blob: 8b5c2785767115ac10c469da754b9880fdfc9155 [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dc.h"
#include "opp.h"
#include "color_gamma.h"
/* When calculating LUT values the first region and at least one subsequent
* region are calculated with full precision. These defines are a demarcation
* of where the second region starts and ends.
* These are hardcoded values to avoid recalculating them in loops.
*/
#define PRECISE_LUT_REGION_START 224
#define PRECISE_LUT_REGION_END 239
static struct hw_x_point coordinates_x[MAX_HW_POINTS + 2];
// Hardcoded table that depends on setup_x_points_distribution and sdr_level=80
// If x points are changed, then PQ Y points will be misaligned and a new
// table would need to be generated. Or use old method that calls compute_pq.
// The last point is above PQ formula range (0-125 in normalized FP16)
// The value for the last point (128) is such that interpolation from
// 120 to 128 will give 1.0 for X = 125.0
// first couple points are 0 - HW LUT is mirrored around zero, so making first
// segment 0 to 0 will effectively clip it, and these are very low PQ codes
// min nonzero value below (216825) is a little under 12-bit PQ code 1.
static const unsigned long long pq_divider = 1000000000;
static const unsigned long long pq_numerator[MAX_HW_POINTS + 1] = {
0, 0, 0, 0, 216825, 222815,
228691, 234460, 240128, 245702, 251187, 256587,
261908, 267152, 272324, 277427, 282465, 292353,
302011, 311456, 320704, 329768, 338661, 347394,
355975, 364415, 372721, 380900, 388959, 396903,
404739, 412471, 420104, 435089, 449727, 464042,
478060, 491800, 505281, 518520, 531529, 544324,
556916, 569316, 581533, 593576, 605454, 617175,
628745, 651459, 673643, 695337, 716578, 737395,
757817, 777869, 797572, 816947, 836012, 854782,
873274, 891500, 909474, 927207, 944709, 979061,
1012601, 1045391, 1077485, 1108931, 1139770, 1170042,
1199778, 1229011, 1257767, 1286071, 1313948, 1341416,
1368497, 1395207, 1421563, 1473272, 1523733, 1573041,
1621279, 1668520, 1714828, 1760262, 1804874, 1848710,
1891814, 1934223, 1975973, 2017096, 2057622, 2097578,
2136989, 2214269, 2289629, 2363216, 2435157, 2505564,
2574539, 2642169, 2708536, 2773711, 2837760, 2900742,
2962712, 3023719, 3083810, 3143025, 3201405, 3315797,
3427246, 3535974, 3642181, 3746038, 3847700, 3947305,
4044975, 4140823, 4234949, 4327445, 4418394, 4507872,
4595951, 4682694, 4768161, 4935487, 5098326, 5257022,
5411878, 5563161, 5711107, 5855928, 5997812, 6136929,
6273436, 6407471, 6539163, 6668629, 6795976, 6921304,
7044703, 7286050, 7520623, 7748950, 7971492, 8188655,
8400800, 8608247, 8811286, 9010175, 9205149, 9396421,
9584186, 9768620, 9949889, 10128140, 10303513, 10646126,
10978648, 11301874, 11616501, 11923142, 12222340, 12514578,
12800290, 13079866, 13353659, 13621988, 13885144, 14143394,
14396982, 14646132, 14891052, 15368951, 15832050, 16281537,
16718448, 17143696, 17558086, 17962337, 18357092, 18742927,
19120364, 19489877, 19851894, 20206810, 20554983, 20896745,
21232399, 21886492, 22519276, 23132491, 23727656, 24306104,
24869013, 25417430, 25952292, 26474438, 26984626, 27483542,
27971811, 28450000, 28918632, 29378184, 29829095, 30706591,
31554022, 32373894, 33168387, 33939412, 34688657, 35417620,
36127636, 36819903, 37495502, 38155408, 38800507, 39431607,
40049446, 40654702, 41247996, 42400951, 43512407, 44585892,
45624474, 46630834, 47607339, 48556082, 49478931, 50377558,
51253467, 52108015, 52942436, 53757848, 54555277, 55335659,
56099856, 57582802, 59009766, 60385607, 61714540, 63000246,
64245964, 65454559, 66628579, 67770304, 68881781, 69964856,
71021203, 72052340, 73059655, 74044414, 75007782, 76874537,
78667536, 80393312, 82057522, 83665098, 85220372, 86727167,
88188883, 89608552, 90988895, 92332363, 93641173, 94917336,
96162685, 97378894, 98567496, 100867409, 103072439, 105191162,
107230989, 109198368, 111098951, 112937723, 114719105, 116447036,
118125045, 119756307, 121343688, 122889787, 124396968, 125867388,
127303021, 130077030, 132731849, 135278464, 137726346, 140083726,
142357803, 144554913, 146680670, 148740067, 150737572, 152677197,
154562560, 156396938, 158183306, 159924378, 161622632, 164899602,
168030318, 171028513, 173906008, 176673051, 179338593, 181910502,
184395731, 186800463, 189130216, 191389941, 193584098, 195716719,
197791463, 199811660, 201780351, 205574133, 209192504, 212652233,
215967720, 219151432, 222214238, 225165676, 228014163, 230767172,
233431363, 236012706, 238516569, 240947800, 243310793, 245609544,
247847696, 252155270, 256257056, 260173059, 263920427, 267513978,
270966613, 274289634, 277493001, 280585542, 283575118, 286468763,
289272796, 291992916, 294634284, 297201585, 299699091, 304500003,
309064541, 313416043, 317574484, 321557096, 325378855, 329052864,
332590655, 336002433, 339297275, 342483294, 345567766, 348557252,
351457680, 354274432, 357012407, 362269536, 367260561, 372012143,
376547060, 380884936, 385042798, 389035522, 392876185, 396576344,
400146265, 403595112, 406931099, 410161619, 413293351, 416332348,
419284117, 424945627, 430313203, 435416697, 440281572, 444929733,
449380160, 453649415, 457752035, 461700854, 465507260, 469181407,
472732388, 476168376, 479496748, 482724188, 485856764, 491858986,
497542280, 502939446, 508078420, 512983199, 517674549, 522170569,
526487126, 530638214, 534636233, 538492233, 542216094, 545816693,
549302035, 552679362, 555955249, 562226134, 568156709, 573782374,
579133244, 584235153, 589110430, 593778512, 598256421, 602559154,
606699989, 610690741, 614541971, 618263157, 621862836, 625348729,
628727839, 635190643, 641295921, 647081261, 652578597, 657815287,
662814957, 667598146, 672182825, 676584810, 680818092, 684895111,
688826974, 692623643, 696294085, 699846401, 703287935, 709864782,
716071394, 721947076, 727525176, 732834238, 737898880, 742740485,
747377745, 751827095, 756103063, 760218552, 764185078, 768012958,
771711474, 775289005, 778753144, 785368225, 791604988, 797503949,
803099452, 808420859, 813493471, 818339244, 822977353, 827424644,
831695997, 835804619, 839762285, 843579541, 847265867, 850829815,
854279128, 860861356, 867061719, 872921445, 878475444, 883753534,
888781386, 893581259, 898172578, 902572393, 906795754, 910856010,
914765057, 918533538, 922171018, 925686119, 929086644, 935571664,
941675560, 947439782, 952899395, 958084324, 963020312, 967729662,
972231821, 976543852, 980680801, 984656009, 988481353, 992167459,
995723865, 999159168, 1002565681};
// these are helpers for calculations to reduce stack usage
// do not depend on these being preserved across calls
/* Helper to optimize gamma calculation, only use in translate_from_linear, in
* particular the dc_fixpt_pow function which is very expensive
* The idea is that our regions for X points are exponential and currently they all use
* the same number of points (NUM_PTS_IN_REGION) and in each region every point
* is exactly 2x the one at the same index in the previous region. In other words
* X[i] = 2 * X[i-NUM_PTS_IN_REGION] for i>=16
* The other fact is that (2x)^gamma = 2^gamma * x^gamma
* So we compute and save x^gamma for the first 16 regions, and for every next region
* just multiply with 2^gamma which can be computed once, and save the result so we
* recursively compute all the values.
*/
/*
* Regamma coefficients are used for both regamma and degamma. Degamma
* coefficients are calculated in our formula using the regamma coefficients.
