magic = PHM_VIslands_Magic; |
| |
| ps = (struct fiji_power_state *)(&state->hardware); |
| |
| result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state, |
| fiji_get_pp_table_entry_callback_func); |
| |
| /* This is the earliest time we have all the dependency table and the VBIOS boot state |
| * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state |
| * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state |
| */ |
| if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { |
| if (dep_mclk_table->entries[0].clk != |
| data->vbios_boot_state.mclk_bootup_value) |
| printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot MCLK level"); |
| if (dep_mclk_table->entries[0].vddci != |
| data->vbios_boot_state.vddci_bootup_value) |
| printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot VDDCI level"); |
| } |
| |
| /* set DC compatible flag if this state supports DC */ |
| if (!state->validation.disallowOnDC) |
| ps->dc_compatible = true; |
| |
| if (state->classification.flags & PP_StateClassificationFlag_ACPI) |
| data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; |
| |
| ps->uvd_clks.vclk = state->uvd_clocks.VCLK; |
| ps->uvd_clks.dclk = state->uvd_clocks.DCLK; |
| |
| if (!result) { |
| uint32_t i; |
| |
| switch (state->classification.ui_label) { |
| case PP_StateUILabel_Performance: |
| data->use_pcie_performance_levels = true; |
| |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_performance.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_performance.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_performance.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.max = |
| ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_performance.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| case PP_StateUILabel_Battery: |
| data->use_pcie_power_saving_levels = true; |
| |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_power_saving.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_power_saving.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_power_saving.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.max = |
| ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_power_saving.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, |
| struct pp_power_state *request_ps, |
| const struct pp_power_state *current_ps) |
| { |
| struct fiji_power_state *fiji_ps = |
| cast_phw_fiji_power_state(&request_ps->hardware); |
| uint32_t sclk; |
| uint32_t mclk; |
| struct PP_Clocks minimum_clocks = {0}; |
| bool disable_mclk_switching; |
| bool disable_mclk_switching_for_frame_lock; |
| struct cgs_display_info info = {0}; |
| const struct phm_clock_and_voltage_limits *max_limits; |
| uint32_t i; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int32_t count; |
| int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; |
| |
| data->battery_state = (PP_StateUILabel_Battery == |
| request_ps->classification.ui_label); |
| |
| PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2, |
| "VI should always have 2 performance levels",); |
| |
| max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? |
| &(hwmgr->dyn_state.max_clock_voltage_on_ac) : |
| &(hwmgr->dyn_state.max_clock_voltage_on_dc); |
| |
| /* Cap clock DPM tables at DC MAX if it is in DC. */ |
| if (PP_PowerSource_DC == hwmgr->power_source) { |
| for (i = 0; i < fiji_ps->performance_level_count; i++) { |
| if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk) |
| fiji_ps->performance_levels[i].memory_clock = max_limits->mclk; |
| if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk) |
| fiji_ps->performance_levels[i].engine_clock = max_limits->sclk; |
| } |
| } |
| |
| fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk; |
| fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk; |
| |
| fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ |
| |
| /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */ |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) { |
| max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); |
| stable_pstate_sclk = (max_limits->sclk * 75) / 100; |
| |
| for (count = table_info->vdd_dep_on_sclk->count - 1; |
| count >= 0; count--) { |
| if (stable_pstate_sclk >= |
| table_info->vdd_dep_on_sclk->entries[count].clk) { |
| stable_pstate_sclk = |
| table_info->vdd_dep_on_sclk->entries[count].clk; |
| break; |
| } |
| } |
| |
| if (count < 0) |
| stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; |
| |
| stable_pstate_mclk = max_limits->mclk; |
| |
| minimum_clocks.engineClock = stable_pstate_sclk; |
| minimum_clocks.memoryClock = stable_pstate_mclk; |
| } |
| |
| if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) |
| minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; |
| |
| if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) |
| minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; |
| |
| fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; |
| |
| if (0 != hwmgr->gfx_arbiter.sclk_over_drive) { |
| PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= |
| hwmgr->platform_descriptor.overdriveLimit.engineClock), |
| "Overdrive sclk exceeds limit", |
| hwmgr->gfx_arbiter.sclk_over_drive = |
| hwmgr->platform_descriptor.overdriveLimit.engineClock); |
| |
| if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) |
| fiji_ps->performance_levels[1].engine_clock = |
| hwmgr->gfx_arbiter.sclk_over_drive; |
| } |
| |
| if (0 != hwmgr->gfx_arbiter.mclk_over_drive) { |
| PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock), |
| "Overdrive mclk exceeds limit", |
| hwmgr->gfx_arbiter.mclk_over_drive = |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock); |
| |
| if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) |
| fiji_ps->performance_levels[1].memory_clock = |
| hwmgr->gfx_arbiter.mclk_over_drive; |
| } |
| |
| disable_mclk_switching_for_frame_lock = phm_cap_enabled( |
| hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); |
| |
| disable_mclk_switching = (1 < info.display_count) || |
| disable_mclk_switching_for_frame_lock; |
| |
| sclk = fiji_ps->performance_levels[0].engine_clock; |
| mclk = fiji_ps->performance_levels[0].memory_clock; |
| |
| if (disable_mclk_switching) |
| mclk = fiji_ps->performance_levels |
| [fiji_ps->performance_level_count - 1].memory_clock; |
| |
| if (sclk < minimum_clocks.engineClock) |
| sclk = (minimum_clocks.engineClock > max_limits->sclk) ? |
| max_limits->sclk : minimum_clocks.engineClock; |
| |
| if (mclk < minimum_clocks.memoryClock) |
| mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? |
| max_limits->mclk : minimum_clocks.memoryClock; |
| |
| fiji_ps->performance_levels[0].engine_clock = sclk; |
| fiji_ps->performance_levels[0].memory_clock = mclk; |
| |
| fiji_ps->performance_levels[1].engine_clock = |
| (fiji_ps->performance_levels[1].engine_clock >= |
| fiji_ps->performance_levels[0].engine_clock) ? |
| fiji_ps->performance_levels[1].engine_clock : |
| fiji_ps->performance_levels[0].engine_clock; |
| |
| if (disable_mclk_switching) { |
| if (mclk < fiji_ps->performance_levels[1].memory_clock) |
| mclk = fiji_ps->performance_levels[1].memory_clock; |
| |
| fiji_ps->performance_levels[0].memory_clock = mclk; |
| fiji_ps->performance_levels[1].memory_clock = mclk; |
| } else { |
| if (fiji_ps->performance_levels[1].memory_clock < |
| fiji_ps->performance_levels[0].memory_clock) |
| fiji_ps->performance_levels[1].memory_clock = |
| fiji_ps->performance_levels[0].memory_clock; |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) { |
| for (i = 0; i < fiji_ps->performance_level_count; i++) { |
| fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk; |
| fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk; |
| fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; |
| fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| const struct fiji_power_state *fiji_ps = |
| cast_const_phw_fiji_power_state(states->pnew_state); |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| uint32_t sclk = fiji_ps->performance_levels |
| [fiji_ps->performance_level_count - 1].engine_clock; |
| struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| uint32_t mclk = fiji_ps->performance_levels |
| [fiji_ps->performance_level_count - 1].memory_clock; |
| uint32_t i; |
| struct cgs_display_info info = {0}; |
| |
| data->need_update_smu7_dpm_table = 0; |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| if (sclk == sclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= sclk_table->count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; |
| else { |
| if(data->display_timing.min_clock_in_sr != |
| hwmgr->display_config.min_core_set_clock_in_sr) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; |
| } |
| |
| for (i = 0; i < mclk_table->count; i++) { |
| if (mclk == mclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= mclk_table->count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| if (data->display_timing.num_existing_displays != info.display_count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; |
| |
| return 0; |
| } |
| |
| static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr, |
| const struct fiji_power_state *fiji_ps) |
| { |
| uint32_t i; |
| uint32_t sclk, max_sclk = 0; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_dpm_table *dpm_table = &data->dpm_table; |
| |
| for (i = 0; i < fiji_ps->performance_level_count; i++) { |
| sclk = fiji_ps->performance_levels[i].engine_clock; |
| if (max_sclk < sclk) |
| max_sclk = sclk; |
| } |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) |
| return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? |
| dpm_table->pcie_speed_table.dpm_levels |
| [dpm_table->pcie_speed_table.count - 1].value : |
| dpm_table->pcie_speed_table.dpm_levels[i].value); |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_request_link_speed_change_before_state_change( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| const struct fiji_power_state *fiji_nps = |
| cast_const_phw_fiji_power_state(states->pnew_state); |
| const struct fiji_power_state *fiji_cps = |
| cast_const_phw_fiji_power_state(states->pcurrent_state); |
| |
| uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps); |
| uint16_t current_link_speed; |
| |