*/
/*sRGB 709 2.2 2.4 P3*/
static const int32_t numerator01[] = { 31308, 180000, 0, 0, 0};
static const int32_t numerator02[] = { 12920, 4500, 0, 0, 0};
static const int32_t numerator03[] = { 55, 99, 0, 0, 0};
static const int32_t numerator04[] = { 55, 99, 0, 0, 0};
static const int32_t numerator05[] = { 2400, 2222, 2200, 2400, 2600};
/* one-time setup of X points */
void setup_x_points_distribution(void)
{
struct fixed31_32 region_size = dc_fixpt_from_int(128);
int32_t segment;
uint32_t seg_offset;
uint32_t index;
struct fixed31_32 increment;
coordinates_x[MAX_HW_POINTS].x = region_size;
coordinates_x[MAX_HW_POINTS + 1].x = region_size;
for (segment = 6; segment > (6 - NUM_REGIONS); segment--) {
region_size = dc_fixpt_div_int(region_size, 2);
increment = dc_fixpt_div_int(region_size,
NUM_PTS_IN_REGION);
seg_offset = (segment + (NUM_REGIONS - 7)) * NUM_PTS_IN_REGION;
coordinates_x[seg_offset].x = region_size;
for (index = seg_offset + 1;
index < seg_offset + NUM_PTS_IN_REGION;
index++) {
coordinates_x[index].x = dc_fixpt_add
(coordinates_x[index-1].x, increment);
}
}
}
void log_x_points_distribution(struct dal_logger *logger)
{
int i = 0;
if (logger != NULL) {
LOG_GAMMA_WRITE("Log X Distribution\n");
for (i = 0; i < MAX_HW_POINTS; i++)
LOG_GAMMA_WRITE("%llu\n", coordinates_x[i].x.value);
}
}
static void compute_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y)
{
/* consts for PQ gamma formula. */
const struct fixed31_32 m1 =
dc_fixpt_from_fraction(159301758, 1000000000);
const struct fixed31_32 m2 =
dc_fixpt_from_fraction(7884375, 100000);
const struct fixed31_32 c1 =
dc_fixpt_from_fraction(8359375, 10000000);
const struct fixed31_32 c2 =
dc_fixpt_from_fraction(188515625, 10000000);
const struct fixed31_32 c3 =
dc_fixpt_from_fraction(186875, 10000);
struct fixed31_32 l_pow_m1;
struct fixed31_32 base;
if (dc_fixpt_lt(in_x, dc_fixpt_zero))
in_x = dc_fixpt_zero;
l_pow_m1 = dc_fixpt_pow(in_x, m1);
base = dc_fixpt_div(
dc_fixpt_add(c1,
(dc_fixpt_mul(c2, l_pow_m1))),
dc_fixpt_add(dc_fixpt_one,
(dc_fixpt_mul(c3, l_pow_m1))));
*out_y = dc_fixpt_pow(base, m2);
}
static void compute_de_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y)
{
/* consts for dePQ gamma formula. */
const struct fixed31_32 m1 =
dc_fixpt_from_fraction(159301758, 1000000000);
const struct fixed31_32 m2 =
dc_fixpt_from_fraction(7884375, 100000);
const struct fixed31_32 c1 =
dc_fixpt_from_fraction(8359375, 10000000);
const struct fixed31_32 c2 =
dc_fixpt_from_fraction(188515625, 10000000);
const struct fixed31_32 c3 =
dc_fixpt_from_fraction(186875, 10000);
struct fixed31_32 l_pow_m1;
struct fixed31_32 base, div;
struct fixed31_32 base2;
if (dc_fixpt_lt(in_x, dc_fixpt_zero))
in_x = dc_fixpt_zero;
l_pow_m1 = dc_fixpt_pow(in_x,
dc_fixpt_div(dc_fixpt_one, m2));
base = dc_fixpt_sub(l_pow_m1, c1);
div = dc_fixpt_sub(c2, dc_fixpt_mul(c3, l_pow_m1));
base2 = dc_fixpt_div(base, div);
// avoid complex numbers
if (dc_fixpt_lt(base2, dc_fixpt_zero))
base2 = dc_fixpt_sub(dc_fixpt_zero, base2);
*out_y = dc_fixpt_pow(base2, dc_fixpt_div(dc_fixpt_one, m1));
}
/* de gamma, non-linear to linear */
static void compute_hlg_eotf(struct fixed31_32 in_x,
struct fixed31_32 *out_y,
uint32_t sdr_white_level, uint32_t max_luminance_nits)
{
struct fixed31_32 a;
struct fixed31_32 b;
struct fixed31_32 c;
struct fixed31_32 threshold;
struct fixed31_32 x;
struct fixed31_32 scaling_factor =
dc_fixpt_from_fraction(max_luminance_nits, sdr_white_level);
a = dc_fixpt_from_fraction(17883277, 100000000);
b = dc_fixpt_from_fraction(28466892, 100000000);
c = dc_fixpt_from_fraction(55991073, 100000000);
threshold = dc_fixpt_from_fraction(1, 2);
if (dc_fixpt_lt(in_x, threshold)) {
x = dc_fixpt_mul(in_x, in_x);
x = dc_fixpt_div_int(x, 3);
} else {
x = dc_fixpt_sub(in_x, c);
x = dc_fixpt_div(x, a);
x = dc_fixpt_exp(x);
x = dc_fixpt_add(x, b);
x = dc_fixpt_div_int(x, 12);
}
*out_y = dc_fixpt_mul(x, scaling_factor);
}
/* re gamma, linear to non-linear */
static void compute_hlg_oetf(struct fixed31_32 in_x, struct fixed31_32 *out_y,
uint32_t sdr_white_level, uint32_t max_luminance_nits)
{
struct fixed31_32 a;
struct fixed31_32 b;
struct fixed31_32 c;
struct fixed31_32 threshold;
struct fixed31_32 x;
struct fixed31_32 scaling_factor =
dc_fixpt_from_fraction(sdr_white_level, max_luminance_nits);
a = dc_fixpt_from_fraction(17883277, 100000000);
b = dc_fixpt_from_fraction(28466892, 100000000);
c = dc_fixpt_from_fraction(55991073, 100000000);
threshold = dc_fixpt_from_fraction(1, 12);
x = dc_fixpt_mul(in_x, scaling_factor);
if (dc_fixpt_lt(x, threshold)) {
x = dc_fixpt_mul(x, dc_fixpt_from_fraction(3, 1));
*out_y = dc_fixpt_pow(x, dc_fixpt_half);
} else {
x = dc_fixpt_mul(x, dc_fixpt_from_fraction(12, 1));
x = dc_fixpt_sub(x, b);
x = dc_fixpt_log(x);
x = dc_fixpt_mul(a, x);
*out_y = dc_fixpt_add(x, c);
}
}
/* one-time pre-compute PQ values - only for sdr_white_level 80 */
void precompute_pq(void)
{
int i;
struct fixed31_32 *pq_table = mod_color_get_table(type_pq_table);
for (i = 0; i <= MAX_HW_POINTS; i++)
pq_table[i] = dc_fixpt_from_fraction(pq_numerator[i], pq_divider);
/* below is old method that uses run-time calculation in fixed pt space */
/* pow function has problems with arguments too small */
/*
struct fixed31_32 x;
const struct hw_x_point *coord_x = coordinates_x + 32;
struct fixed31_32 scaling_factor =
dc_fixpt_from_fraction(80, 10000);
for (i = 0; i < 32; i++)
pq_table[i] = dc_fixpt_zero;
for (i = 32; i <= MAX_HW_POINTS; i++) {
x = dc_fixpt_mul(coord_x->x, scaling_factor);
compute_pq(x, &pq_table[i]);
++coord_x;
}
*/
}
/* one-time pre-compute dePQ values - only for max pixel value 125 FP16 */
void precompute_de_pq(void)
{
int i;
struct fixed31_32 y;
uint32_t begin_index, end_index;