| if (data->force_pcie_gen == PP_PCIEGenInvalid) |
| current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps); |
| else |
| current_link_speed = data->force_pcie_gen; |
| |
| data->force_pcie_gen = PP_PCIEGenInvalid; |
| data->pspp_notify_required = false; |
| if (target_link_speed > current_link_speed) { |
| switch(target_link_speed) { |
| case PP_PCIEGen3: |
| if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false)) |
| break; |
| data->force_pcie_gen = PP_PCIEGen2; |
| if (current_link_speed == PP_PCIEGen2) |
| break; |
| case PP_PCIEGen2: |
| if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false)) |
| break; |
| default: |
| data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr); |
| break; |
| } |
| } else { |
| if (target_link_speed < current_link_speed) |
| data->pspp_notify_required = true; |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr), |
| "Trying to freeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_FreezeLevel), |
| "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| DPMTABLE_OD_UPDATE_MCLK)) { |
| PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr), |
| "Trying to freeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_FreezeLevel), |
| "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_populate_and_upload_sclk_mclk_dpm_levels( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result = 0; |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| const struct fiji_power_state *fiji_ps = |
| cast_const_phw_fiji_power_state(states->pnew_state); |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t sclk = fiji_ps->performance_levels |
| [fiji_ps->performance_level_count - 1].engine_clock; |
| uint32_t mclk = fiji_ps->performance_levels |
| [fiji_ps->performance_level_count - 1].memory_clock; |
| struct fiji_dpm_table *dpm_table = &data->dpm_table; |
| |
| struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table; |
| uint32_t dpm_count, clock_percent; |
| uint32_t i; |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { |
| dpm_table->sclk_table.dpm_levels |
| [dpm_table->sclk_table.count - 1].value = sclk; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_OD6PlusinACSupport) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_OD6PlusinDCSupport)) { |
| /* Need to do calculation based on the golden DPM table |
| * as the Heatmap GPU Clock axis is also based on the default values |
| */ |
| PP_ASSERT_WITH_CODE( |
| (golden_dpm_table->sclk_table.dpm_levels |
| [golden_dpm_table->sclk_table.count - 1].value != 0), |
| "Divide by 0!", |
| return -1); |
| dpm_count = dpm_table->sclk_table.count < 2 ? |
| 0 : dpm_table->sclk_table.count - 2; |
| for (i = dpm_count; i > 1; i--) { |
| if (sclk > golden_dpm_table->sclk_table.dpm_levels |
| [golden_dpm_table->sclk_table.count-1].value) { |
| clock_percent = |
| ((sclk - golden_dpm_table->sclk_table.dpm_levels |
| [golden_dpm_table->sclk_table.count-1].value) * 100) / |
| golden_dpm_table->sclk_table.dpm_levels |
| [golden_dpm_table->sclk_table.count-1].value; |
| |
| dpm_table->sclk_table.dpm_levels[i].value = |
| golden_dpm_table->sclk_table.dpm_levels[i].value + |
| (golden_dpm_table->sclk_table.dpm_levels[i].value * |
| clock_percent)/100; |
| |
| } else if (golden_dpm_table->sclk_table.dpm_levels |
| [dpm_table->sclk_table.count-1].value > sclk) { |
| clock_percent = |
| ((golden_dpm_table->sclk_table.dpm_levels |
| [golden_dpm_table->sclk_table.count - 1].value - sclk) * |
| 100) / |
| golden_dpm_table->sclk_table.dpm_levels |
| [golden_dpm_table->sclk_table.count-1].value; |
| |
| dpm_table->sclk_table.dpm_levels[i].value = |
| golden_dpm_table->sclk_table.dpm_levels[i].value - |
| (golden_dpm_table->sclk_table.dpm_levels[i].value * |
| clock_percent) / 100; |
| } else |
| dpm_table->sclk_table.dpm_levels[i].value = |
| golden_dpm_table->sclk_table.dpm_levels[i].value; |
| } |
| } |
| } |
| |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { |
| dpm_table->mclk_table.dpm_levels |
| [dpm_table->mclk_table.count - 1].value = mclk; |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_OD6PlusinACSupport) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_OD6PlusinDCSupport)) { |
| |
| PP_ASSERT_WITH_CODE( |
| (golden_dpm_table->mclk_table.dpm_levels |
| [golden_dpm_table->mclk_table.count-1].value != 0), |
| "Divide by 0!", |
| return -1); |
| dpm_count = dpm_table->mclk_table.count < 2 ? |
| 0 : dpm_table->mclk_table.count - 2; |
| for (i = dpm_count; i > 1; i--) { |
| if (mclk > golden_dpm_table->mclk_table.dpm_levels |
| [golden_dpm_table->mclk_table.count-1].value) { |
| clock_percent = ((mclk - |
| golden_dpm_table->mclk_table.dpm_levels |
| [golden_dpm_table->mclk_table.count-1].value) * 100) / |
| golden_dpm_table->mclk_table.dpm_levels |
| [golden_dpm_table->mclk_table.count-1].value; |
| |
| dpm_table->mclk_table.dpm_levels[i].value = |
| golden_dpm_table->mclk_table.dpm_levels[i].value + |
| (golden_dpm_table->mclk_table.dpm_levels[i].value * |
| clock_percent) / 100; |
| |
| } else if (golden_dpm_table->mclk_table.dpm_levels |
| [dpm_table->mclk_table.count-1].value > mclk) { |