struct fixed31_32 scaling_factor = dc_fixpt_from_int(125);
struct fixed31_32 *de_pq_table = mod_color_get_table(type_de_pq_table);
/* X points is 2^-25 to 2^7
* De-gamma X is 2^-12 to 2^0 – we are skipping first -12-(-25) = 13 regions
*/
begin_index = 13 * NUM_PTS_IN_REGION;
end_index = begin_index + 12 * NUM_PTS_IN_REGION;
for (i = 0; i <= begin_index; i++)
de_pq_table[i] = dc_fixpt_zero;
for (; i <= end_index; i++) {
compute_de_pq(coordinates_x[i].x, &y);
de_pq_table[i] = dc_fixpt_mul(y, scaling_factor);
}
for (; i <= MAX_HW_POINTS; i++)
de_pq_table[i] = de_pq_table[i-1];
}
struct dividers {
struct fixed31_32 divider1;
struct fixed31_32 divider2;
struct fixed31_32 divider3;
};
static bool build_coefficients(struct gamma_coefficients *coefficients,
enum dc_transfer_func_predefined type)
{
uint32_t i = 0;
uint32_t index = 0;
bool ret = true;
if (type == TRANSFER_FUNCTION_SRGB)
index = 0;
else if (type == TRANSFER_FUNCTION_BT709)
index = 1;
else if (type == TRANSFER_FUNCTION_GAMMA22)
index = 2;
else if (type == TRANSFER_FUNCTION_GAMMA24)
index = 3;
else if (type == TRANSFER_FUNCTION_GAMMA26)
index = 4;
else {
ret = false;
goto release;
}
do {
coefficients->a0[i] = dc_fixpt_from_fraction(
numerator01[index], 10000000);
coefficients->a1[i] = dc_fixpt_from_fraction(
numerator02[index], 1000);
coefficients->a2[i] = dc_fixpt_from_fraction(
numerator03[index], 1000);
coefficients->a3[i] = dc_fixpt_from_fraction(
numerator04[index], 1000);
coefficients->user_gamma[i] = dc_fixpt_from_fraction(
numerator05[index], 1000);
++i;
} while (i != ARRAY_SIZE(coefficients->a0));
release:
return ret;
}
static struct fixed31_32 translate_from_linear_space(
struct translate_from_linear_space_args *args)
{
const struct fixed31_32 one = dc_fixpt_from_int(1);
struct fixed31_32 scratch_1, scratch_2;
struct calculate_buffer *cal_buffer = args->cal_buffer;
if (dc_fixpt_le(one, args->arg))
return one;
if (dc_fixpt_le(args->arg, dc_fixpt_neg(args->a0))) {
scratch_1 = dc_fixpt_add(one, args->a3);
scratch_2 = dc_fixpt_pow(
dc_fixpt_neg(args->arg),
dc_fixpt_recip(args->gamma));
scratch_1 = dc_fixpt_mul(scratch_1, scratch_2);
scratch_1 = dc_fixpt_sub(args->a2, scratch_1);
return scratch_1;
} else if (dc_fixpt_le(args->a0, args->arg)) {
if (cal_buffer->buffer_index == 0) {
cal_buffer->gamma_of_2 = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_recip(args->gamma));
}
scratch_1 = dc_fixpt_add(one, args->a3);
/* In the first region (first 16 points) and in the
* region delimited by START/END we calculate with
* full precision to avoid error accumulation.
*/
if ((cal_buffer->buffer_index >= PRECISE_LUT_REGION_START &&
cal_buffer->buffer_index <= PRECISE_LUT_REGION_END) ||
(cal_buffer->buffer_index < 16))
scratch_2 = dc_fixpt_pow(args->arg,
dc_fixpt_recip(args->gamma));
else
scratch_2 = dc_fixpt_mul(cal_buffer->gamma_of_2,
cal_buffer->buffer[cal_buffer->buffer_index%16]);
if (cal_buffer->buffer_index != -1) {
cal_buffer->buffer[cal_buffer->buffer_index%16] = scratch_2;
cal_buffer->buffer_index++;
}
scratch_1 = dc_fixpt_mul(scratch_1, scratch_2);
scratch_1 = dc_fixpt_sub(scratch_1, args->a2);
return scratch_1;
} else
return dc_fixpt_mul(args->arg, args->a1);
}
static struct fixed31_32 translate_from_linear_space_long(
struct translate_from_linear_space_args *args)
{
const struct fixed31_32 one = dc_fixpt_from_int(1);
if (dc_fixpt_lt(one, args->arg))
return one;
if (dc_fixpt_le(args->arg, dc_fixpt_neg(args->a0)))
return dc_fixpt_sub(
args->a2,
dc_fixpt_mul(
dc_fixpt_add(
one,
args->a3),
dc_fixpt_pow(
dc_fixpt_neg(args->arg),
dc_fixpt_recip(args->gamma))));
else if (dc_fixpt_le(args->a0, args->arg))
return dc_fixpt_sub(
dc_fixpt_mul(
dc_fixpt_add(
one,
args->a3),
dc_fixpt_pow(
args->arg,
dc_fixpt_recip(args->gamma))),
args->a2);
else
return dc_fixpt_mul(args->arg, args->a1);
}
static struct fixed31_32 calculate_gamma22(struct fixed31_32 arg, bool use_eetf, struct calculate_buffer *cal_buffer)
{
struct fixed31_32 gamma = dc_fixpt_from_fraction(22, 10);
struct translate_from_linear_space_args scratch_gamma_args;
scratch_gamma_args.arg = arg;
scratch_gamma_args.a0 = dc_fixpt_zero;
scratch_gamma_args.a1 = dc_fixpt_zero;
scratch_gamma_args.a2 = dc_fixpt_zero;
scratch_gamma_args.a3 = dc_fixpt_zero;
scratch_gamma_args.cal_buffer = cal_buffer;
scratch_gamma_args.gamma = gamma;
if (use_eetf)
return translate_from_linear_space_long(&scratch_gamma_args);
return translate_from_linear_space(&scratch_gamma_args);
}
static struct fixed31_32 translate_to_linear_space(
struct fixed31_32 arg,
struct fixed31_32 a0,
struct fixed31_32 a1,
struct fixed31_32 a2,
struct fixed31_32 a3,
struct fixed31_32 gamma)
{
struct fixed31_32 linear;
a0 = dc_fixpt_mul(a0, a1);
if (dc_fixpt_le(arg, dc_fixpt_neg(a0)))
linear = dc_fixpt_neg(
dc_fixpt_pow(
dc_fixpt_div(
dc_fixpt_sub(a2, arg),
dc_fixpt_add(
dc_fixpt_one, a3)), gamma));
else if (dc_fixpt_le(dc_fixpt_neg(a0), arg) &&
dc_fixpt_le(arg, a0))
linear = dc_fixpt_div(arg, a1);
else
linear = dc_fixpt_pow(
dc_fixpt_div(
dc_fixpt_add(a2, arg),
dc_fixpt_add(
dc_fixpt_one, a3)), gamma);
return linear;
}
static struct fixed31_32 translate_from_linear_space_ex(
struct fixed31_32 arg,
struct gamma_coefficients *coeff,
uint32_t color_index,
struct calculate_buffer *cal_buffer)
{
struct translate_from_linear_space_args scratch_gamma_args;
scratch_gamma_args.arg = arg;
scratch_gamma_args.a0 = coeff->a0[color_index];
scratch_gamma_args.a1 = coeff->a1[color_index];
scratch_gamma_args.a2 = coeff->a2[color_index];
scratch_gamma_args.a3 = coeff->a3[color_index];
scratch_gamma_args.gamma = coeff->user_gamma[color_index];
scratch_gamma_args.cal_buffer = cal_buffer;
return translate_from_linear_space(&scratch_gamma_args);
}