| clock_percent = ((golden_dpm_table->mclk_table.dpm_levels |
| [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) / |
| golden_dpm_table->mclk_table.dpm_levels |
| [golden_dpm_table->mclk_table.count-1].value; |
| |
| dpm_table->mclk_table.dpm_levels[i].value = |
| golden_dpm_table->mclk_table.dpm_levels[i].value - |
| (golden_dpm_table->mclk_table.dpm_levels[i].value * |
| clock_percent) / 100; |
| } else |
| dpm_table->mclk_table.dpm_levels[i].value = |
| golden_dpm_table->mclk_table.dpm_levels[i].value; |
| } |
| } |
| } |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { |
| result = fiji_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { |
| /*populate MCLK dpm table to SMU7 */ |
| result = fiji_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| return result; |
| } |
| |
| static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr, |
| struct fiji_single_dpm_table * dpm_table, |
| uint32_t low_limit, uint32_t high_limit) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| if ((dpm_table->dpm_levels[i].value < low_limit) || |
| (dpm_table->dpm_levels[i].value > high_limit)) |
| dpm_table->dpm_levels[i].enabled = false; |
| else |
| dpm_table->dpm_levels[i].enabled = true; |
| } |
| return 0; |
| } |
| |
| static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr, |
| const struct fiji_power_state *fiji_ps) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t high_limit_count; |
| |
| PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1), |
| "power state did not have any performance level", |
| return -1); |
| |
| high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1; |
| |
| fiji_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.sclk_table), |
| fiji_ps->performance_levels[0].engine_clock, |
| fiji_ps->performance_levels[high_limit_count].engine_clock); |
| |
| fiji_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.mclk_table), |
| fiji_ps->performance_levels[0].memory_clock, |
| fiji_ps->performance_levels[high_limit_count].memory_clock); |
| |
| return 0; |
| } |
| |
| static int fiji_generate_dpm_level_enable_mask( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result; |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| const struct fiji_power_state *fiji_ps = |
| cast_const_phw_fiji_power_state(states->pnew_state); |
| |
| result = fiji_trim_dpm_states(hwmgr, fiji_ps); |
| if (result) |
| return result; |
| |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); |
| data->last_mclk_dpm_enable_mask = |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask; |
| |
| if (data->uvd_enabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1) |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE; |
| } |
| |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); |
| |
| return 0; |
| } |
| |
| int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable ? |
| (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable : |
| (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable); |
| } |
| |
| int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable? |
| PPSMC_MSG_VCEDPM_Enable : |
| PPSMC_MSG_VCEDPM_Disable); |
| } |
| |
| int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable? |
| PPSMC_MSG_SAMUDPM_Enable : |
| PPSMC_MSG_SAMUDPM_Disable); |
| } |
| |
| int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable? |
| PPSMC_MSG_ACPDPM_Enable : |
| PPSMC_MSG_ACPDPM_Disable); |
| } |
| |
| int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (!bgate) { |
| data->smc_state_table.UvdBootLevel = 0; |
| if (table_info->mm_dep_table->count > 0) |
| data->smc_state_table.UvdBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| mm_boot_level_offset = data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0x00FFFFFF; |
| mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDDPM) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_UVDDPM_SetEnabledMask, |
| (uint32_t)(1 << data->smc_state_table.UvdBootLevel)); |
| } |
| |
| return fiji_enable_disable_uvd_dpm(hwmgr, !bgate); |
| } |
| |
| int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| const struct fiji_power_state *fiji_nps = |
| cast_const_phw_fiji_power_state(states->pnew_state); |
| const struct fiji_power_state *fiji_cps = |
| cast_const_phw_fiji_power_state(states->pcurrent_state); |
| |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (fiji_nps->vce_clks.evclk >0 && |
| (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) { |
| data->smc_state_table.VceBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| |
| mm_boot_level_offset = data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, VceBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFF00FFFF; |
| mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) { |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_VCEDPM_SetEnabledMask, |
| (uint32_t)1 << data->smc_state_table.VceBootLevel); |
| |
| fiji_enable_disable_vce_dpm(hwmgr, true); |
| } else if (fiji_nps->vce_clks.evclk == 0 && |
| fiji_cps != NULL && |
| fiji_cps->vce_clks.evclk > 0) |
| fiji_enable_disable_vce_dpm(hwmgr, false); |
| } |
| |
| return 0; |
| } |
| |
| int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (!bgate) { |
| data->smc_state_table.SamuBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| mm_boot_level_offset = data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, SamuBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFFFFFF00; |
| mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SAMUDPM_SetEnabledMask, |
| (uint32_t)(1 << data->smc_state_table.SamuBootLevel)); |
| } |
| |
| return fiji_enable_disable_samu_dpm(hwmgr, !bgate); |
| } |
| |
| int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (!bgate) { |
| data->smc_state_table.AcpBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| mm_boot_level_offset = data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, AcpBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFFFF00FF; |
| mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_ACPDPM_SetEnabledMask, |
| (uint32_t)(1 << data->smc_state_table.AcpBootLevel)); |
| } |
| |
| return fiji_enable_disable_acp_dpm(hwmgr, !bgate); |
| } |
| |
| static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (hwmgr->gfx_arbiter.sclk_threshold != |
| data->low_sclk_interrupt_threshold)) { |
| data->low_sclk_interrupt_threshold = |
| hwmgr->gfx_arbiter.sclk_threshold; |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = fiji_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| data->dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, |
| LowSclkInterruptThreshold), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| data->sram_end); |
| } |
| |
| return result; |
| } |
| |
| static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
| return fiji_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| |
| PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr), |
| "Trying to Unfreeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_UnfreezeLevel), |
| "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { |
| |
| PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr), |
| "Trying to Unfreeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_UnfreezeLevel), |
| "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| data->need_update_smu7_dpm_table = 0; |
| |
| return 0; |
| } |
| |
| /* Look up the voltaged based on DAL's requested level. |
| * and then send the requested VDDC voltage to SMC |
| */ |
| static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr) |
| { |
| return; |
| } |
| |
| int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| /* Apply minimum voltage based on DAL's request level */ |
| fiji_apply_dal_minimum_voltage_request(hwmgr); |
| |
| if (0 == data->sclk_dpm_key_disabled) { |
| /* Checking if DPM is running. If we discover hang because of this, |
| * we should skip this message. |
| */ |
| if (!fiji_is_dpm_running(hwmgr)) |
| printk(KERN_ERR "[ powerplay ] " |
| "Trying to set Enable Mask when DPM is disabled \n"); |
| |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Set Sclk Dpm enable Mask failed", return -1); |
| } |
| } |
| |
| if (0 == data->mclk_dpm_key_disabled) { |
| /* Checking if DPM is running. If we discover hang because of this, |
| * we should skip this message. |
| */ |
| if (!fiji_is_dpm_running(hwmgr)) |
| printk(KERN_ERR "[ powerplay ]" |
| " Trying to set Enable Mask when DPM is disabled \n"); |
| |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Set Mclk Dpm enable Mask failed", return -1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_notify_link_speed_change_after_state_change( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| const struct fiji_power_state *fiji_ps = |
| cast_const_phw_fiji_power_state(states->pnew_state); |
| uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps); |
| uint8_t request; |
| |
| if (data->pspp_notify_required) { |
| if (target_link_speed == PP_PCIEGen3) |
| request = PCIE_PERF_REQ_GEN3; |
| else if (target_link_speed == PP_PCIEGen2) |
| request = PCIE_PERF_REQ_GEN2; |
| else |
| request = PCIE_PERF_REQ_GEN1; |
| |
| if(request == PCIE_PERF_REQ_GEN1 && |
| fiji_get_current_pcie_speed(hwmgr) > 0) |
| return 0; |
| |
| if (acpi_pcie_perf_request(hwmgr->device, request, false)) { |
| if (PP_PCIEGen2 == target_link_speed) |
| printk("PSPP request to switch to Gen2 from Gen3 Failed!"); |
| else |
| printk("PSPP request to switch to Gen1 from Gen2 Failed!"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr, |
| const void *input) |
| { |
| int tmp_result, result = 0; |
| |
| tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to find DPM states clocks in DPM table!", |
| result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = |
| fiji_request_link_speed_change_before_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to request link speed change before state change!", |
| result = tmp_result); |
| } |
| |
| tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to freeze SCLK MCLK DPM!", result = tmp_result); |
| |
| tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to populate and upload SCLK MCLK DPM levels!", |
| result = tmp_result); |
| |
| tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to generate DPM level enabled mask!", |