static inline struct fixed31_32 translate_to_linear_space_ex(
struct fixed31_32 arg,
struct gamma_coefficients *coeff,
uint32_t color_index)
{
return translate_to_linear_space(
arg,
coeff->a0[color_index],
coeff->a1[color_index],
coeff->a2[color_index],
coeff->a3[color_index],
coeff->user_gamma[color_index]);
}
static bool find_software_points(
const struct dc_gamma *ramp,
const struct gamma_pixel *axis_x,
struct fixed31_32 hw_point,
enum channel_name channel,
uint32_t *index_to_start,
uint32_t *index_left,
uint32_t *index_right,
enum hw_point_position *pos)
{
const uint32_t max_number = ramp->num_entries + 3;
struct fixed31_32 left, right;
uint32_t i = *index_to_start;
while (i < max_number) {
if (channel == CHANNEL_NAME_RED) {
left = axis_x[i].r;
if (i < max_number - 1)
right = axis_x[i + 1].r;
else
right = axis_x[max_number - 1].r;
} else if (channel == CHANNEL_NAME_GREEN) {
left = axis_x[i].g;
if (i < max_number - 1)
right = axis_x[i + 1].g;
else
right = axis_x[max_number - 1].g;
} else {
left = axis_x[i].b;
if (i < max_number - 1)
right = axis_x[i + 1].b;
else
right = axis_x[max_number - 1].b;
}
if (dc_fixpt_le(left, hw_point) &&
dc_fixpt_le(hw_point, right)) {
*index_to_start = i;
*index_left = i;
if (i < max_number - 1)
*index_right = i + 1;
else
*index_right = max_number - 1;
*pos = HW_POINT_POSITION_MIDDLE;
return true;
} else if ((i == *index_to_start) &&
dc_fixpt_le(hw_point, left)) {
*index_to_start = i;
*index_left = i;
*index_right = i;
*pos = HW_POINT_POSITION_LEFT;
return true;
} else if ((i == max_number - 1) &&
dc_fixpt_le(right, hw_point)) {
*index_to_start = i;
*index_left = i;
*index_right = i;
*pos = HW_POINT_POSITION_RIGHT;
return true;
}
++i;
}
return false;
}
static bool build_custom_gamma_mapping_coefficients_worker(
const struct dc_gamma *ramp,
struct pixel_gamma_point *coeff,
const struct hw_x_point *coordinates_x,
const struct gamma_pixel *axis_x,
enum channel_name channel,
uint32_t number_of_points)
{
uint32_t i = 0;
while (i <= number_of_points) {
struct fixed31_32 coord_x;
uint32_t index_to_start = 0;
uint32_t index_left = 0;
uint32_t index_right = 0;
enum hw_point_position hw_pos;
struct gamma_point *point;
struct fixed31_32 left_pos;
struct fixed31_32 right_pos;
if (channel == CHANNEL_NAME_RED)
coord_x = coordinates_x[i].regamma_y_red;
else if (channel == CHANNEL_NAME_GREEN)
coord_x = coordinates_x[i].regamma_y_green;
else
coord_x = coordinates_x[i].regamma_y_blue;
if (!find_software_points(
ramp, axis_x, coord_x, channel,
&index_to_start, &index_left, &index_right, &hw_pos)) {
BREAK_TO_DEBUGGER();
return false;
}
if (index_left >= ramp->num_entries + 3) {
BREAK_TO_DEBUGGER();
return false;
}
if (index_right >= ramp->num_entries + 3) {
BREAK_TO_DEBUGGER();
return false;
}
if (channel == CHANNEL_NAME_RED) {
point = &coeff[i].r;
left_pos = axis_x[index_left].r;
right_pos = axis_x[index_right].r;
} else if (channel == CHANNEL_NAME_GREEN) {
point = &coeff[i].g;
left_pos = axis_x[index_left].g;
right_pos = axis_x[index_right].g;
} else {
point = &coeff[i].b;
left_pos = axis_x[index_left].b;
right_pos = axis_x[index_right].b;
}
if (hw_pos == HW_POINT_POSITION_MIDDLE)
point->coeff = dc_fixpt_div(
dc_fixpt_sub(
coord_x,
left_pos),
dc_fixpt_sub(
right_pos,
left_pos));
else if (hw_pos == HW_POINT_POSITION_LEFT)
point->coeff = dc_fixpt_zero;
else if (hw_pos == HW_POINT_POSITION_RIGHT)
point->coeff = dc_fixpt_from_int(2);
else {
BREAK_TO_DEBUGGER();
return false;
}
point->left_index = index_left;
point->right_index = index_right;
point->pos = hw_pos;
++i;
}
return true;
}
static struct fixed31_32 calculate_mapped_value(
struct pwl_float_data *rgb,
const struct pixel_gamma_point *coeff,
enum channel_name channel,
uint32_t max_index)
{
const struct gamma_point *point;
struct fixed31_32 result;
if (channel == CHANNEL_NAME_RED)
point = &coeff->r;
else if (channel == CHANNEL_NAME_GREEN)
point = &coeff->g;
else
point = &coeff->b;
if ((point->left_index < 0) || (point->left_index > max_index)) {
BREAK_TO_DEBUGGER();
return dc_fixpt_zero;
}
if ((point->right_index < 0) || (point->right_index > max_index)) {
BREAK_TO_DEBUGGER();
return dc_fixpt_zero;
}
if (point->pos == HW_POINT_POSITION_MIDDLE)
if (channel == CHANNEL_NAME_RED)
result = dc_fixpt_add(
dc_fixpt_mul(
point->coeff,
dc_fixpt_sub(
rgb[point->right_index].r,
rgb[point->left_index].r)),
rgb[point->left_index].r);
else if (channel == CHANNEL_NAME_GREEN)
result = dc_fixpt_add(
dc_fixpt_mul(
point->coeff,
dc_fixpt_sub(
rgb[point->right_index].g,
rgb[point->left_index].g)),
rgb[point->left_index].g);
else
result = dc_fixpt_add(
dc_fixpt_mul(
point->coeff,
dc_fixpt_sub(
rgb[point->right_index].b,
rgb[point->left_index].b)),
rgb[point->left_index].b);
else if (point->pos == HW_POINT_POSITION_LEFT) {
BREAK_TO_DEBUGGER();
result = dc_fixpt_zero;
} else {
result = dc_fixpt_one;
}
return result;
}
static void build_pq(struct pwl_float_data_ex *rgb_regamma,
uint32_t hw_points_num,
const struct hw_x_point *coordinate_x,
uint32_t sdr_white_level)
{
uint32_t i, start_index;
struct pwl_float_data_ex *rgb = rgb_regamma;
const struct hw_x_point *coord_x = coordinate_x;
struct fixed31_32 x;
struct fixed31_32 output;
struct fixed31_32 scaling_factor =
dc_fixpt_from_fraction(sdr_white_level, 10000);
struct fixed31_32 *pq_table = mod_color_get_table(type_pq_table);
if (!mod_color_is_table_init(type_pq_table) && sdr_white_level == 80) {
precompute_pq();
mod_color_set_table_init_state(type_pq_table, true);
}
/* TODO: start index is from segment 2^-24, skipping first segment
* due to x values too small for power calculations
*/
start_index = 32;
rgb += start_index;
coord_x += start_index;
for (i = start_index; i <= hw_points_num; i++) {
/* Multiply 0.008 as regamma is 0-1 and FP16 input is 0-125.