| result = tmp_result); |
| |
| tmp_result = fiji_update_vce_dpm(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to update VCE DPM!", |
| result = tmp_result); |
| |
| tmp_result = fiji_update_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to update SCLK threshold!", |
| result = tmp_result); |
| |
| tmp_result = fiji_program_mem_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program memory timing parameters!", |
| result = tmp_result); |
| |
| tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to unfreeze SCLK MCLK DPM!", |
| result = tmp_result); |
| |
| tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to upload DPM level enabled mask!", |
| result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = |
| fiji_notify_link_speed_change_after_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to notify link speed change after state change!", |
| result = tmp_result); |
| } |
| |
| return result; |
| } |
| |
| static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct fiji_power_state *fiji_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| fiji_ps = cast_phw_fiji_power_state(&ps->hardware); |
| |
| if (low) |
| return fiji_ps->performance_levels[0].engine_clock; |
| else |
| return fiji_ps->performance_levels |
| [fiji_ps->performance_level_count-1].engine_clock; |
| } |
| |
| static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct fiji_power_state *fiji_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| fiji_ps = cast_phw_fiji_power_state(&ps->hardware); |
| |
| if (low) |
| return fiji_ps->performance_levels[0].memory_clock; |
| else |
| return fiji_ps->performance_levels |
| [fiji_ps->performance_level_count-1].memory_clock; |
| } |
| |
| static void fiji_print_current_perforce_level( |
| struct pp_hwmgr *hwmgr, struct seq_file *m) |
| { |
| uint32_t sclk, mclk, activity_percent = 0; |
| uint32_t offset; |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); |
| |
| sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); |
| |
| mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", |
| mclk / 100, sclk / 100); |
| |
| offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity); |
| activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); |
| activity_percent += 0x80; |
| activity_percent >>= 8; |
| |
| seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent); |
| |
| seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en"); |
| |
| seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en"); |
| } |
| |
| static int fiji_program_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| uint32_t num_active_displays = 0; |
| uint32_t display_gap = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); |
| uint32_t display_gap2; |
| uint32_t pre_vbi_time_in_us; |
| uint32_t frame_time_in_us; |
| uint32_t ref_clock; |
| uint32_t refresh_rate = 0; |
| struct cgs_display_info info = {0}; |
| struct cgs_mode_info mode_info; |
| |
| info.mode_info = &mode_info; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| num_active_displays = info.display_count; |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, |
| DISP_GAP, (num_active_displays > 0)? |
| DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL, display_gap); |
| |
| ref_clock = mode_info.ref_clock; |
| refresh_rate = mode_info.refresh_rate; |
| |
| if (refresh_rate == 0) |
| refresh_rate = 60; |
| |
| frame_time_in_us = 1000000 / refresh_rate; |
| |
| pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us; |
| display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL2, display_gap2); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| offsetof(SMU73_SoftRegisters, VBlankTimeout), |
| (frame_time_in_us - pre_vbi_time_in_us)); |
| |
| if (num_active_displays == 1) |
| tonga_notify_smc_display_change(hwmgr, true); |
| |
| return 0; |
| } |
| |
| int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
| { |
| return fiji_program_display_gap(hwmgr); |
| } |
| |
| static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, |
| uint16_t us_max_fan_pwm) |
| { |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; |
| |
| if (phm_is_hw_access_blocked(hwmgr)) |
| return 0; |
| |
| return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm); |
| } |
| |
| static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, |
| uint16_t us_max_fan_rpm) |
| { |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; |
| |
| if (phm_is_hw_access_blocked(hwmgr)) |
| return 0; |
| |
| return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm); |
| } |
| |
| int fiji_dpm_set_interrupt_state(void *private_data, |
| unsigned src_id, unsigned type, |
| int enabled) |
| { |
| uint32_t cg_thermal_int; |
| struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| switch (type) { |
| case AMD_THERMAL_IRQ_LOW_TO_HIGH: |
| if (enabled) { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } else { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } |
| break; |
| |
| case AMD_THERMAL_IRQ_HIGH_TO_LOW: |
| if (enabled) { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } else { |
| cg_thermal_int = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT); |
| cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); |
| } |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr, |
| const void *thermal_interrupt_info) |
| { |
| int result; |
| const struct pp_interrupt_registration_info *info = |
| (const struct pp_interrupt_registration_info *) |
| thermal_interrupt_info; |
| |
| if (info == NULL) |
| return -EINVAL; |
| |
| result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST, |
| fiji_dpm_set_interrupt_state, |
| info->call_back, info->context); |
| |
| if (result) |
| return -EINVAL; |
| |
| result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST, |
| fiji_dpm_set_interrupt_state, |
| info->call_back, info->context); |
| |
| if (result) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) |
| { |
| if (mode) { |
| /* stop auto-manage */ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl)) |
| fiji_fan_ctrl_stop_smc_fan_control(hwmgr); |
| fiji_fan_ctrl_set_static_mode(hwmgr, mode); |
| } else |
| /* restart auto-manage */ |
| fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr); |
| |
| return 0; |
| } |
| |
| static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr) |
| { |
| if (hwmgr->fan_ctrl_is_in_default_mode) |
| return hwmgr->fan_ctrl_default_mode; |
| else |
| return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_FDO_CTRL2, FDO_PWM_MODE); |
| } |
| |
| static int fiji_force_clock_level(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, uint32_t mask) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| |
| if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) |
| return -EINVAL; |
| |
| switch (type) { |
| case PP_SCLK: |
| if (!data->sclk_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask); |
| break; |
| |
| case PP_MCLK: |
| if (!data->mclk_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask); |
| break; |
| |
| case PP_PCIE: |
| { |
| uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; |
| uint32_t level = 0; |
| |
| while (tmp >>= 1) |
| level++; |
| |
| if (!data->pcie_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, |
| level); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, char *buf) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); |
| int i, now, size = 0; |
| uint32_t clock, pcie_speed; |
| |
| switch (type) { |
| case PP_SCLK: |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); |
| clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| if (clock > sclk_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < sclk_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, sclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_MCLK: |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); |
| clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| |
| for (i = 0; i < mclk_table->count; i++) { |
| if (clock > mclk_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < mclk_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, mclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_PCIE: |
| pcie_speed = fiji_get_current_pcie_speed(hwmgr); |
| for (i = 0; i < pcie_table->count; i++) { |
| if (pcie_speed != pcie_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < pcie_table->count; i++) |
| size += sprintf(buf + size, "%d: %s %s\n", i, |
| (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" : |
| (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" : |
| (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "", |
| (i == now) ? "*" : ""); |
| break; |
| default: |
| break; |
| } |
| return size; |
| } |
| |
| static inline bool fiji_are_power_levels_equal(const struct fiji_performance_level *pl1, |
| const struct fiji_performance_level *pl2) |
| { |
| return ((pl1->memory_clock == pl2->memory_clock) && |
| (pl1->engine_clock == pl2->engine_clock) && |
| (pl1->pcie_gen == pl2->pcie_gen) && |
| (pl1->pcie_lane == pl2->pcie_lane)); |
| } |
| |
| int fiji_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) |
| { |
| const struct fiji_power_state *psa = cast_const_phw_fiji_power_state(pstate1); |
| const struct fiji_power_state *psb = cast_const_phw_fiji_power_state(pstate2); |
| int i; |
| |
| if (equal == NULL || psa == NULL || psb == NULL) |
| return -EINVAL; |
| |
| /* If the two states don't even have the same number of performance levels they cannot be the same state. */ |
| if (psa->performance_level_count != psb->performance_level_count) { |
| *equal = false; |
| return 0; |
| } |
| |
| for (i = 0; i < psa->performance_level_count; i++) { |
| if (!fiji_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { |
| /* If we have found even one performance level pair that is different the states are different. */ |
| *equal = false; |
| return 0; |
| } |
| } |
| |
| /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ |
| *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); |
| *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); |
| *equal &= (psa->sclk_threshold == psb->sclk_threshold); |
| *equal &= (psa->acp_clk == psb->acp_clk); |
| |
| return 0; |
| } |
| |
| bool fiji_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| bool is_update_required = false; |