* FP 1.0 = 80nits
*/
if (sdr_white_level == 80) {
output = pq_table[i];
} else {
x = dc_fixpt_mul(coord_x->x, scaling_factor);
compute_pq(x, &output);
}
/* should really not happen? */
if (dc_fixpt_lt(output, dc_fixpt_zero))
output = dc_fixpt_zero;
rgb->r = output;
rgb->g = output;
rgb->b = output;
++coord_x;
++rgb;
}
}
static void build_de_pq(struct pwl_float_data_ex *de_pq,
uint32_t hw_points_num,
const struct hw_x_point *coordinate_x)
{
uint32_t i;
struct fixed31_32 output;
struct fixed31_32 *de_pq_table = mod_color_get_table(type_de_pq_table);
struct fixed31_32 scaling_factor = dc_fixpt_from_int(125);
if (!mod_color_is_table_init(type_de_pq_table)) {
precompute_de_pq();
mod_color_set_table_init_state(type_de_pq_table, true);
}
for (i = 0; i <= hw_points_num; i++) {
output = de_pq_table[i];
/* should really not happen? */
if (dc_fixpt_lt(output, dc_fixpt_zero))
output = dc_fixpt_zero;
else if (dc_fixpt_lt(scaling_factor, output))
output = scaling_factor;
de_pq[i].r = output;
de_pq[i].g = output;
de_pq[i].b = output;
}
}
static bool build_regamma(struct pwl_float_data_ex *rgb_regamma,
uint32_t hw_points_num,
const struct hw_x_point *coordinate_x,
enum dc_transfer_func_predefined type,
struct calculate_buffer *cal_buffer)
{
uint32_t i;
bool ret = false;
struct gamma_coefficients *coeff;
struct pwl_float_data_ex *rgb = rgb_regamma;
const struct hw_x_point *coord_x = coordinate_x;
coeff = kvzalloc(sizeof(*coeff), GFP_KERNEL);
if (!coeff)
goto release;
if (!build_coefficients(coeff, type))
goto release;
memset(cal_buffer->buffer, 0, NUM_PTS_IN_REGION * sizeof(struct fixed31_32));
cal_buffer->buffer_index = 0; // see variable definition for more info
i = 0;
while (i <= hw_points_num) {
/* TODO use y vs r,g,b */
rgb->r = translate_from_linear_space_ex(
coord_x->x, coeff, 0, cal_buffer);
rgb->g = rgb->r;
rgb->b = rgb->r;
++coord_x;
++rgb;
++i;
}
cal_buffer->buffer_index = -1;
ret = true;
release:
kvfree(coeff);
return ret;
}
static void hermite_spline_eetf(struct fixed31_32 input_x,
struct fixed31_32 max_display,
struct fixed31_32 min_display,
struct fixed31_32 max_content,
struct fixed31_32 *out_x)
{
struct fixed31_32 min_lum_pq;
struct fixed31_32 max_lum_pq;
struct fixed31_32 max_content_pq;
struct fixed31_32 ks;
struct fixed31_32 E1;
struct fixed31_32 E2;
struct fixed31_32 E3;
struct fixed31_32 t;
struct fixed31_32 t2;
struct fixed31_32 t3;
struct fixed31_32 two;
struct fixed31_32 three;
struct fixed31_32 temp1;
struct fixed31_32 temp2;
struct fixed31_32 a = dc_fixpt_from_fraction(15, 10);
struct fixed31_32 b = dc_fixpt_from_fraction(5, 10);
struct fixed31_32 epsilon = dc_fixpt_from_fraction(1, 1000000); // dc_fixpt_epsilon is a bit too small
if (dc_fixpt_eq(max_content, dc_fixpt_zero)) {
*out_x = dc_fixpt_zero;
return;
}
compute_pq(input_x, &E1);
compute_pq(dc_fixpt_div(min_display, max_content), &min_lum_pq);
compute_pq(dc_fixpt_div(max_display, max_content), &max_lum_pq);
compute_pq(dc_fixpt_one, &max_content_pq); // always 1? DAL2 code is weird
a = dc_fixpt_div(dc_fixpt_add(dc_fixpt_one, b), max_content_pq); // (1+b)/maxContent
ks = dc_fixpt_sub(dc_fixpt_mul(a, max_lum_pq), b); // a * max_lum_pq - b
if (dc_fixpt_lt(E1, ks))
E2 = E1;
else if (dc_fixpt_le(ks, E1) && dc_fixpt_le(E1, dc_fixpt_one)) {
if (dc_fixpt_lt(epsilon, dc_fixpt_sub(dc_fixpt_one, ks)))
// t = (E1 - ks) / (1 - ks)
t = dc_fixpt_div(dc_fixpt_sub(E1, ks),
dc_fixpt_sub(dc_fixpt_one, ks));
else
t = dc_fixpt_zero;
two = dc_fixpt_from_int(2);
three = dc_fixpt_from_int(3);
t2 = dc_fixpt_mul(t, t);
t3 = dc_fixpt_mul(t2, t);
temp1 = dc_fixpt_mul(two, t3);
temp2 = dc_fixpt_mul(three, t2);
// (2t^3 - 3t^2 + 1) * ks
E2 = dc_fixpt_mul(ks, dc_fixpt_add(dc_fixpt_one,
dc_fixpt_sub(temp1, temp2)));
// (-2t^3 + 3t^2) * max_lum_pq
E2 = dc_fixpt_add(E2, dc_fixpt_mul(max_lum_pq,
dc_fixpt_sub(temp2, temp1)));
temp1 = dc_fixpt_mul(two, t2);
temp2 = dc_fixpt_sub(dc_fixpt_one, ks);
// (t^3 - 2t^2 + t) * (1-ks)
E2 = dc_fixpt_add(E2, dc_fixpt_mul(temp2,
dc_fixpt_add(t, dc_fixpt_sub(t3, temp1))));
} else
E2 = dc_fixpt_one;
temp1 = dc_fixpt_sub(dc_fixpt_one, E2);
temp2 = dc_fixpt_mul(temp1, temp1);
temp2 = dc_fixpt_mul(temp2, temp2);
// temp2 = (1-E2)^4
E3 = dc_fixpt_add(E2, dc_fixpt_mul(min_lum_pq, temp2));
compute_de_pq(E3, out_x);
*out_x = dc_fixpt_div(*out_x, dc_fixpt_div(max_display, max_content));
}
static bool build_freesync_hdr(struct pwl_float_data_ex *rgb_regamma,
uint32_t hw_points_num,
const struct hw_x_point *coordinate_x,
const struct hdr_tm_params *fs_params,
struct calculate_buffer *cal_buffer)
{
uint32_t i;
struct pwl_float_data_ex *rgb = rgb_regamma;
const struct hw_x_point *coord_x = coordinate_x;
const struct hw_x_point *prv_coord_x = coord_x;
struct fixed31_32 scaledX = dc_fixpt_zero;
struct fixed31_32 scaledX1 = dc_fixpt_zero;
struct fixed31_32 max_display;
struct fixed31_32 min_display;
struct fixed31_32 max_content;
struct fixed31_32 clip = dc_fixpt_one;
struct fixed31_32 output;
bool use_eetf = false;
bool is_clipped = false;
struct fixed31_32 sdr_white_level;
struct fixed31_32 coordX_diff;
struct fixed31_32 out_dist_max;
struct fixed31_32 bright_norm;
if (fs_params->max_content == 0 ||
fs_params->max_display == 0)
return false;
max_display = dc_fixpt_from_int(fs_params->max_display);
min_display = dc_fixpt_from_fraction(fs_params->min_display, 10000);
max_content = dc_fixpt_from_int(fs_params->max_content);
sdr_white_level = dc_fixpt_from_int(fs_params->sdr_white_level);
if (fs_params->min_display > 1000) // cap at 0.1 at the bottom
min_display = dc_fixpt_from_fraction(1, 10);
if (fs_params->max_display < 100) // cap at 100 at the top
max_display = dc_fixpt_from_int(100);
// only max used, we don't adjust min luminance
if (fs_params->max_content > fs_params->max_display)
use_eetf = true;
else
max_content = max_display;
if (!use_eetf)
cal_buffer->buffer_index = 0; // see var definition for more info
rgb += 32; // first 32 points have problems with fixed point, too small
coord_x += 32;
for (i = 32; i <= hw_points_num; i++) {
if (!is_clipped) {
if (use_eetf) {
/* max content is equal 1 */
scaledX1 = dc_fixpt_div(coord_x->x,
dc_fixpt_div(max_content, sdr_white_level));
hermite_spline_eetf(scaledX1, max_display, min_display,
max_content, &scaledX);
} else
scaledX = dc_fixpt_div(coord_x->x,
dc_fixpt_div(max_display, sdr_white_level));
if (dc_fixpt_lt(scaledX, clip)) {
if (dc_fixpt_lt(scaledX, dc_fixpt_zero))
output = dc_fixpt_zero;
else
output = calculate_gamma22(scaledX, use_eetf, cal_buffer);
// Ensure output respects reasonable boundaries
output = dc_fixpt_clamp(output, dc_fixpt_zero, dc_fixpt_one);
rgb->r = output;
rgb->g = output;
rgb->b = output;
} else {
/* Here clipping happens for the first time */
is_clipped = true;
/* The next few lines implement the equation
* output = prev_out +
* (coord_x->x - prev_coord_x->x) *
* (1.0 - prev_out) /
* (maxDisp/sdr_white_level - prevCoordX)
*
* This equation interpolates the first point
* after max_display/80 so that the slope from
* hw_x_before_max and hw_x_after_max is such
* that we hit Y=1.0 at max_display/80.
*/
coordX_diff = dc_fixpt_sub(coord_x->x, prv_coord_x->x);
out_dist_max = dc_fixpt_sub(dc_fixpt_one, output);
bright_norm = dc_fixpt_div(max_display, sdr_white_level);
output = dc_fixpt_add(
output, dc_fixpt_mul(
coordX_diff, dc_fixpt_div(
out_dist_max,
dc_fixpt_sub(bright_norm, prv_coord_x->x)
)
)
);
/* Relaxing the maximum boundary to 1.07 (instead of 1.0)
* because the last point in the curve must be such that
* the maximum display pixel brightness interpolates to
* exactly 1.0. The worst case scenario was calculated
* around 1.057, so the limit of 1.07 leaves some safety
* margin.