| struct cgs_display_info info = {0,0,NULL}; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| if (data->display_timing.num_existing_displays != info.display_count) |
| is_update_required = true; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { |
| if(hwmgr->display_config.min_core_set_clock_in_sr != data->display_timing.min_clock_in_sr) |
| is_update_required = true; |
| } |
| |
| return is_update_required; |
| } |
| |
| static int fiji_get_sclk_od(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| struct fiji_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.sclk_table); |
| int value; |
| |
| value = (sclk_table->dpm_levels[sclk_table->count - 1].value - |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) * |
| 100 / |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; |
| |
| return value; |
| } |
| |
| static int fiji_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.sclk_table); |
| struct pp_power_state *ps; |
| struct fiji_power_state *fiji_ps; |
| |
| if (value > 20) |
| value = 20; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| fiji_ps = cast_phw_fiji_power_state(&ps->hardware); |
| |
| fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].engine_clock = |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * |
| value / 100 + |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; |
| |
| return 0; |
| } |
| |
| static int fiji_get_mclk_od(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| struct fiji_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mclk_table); |
| int value; |
| |
| value = (mclk_table->dpm_levels[mclk_table->count - 1].value - |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) * |
| 100 / |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; |
| |
| return value; |
| } |
| |
| static int fiji_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); |
| struct fiji_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mclk_table); |
| struct pp_power_state *ps; |
| struct fiji_power_state *fiji_ps; |
| |
| if (value > 20) |
| value = 20; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| fiji_ps = cast_phw_fiji_power_state(&ps->hardware); |
| |
| fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].memory_clock = |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * |
| value / 100 + |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; |
| |
| return 0; |
| } |
| |
| static const struct pp_hwmgr_func fiji_hwmgr_funcs = { |
| .backend_init = &fiji_hwmgr_backend_init, |
| .backend_fini = &fiji_hwmgr_backend_fini, |
| .asic_setup = &fiji_setup_asic_task, |
| .dynamic_state_management_enable = &fiji_enable_dpm_tasks, |
| .dynamic_state_management_disable = &fiji_disable_dpm_tasks, |
| .force_dpm_level = &fiji_dpm_force_dpm_level, |
| .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries, |
| .get_power_state_size = &fiji_get_power_state_size, |
| .get_pp_table_entry = &fiji_get_pp_table_entry, |
| .patch_boot_state = &fiji_patch_boot_state, |
| .apply_state_adjust_rules = &fiji_apply_state_adjust_rules, |
| .power_state_set = &fiji_set_power_state_tasks, |
| .get_sclk = &fiji_dpm_get_sclk, |
| .get_mclk = &fiji_dpm_get_mclk, |
| .print_current_perforce_level = &fiji_print_current_perforce_level, |
| .powergate_uvd = &fiji_phm_powergate_uvd, |
| .powergate_vce = &fiji_phm_powergate_vce, |
| .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating, |
| .notify_smc_display_config_after_ps_adjustment = |
| &tonga_notify_smc_display_config_after_ps_adjustment, |
| .display_config_changed = &fiji_display_configuration_changed_task, |
| .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output, |
| .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output, |
| .get_temperature = fiji_thermal_get_temperature, |
| .stop_thermal_controller = fiji_thermal_stop_thermal_controller, |
| .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info, |
| .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent, |
| .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent, |
| .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default, |
| .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm, |
| .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm, |
| .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller, |
| .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt, |
| .set_fan_control_mode = fiji_set_fan_control_mode, |
| .get_fan_control_mode = fiji_get_fan_control_mode, |
| .check_states_equal = fiji_check_states_equal, |
| .check_smc_update_required_for_display_configuration = fiji_check_smc_update_required_for_display_configuration, |
| .force_clock_level = fiji_force_clock_level, |
| .print_clock_levels = fiji_print_clock_levels, |
| .get_sclk_od = fiji_get_sclk_od, |
| .set_sclk_od = fiji_set_sclk_od, |
| .get_mclk_od = fiji_get_mclk_od, |
| .set_mclk_od = fiji_set_mclk_od, |
| }; |
| |
| int fiji_hwmgr_init(struct pp_hwmgr *hwmgr) |
| { |
| hwmgr->hwmgr_func = &fiji_hwmgr_funcs; |
| hwmgr->pptable_func = &tonga_pptable_funcs; |
| pp_fiji_thermal_initialize(hwmgr); |
| return 0; |
| } |