*/
output = dc_fixpt_clamp(output, dc_fixpt_zero,
dc_fixpt_from_fraction(107, 100));
rgb->r = output;
rgb->g = output;
rgb->b = output;
}
} else {
/* Every other clipping after the first
* one is dealt with here
*/
rgb->r = clip;
rgb->g = clip;
rgb->b = clip;
}
prv_coord_x = coord_x;
++coord_x;
++rgb;
}
cal_buffer->buffer_index = -1;
return true;
}
static bool build_degamma(struct pwl_float_data_ex *curve,
uint32_t hw_points_num,
const struct hw_x_point *coordinate_x, enum dc_transfer_func_predefined type)
{
uint32_t i;
struct gamma_coefficients coeff;
uint32_t begin_index, end_index;
bool ret = false;
if (!build_coefficients(&coeff, type))
goto release;
i = 0;
/* X points is 2^-25 to 2^7
* De-gamma X is 2^-12 to 2^0 – we are skipping first -12-(-25) = 13 regions
*/
begin_index = 13 * NUM_PTS_IN_REGION;
end_index = begin_index + 12 * NUM_PTS_IN_REGION;
while (i != begin_index) {
curve[i].r = dc_fixpt_zero;
curve[i].g = dc_fixpt_zero;
curve[i].b = dc_fixpt_zero;
i++;
}
while (i != end_index) {
curve[i].r = translate_to_linear_space_ex(
coordinate_x[i].x, &coeff, 0);
curve[i].g = curve[i].r;
curve[i].b = curve[i].r;
i++;
}
while (i != hw_points_num + 1) {
curve[i].r = dc_fixpt_one;
curve[i].g = dc_fixpt_one;
curve[i].b = dc_fixpt_one;
i++;
}
ret = true;
release:
return ret;
}
static void build_hlg_degamma(struct pwl_float_data_ex *degamma,
uint32_t hw_points_num,
const struct hw_x_point *coordinate_x,
uint32_t sdr_white_level, uint32_t max_luminance_nits)
{
uint32_t i;
struct pwl_float_data_ex *rgb = degamma;
const struct hw_x_point *coord_x = coordinate_x;
i = 0;
// check when i == 434
while (i != hw_points_num + 1) {
compute_hlg_eotf(coord_x->x, &rgb->r, sdr_white_level, max_luminance_nits);
rgb->g = rgb->r;
rgb->b = rgb->r;
++coord_x;
++rgb;
++i;
}
}
static void build_hlg_regamma(struct pwl_float_data_ex *regamma,
uint32_t hw_points_num,
const struct hw_x_point *coordinate_x,
uint32_t sdr_white_level, uint32_t max_luminance_nits)
{
uint32_t i;
struct pwl_float_data_ex *rgb = regamma;
const struct hw_x_point *coord_x = coordinate_x;
i = 0;
// when i == 471
while (i != hw_points_num + 1) {
compute_hlg_oetf(coord_x->x, &rgb->r, sdr_white_level, max_luminance_nits);
rgb->g = rgb->r;
rgb->b = rgb->r;
++coord_x;
++rgb;
++i;
}
}
static void scale_gamma(struct pwl_float_data *pwl_rgb,
const struct dc_gamma *ramp,
struct dividers dividers)
{
const struct fixed31_32 max_driver = dc_fixpt_from_int(0xFFFF);
const struct fixed31_32 max_os = dc_fixpt_from_int(0xFF00);
struct fixed31_32 scaler = max_os;
uint32_t i;
struct pwl_float_data *rgb = pwl_rgb;
struct pwl_float_data *rgb_last = rgb + ramp->num_entries - 1;
i = 0;
do {
if (dc_fixpt_lt(max_os, ramp->entries.red[i]) ||
dc_fixpt_lt(max_os, ramp->entries.green[i]) ||
dc_fixpt_lt(max_os, ramp->entries.blue[i])) {
scaler = max_driver;
break;
}
++i;
} while (i != ramp->num_entries);
i = 0;
do {
rgb->r = dc_fixpt_div(
ramp->entries.red[i], scaler);
rgb->g = dc_fixpt_div(
ramp->entries.green[i], scaler);
rgb->b = dc_fixpt_div(
ramp->entries.blue[i], scaler);
++rgb;
++i;
} while (i != ramp->num_entries);
rgb->r = dc_fixpt_mul(rgb_last->r,
dividers.divider1);
rgb->g = dc_fixpt_mul(rgb_last->g,
dividers.divider1);
rgb->b = dc_fixpt_mul(rgb_last->b,
dividers.divider1);
++rgb;
rgb->r = dc_fixpt_mul(rgb_last->r,
dividers.divider2);
rgb->g = dc_fixpt_mul(rgb_last->g,
dividers.divider2);
rgb->b = dc_fixpt_mul(rgb_last->b,
dividers.divider2);
++rgb;
rgb->r = dc_fixpt_mul(rgb_last->r,
dividers.divider3);
rgb->g = dc_fixpt_mul(rgb_last->g,
dividers.divider3);
rgb->b = dc_fixpt_mul(rgb_last->b,
dividers.divider3);
}
static void scale_gamma_dx(struct pwl_float_data *pwl_rgb,
const struct dc_gamma *ramp,
struct dividers dividers)
{
uint32_t i;
struct fixed31_32 min = dc_fixpt_zero;
struct fixed31_32 max = dc_fixpt_one;
struct fixed31_32 delta = dc_fixpt_zero;
struct fixed31_32 offset = dc_fixpt_zero;
for (i = 0 ; i < ramp->num_entries; i++) {
if (dc_fixpt_lt(ramp->entries.red[i], min))
min = ramp->entries.red[i];
if (dc_fixpt_lt(ramp->entries.green[i], min))
min = ramp->entries.green[i];
if (dc_fixpt_lt(ramp->entries.blue[i], min))
min = ramp->entries.blue[i];
if (dc_fixpt_lt(max, ramp->entries.red[i]))
max = ramp->entries.red[i];
if (dc_fixpt_lt(max, ramp->entries.green[i]))
max = ramp->entries.green[i];
if (dc_fixpt_lt(max, ramp->entries.blue[i]))
max = ramp->entries.blue[i];
}
if (dc_fixpt_lt(min, dc_fixpt_zero))
delta = dc_fixpt_neg(min);
offset = dc_fixpt_add(min, max);
for (i = 0 ; i < ramp->num_entries; i++) {
pwl_rgb[i].r = dc_fixpt_div(
dc_fixpt_add(
ramp->entries.red[i], delta), offset);
pwl_rgb[i].g = dc_fixpt_div(
dc_fixpt_add(
ramp->entries.green[i], delta), offset);
pwl_rgb[i].b = dc_fixpt_div(
dc_fixpt_add(
ramp->entries.blue[i], delta), offset);
}
pwl_rgb[i].r = dc_fixpt_sub(dc_fixpt_mul_int(
pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r);
pwl_rgb[i].g = dc_fixpt_sub(dc_fixpt_mul_int(
pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g);
pwl_rgb[i].b = dc_fixpt_sub(dc_fixpt_mul_int(
pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b);
++i;
pwl_rgb[i].r = dc_fixpt_sub(dc_fixpt_mul_int(
pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r);
pwl_rgb[i].g = dc_fixpt_sub(dc_fixpt_mul_int(
pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g);
pwl_rgb[i].b = dc_fixpt_sub(dc_fixpt_mul_int(
pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b);
}
/* todo: all these scale_gamma functions are inherently the same but
* take different structures as params or different format for ramp
* values. We could probably implement it in a more generic fashion
*/
static void scale_user_regamma_ramp(struct pwl_float_data *pwl_rgb,
const struct regamma_ramp *ramp,
struct dividers dividers)
{
unsigned short max_driver = 0xFFFF;
unsigned short max_os = 0xFF00;
unsigned short scaler = max_os;
uint32_t i;
struct pwl_float_data *rgb = pwl_rgb;
struct pwl_float_data *rgb_last = rgb + GAMMA_RGB_256_ENTRIES - 1;
i = 0;
do {
if (ramp->gamma[i] > max_os ||
ramp->gamma[i + 256] > max_os ||
ramp->gamma[i + 512] > max_os) {
scaler = max_driver;
break;
}
i++;
} while (i != GAMMA_RGB_256_ENTRIES);
i = 0;
do {
rgb->r = dc_fixpt_from_fraction(
ramp->gamma[i], scaler);
rgb->g = dc_fixpt_from_fraction(
ramp->gamma[i + 256], scaler);
rgb->b = dc_fixpt_from_fraction(
ramp->gamma[i + 512], scaler);
++rgb;
++i;
} while (i != GAMMA_RGB_256_ENTRIES);
rgb->r = dc_fixpt_mul(rgb_last->r,
dividers.divider1);
rgb->g = dc_fixpt_mul(rgb_last->g,
dividers.divider1);
rgb->b = dc_fixpt_mul(rgb_last->b,
dividers.divider1);
++rgb;
rgb->r = dc_fixpt_mul(rgb_last->r,
dividers.divider2);
rgb->g = dc_fixpt_mul(rgb_last->g,
dividers.divider2);
rgb->b = dc_fixpt_mul(rgb_last->b,
dividers.divider2);
++rgb;
rgb->r = dc_fixpt_mul(rgb_last->r,
dividers.divider3);
rgb->g = dc_fixpt_mul(rgb_last->g,
dividers.divider3);
rgb->b = dc_fixpt_mul(rgb_last->b,
dividers.divider3);
}
/*
* RS3+ color transform DDI - 1D LUT adjustment is composed with regamma here
* Input is evenly distributed in the output color space as specified in
* SetTimings
*
* Interpolation details:
* 1D LUT has 4096 values which give curve correction in 0-1 float range
* for evenly spaced points in 0-1 range. lut1D[index] gives correction
* for index/4095.
* First we find index for which:
* index/4095 < regamma_y < (index+1)/4095 =>
* index < 4095*regamma_y < index + 1
* norm_y = 4095*regamma_y, and index is just truncating to nearest integer
* lut1 = lut1D[index], lut2 = lut1D[index+1]
*
* adjustedY is then linearly interpolating regamma Y between lut1 and lut2
*
* Custom degamma on Linux uses the same interpolation math, so is handled here
*/
static void apply_lut_1d(
const struct dc_gamma *ramp,
uint32_t num_hw_points,
struct dc_transfer_func_distributed_points *tf_pts)
{
int i = 0;
int color = 0;
struct fixed31_32 *regamma_y;
struct fixed31_32 norm_y;
struct fixed31_32 lut1;
struct fixed31_32 lut2;
const int max_lut_index = 4095;
const struct fixed31_32 penult_lut_index_f =
dc_fixpt_from_int(max_lut_index-1);
const struct fixed31_32 max_lut_index_f =
dc_fixpt_from_int(max_lut_index);
int32_t index = 0, index_next = 0;
struct fixed31_32 index_f;
struct fixed31_32 delta_lut;
struct fixed31_32 delta_index;
if (ramp->type != GAMMA_CS_TFM_1D && ramp->type != GAMMA_CUSTOM)
return; // this is not expected
for (i = 0; i < num_hw_points; i++) {
for (color = 0; color < 3; color++) {
if (color == 0)
regamma_y = &tf_pts->red[i];
else if (color == 1)
regamma_y = &tf_pts->green[i];
else
regamma_y = &tf_pts->blue[i];
norm_y = dc_fixpt_mul(max_lut_index_f,
*regamma_y);
index = dc_fixpt_floor(norm_y);
index_f = dc_fixpt_from_int(index);
if (index < 0)
continue;
if (index <= max_lut_index)
index_next = (index == max_lut_index) ? index : index+1;
else {
/* Here we are dealing with the last point in the curve,
* which in some cases might exceed the range given by
* max_lut_index. So we interpolate the value using
* max_lut_index and max_lut_index - 1.
*/
index = max_lut_index - 1;
index_next = max_lut_index;
index_f = penult_lut_index_f;
}
if (color == 0) {
lut1 = ramp->entries.red[index];
lut2 = ramp->entries.red[index_next];
} else if (color == 1) {
lut1 = ramp->entries.green[index];
lut2 = ramp->entries.green[index_next];
} else {
lut1 = ramp->entries.blue[index];
lut2 = ramp->entries.blue[index_next];
}
// we have everything now, so interpolate
delta_lut = dc_fixpt_sub(lut2, lut1);
delta_index = dc_fixpt_sub(norm_y, index_f);
*regamma_y = dc_fixpt_add(lut1,
dc_fixpt_mul(delta_index, delta_lut));
}
}
}
static void build_evenly_distributed_points(
struct gamma_pixel *points,
uint32_t numberof_points,
struct dividers dividers)
{
struct gamma_pixel *p = points;
struct gamma_pixel *p_last;
uint32_t i = 0;
// This function should not gets called with 0 as a parameter
ASSERT(numberof_points > 0);
p_last = p + numberof_points - 1;
do {
struct fixed31_32 value = dc_fixpt_from_fraction(i,
numberof_points - 1);
p->r = value;
p->g = value;
p->b = value;
++p;
++i;
} while (i < numberof_points);
p->r = dc_fixpt_div(p_last->r, dividers.divider1);
p->g = dc_fixpt_div(p_last->g, dividers.divider1);
p->b = dc_fixpt_div(p_last->b, dividers.divider1);
++p;
p->r = dc_fixpt_div(p_last->r, dividers.divider2);
p->g = dc_fixpt_div(p_last->g, dividers.divider2);
p->b = dc_fixpt_div(p_last->b, dividers.divider2);
++p;
p->r = dc_fixpt_div(p_last->r, dividers.divider3);
p->g = dc_fixpt_div(p_last->g, dividers.divider3);
p->b = dc_fixpt_div(p_last->b, dividers.divider3);
}
static inline void copy_rgb_regamma_to_coordinates_x(
struct hw_x_point *coordinates_x,
uint32_t hw_points_num,
const struct pwl_float_data_ex *rgb_ex)
{
struct hw_x_point *coords = coordinates_x;
uint32_t i = 0;
const struct pwl_float_data_ex *rgb_regamma = rgb_ex;
while (i <= hw_points_num + 1) {
coords->regamma_y_red = rgb_regamma->r;
coords->regamma_y_green = rgb_regamma->g;
coords->regamma_y_blue = rgb_regamma->b;
++coords;
++rgb_regamma;
++i;
}
}
static bool calculate_interpolated_hardware_curve(
const struct dc_gamma *ramp,
struct pixel_gamma_point *coeff128,
struct pwl_float_data *rgb_user,
const struct hw_x_point *coordinates_x,
const struct gamma_pixel *axis_x,
uint32_t number_of_points,
struct dc_transfer_func_distributed_points *tf_pts)
{
const struct pixel_gamma_point *coeff = coeff128;
uint32_t max_entries = 3 - 1;
uint32_t i = 0;
for (i = 0; i < 3; i++) {
if (!build_custom_gamma_mapping_coefficients_worker(
ramp, coeff128, coordinates_x, axis_x, i,
number_of_points))
return false;
}
i = 0;
max_entries += ramp->num_entries;
/* TODO: float point case */
while (i <= number_of_points) {
tf_pts->red[i] = calculate_mapped_value(
rgb_user, coeff, CHANNEL_NAME_RED, max_entries);
tf_pts->green[i] = calculate_mapped_value(
rgb_user, coeff, CHANNEL_NAME_GREEN, max_entries);
tf_pts->blue[i] = calculate_mapped_value(
rgb_user, coeff, CHANNEL_NAME_BLUE, max_entries);
++coeff;
++i;
}
return true;
}
/* The "old" interpolation uses a complicated scheme to build an array of
* coefficients while also using an array of 0-255 normalized to 0-1
* Then there's another loop using both of the above + new scaled user ramp
* and we concatenate them. It also searches for points of interpolation and
* uses enums for positions.
*
* This function uses a different approach:
* user ramp is always applied on X with 0/255, 1/255, 2/255, ..., 255/255
* To find index for hwX , we notice the following:
* i/255 <= hwX < (i+1)/255 <=> i <= 255*hwX < i+1
* See apply_lut_1d which is the same principle, but on 4K entry 1D LUT
*
* Once the index is known, combined Y is simply:
* user_ramp(index) + (hwX-index/255)*(user_ramp(index+1) - user_ramp(index)
*
* We should switch to this method in all cases, it's simpler and faster
* ToDo one day - for now this only applies to ADL regamma to avoid regression
* for regular use cases (sRGB and PQ)
*/
static void interpolate_user_regamma(uint32_t hw_points_num,
struct pwl_float_data *rgb_user,
bool apply_degamma,
struct dc_transfer_func_distributed_points *tf_pts)
{
uint32_t i;
uint32_t color = 0;
int32_t index;
int32_t index_next;
struct fixed31_32 *tf_point;
struct fixed31_32 hw_x;
struct fixed31_32 norm_factor =
dc_fixpt_from_int(255);
struct fixed31_32 norm_x;
struct fixed31_32 index_f;
struct fixed31_32 lut1;
struct fixed31_32 lut2;
struct fixed31_32 delta_lut;
struct fixed31_32 delta_index;
const struct fixed31_32 one = dc_fixpt_from_int(1);
i = 0;
/* fixed_pt library has problems handling too small values */
while (i != 32) {
tf_pts->red[i] = dc_fixpt_zero;
tf_pts->green[i] = dc_fixpt_zero;
tf_pts->blue[i] = dc_fixpt_zero;
++i;
}
while (i <= hw_points_num + 1) {
for (color = 0; color < 3; color++) {
if (color == 0)
tf_point = &tf_pts->red[i];
else if (color == 1)
tf_point = &tf_pts->green[i];
else
tf_point = &tf_pts->blue[i];
if (apply_degamma) {
if (color == 0)
hw_x = coordinates_x[i].regamma_y_red;
else if (color == 1)
hw_x = coordinates_x[i].regamma_y_green;
else
hw_x = coordinates_x[i].regamma_y_blue;
} else
hw_x = coordinates_x[i].x;
if (dc_fixpt_le(one, hw_x))
hw_x = one;
norm_x = dc_fixpt_mul(norm_factor, hw_x);
index = dc_fixpt_floor(norm_x);
if (index < 0 || index > 255)
continue;
index_f = dc_fixpt_from_int(index);
index_next = (index == 255) ? index : index + 1;
if (color == 0) {
lut1 = rgb_user[index].r;
lut2 = rgb_user[index_next].r;
} else if (color == 1) {
lut1 = rgb_user[index].g;
lut2 = rgb_user[index_next].g;
} else {
lut1 = rgb_user[index].b;
lut2 = rgb_user[index_next].b;
}
// we have everything now, so interpolate
delta_lut = dc_fixpt_sub(lut2, lut1);
delta_index = dc_fixpt_sub(norm_x, index_f);
*tf_point = dc_fixpt_add(lut1,
dc_fixpt_mul(delta_index, delta_lut));
}
++i;
}
}
static void build_new_custom_resulted_curve(
uint32_t hw_points_num,
struct dc_transfer_func_distributed_points *tf_pts)
{
uint32_t i = 0;
while (i != hw_points_num + 1) {
tf_pts->red[i] = dc_fixpt_clamp(
tf_pts->red[i], dc_fixpt_zero,
dc_fixpt_one);
tf_pts->green[i] = dc_fixpt_clamp(
tf_pts->green[i], dc_fixpt_zero,
dc_fixpt_one);
tf_pts->blue[i] = dc_fixpt_clamp(
tf_pts->blue[i], dc_fixpt_zero,
dc_fixpt_one);
++i;
}
}
static void apply_degamma_for_user_regamma(struct pwl_float_data_ex *rgb_regamma,
uint32_t hw_points_num, struct calculate_buffer *cal_buffer)
{
uint32_t i;
struct gamma_coefficients coeff;
struct pwl_float_data_ex *rgb = rgb_regamma;
const struct hw_x_point *coord_x = coordinates_x;
build_coefficients(&coeff, TRANSFER_FUNCTION_SRGB);
i = 0;
while (i != hw_points_num + 1) {
rgb->r = translate_from_linear_space_ex(
coord_x->x, &coeff, 0, cal_buffer);
rgb->g = rgb->r;
rgb->b = rgb->r;
++coord_x;
++rgb;
++i;
}
}
static bool map_regamma_hw_to_x_user(
const struct dc_gamma *ramp,
struct pixel_gamma_point *coeff128,
struct pwl_float_data *rgb_user,
struct hw_x_point *coords_x,
const struct gamma_pixel *axis_x,
const struct pwl_float_data_ex *rgb_regamma,
uint32_t hw_points_num,
struct dc_transfer_func_distributed_points *tf_pts,
bool map_user_ramp,
bool do_clamping)
{
/* setup to spare calculated ideal regamma values */
int i = 0;
struct hw_x_point *coords = coords_x;
const struct pwl_float_data_ex *regamma = rgb_regamma;
if (ramp && map_user_ramp) {
copy_rgb_regamma_to_coordinates_x(coords,
hw_points_num,
rgb_regamma);
calculate_interpolated_hardware_curve(
ramp, coeff128, rgb_user, coords, axis_x,
hw_points_num, tf_pts);
} else {
/* just copy current rgb_regamma into tf_pts */
while (i <= hw_points_num) {
tf_pts->red[i] = regamma->r;
tf_pts->green[i] = regamma->g;
tf_pts->blue[i] = regamma->b;
++regamma;
++i;
}
}
if (do_clamping) {
/* this should be named differently, all it does is clamp to 0-1 */
build_new_custom_resulted_curve(hw_points_num, tf_pts);
}
return true;
}
#define _EXTRA_POINTS 3
bool calculate_user_regamma_coeff(struct dc_transfer_func *output_tf,
const struct regamma_lut *regamma,
struct calculate_buffer *cal_buffer,
const struct dc_gamma *ramp)
{
struct gamma_coefficients coeff;
const struct hw_x_point *coord_x = coordinates_x;
uint32_t i = 0;
do {
coeff.a0[i] = dc_fixpt_from_fraction(
regamma->coeff.A0[i], 10000000);
coeff.a1[i] = dc_fixpt_from_fraction(
regamma->coeff.A1[i], 1000);
coeff.a2[i] = dc_fixpt_from_fraction(
regamma->coeff.A2[i], 1000);
coeff.a3[i] = dc_fixpt_from_fraction(
regamma->coeff.A3[i], 1000);
coeff.user_gamma[i] = dc_fixpt_from_fraction(
regamma->coeff.gamma[i], 1000);
++i;
} while (i != 3);
i = 0;
/* fixed_pt library has problems handling too small values */
while (i != 32) {
output_tf->tf_pts.red[i] = dc_fixpt_zero;
output_tf->tf_pts.green[i] = dc_fixpt_zero;
output_tf->tf_pts.blue[i] = dc_fixpt_zero;
++coord_x;
++i;
}
while (i != MAX_HW_POINTS + 1) {
output_tf->tf_pts.red[i] = translate_from_linear_space_ex(
coord_x->x, &coeff, 0, cal_buffer);
output_tf->tf_pts.green[i] = translate_from_linear_space_ex(
coord_x->x, &coeff, 1, cal_buffer);
output_tf->tf_pts.blue[i] = translate_from_linear_space_ex(
coord_x->x, &coeff, 2, cal_buffer);
++coord_x;
++i;
}
if (ramp && ramp->type == GAMMA_CS_TFM_1D)
apply_lut_1d(ramp, MAX_HW_POINTS, &output_tf->tf_pts);
// this function just clamps output to 0-1
build_new_custom_resulted_curve(MAX_HW_POINTS, &output_tf->tf_pts);
output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
return true;
}
bool calculate_user_regamma_ramp(struct dc_transfer_func *output_tf,
const struct regamma_lut *regamma,
struct calculate_buffer *cal_buffer,
const struct dc_gamma *ramp)
{
struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts;
struct dividers dividers;
struct pwl_float_data *rgb_user = NULL;
struct pwl_float_data_ex *rgb_regamma = NULL;
bool ret = false;
if (regamma == NULL)
return false;
output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
rgb_user = kcalloc(GAMMA_RGB_256_ENTRIES + _EXTRA_POINTS,
sizeof(*rgb_user),
GFP_KERNEL);
if (!rgb_user)
goto rgb_user_alloc_fail;
rgb_regamma = kcalloc(MAX_HW_POINTS + _EXTRA_POINTS,
sizeof(*rgb_regamma),
GFP_KERNEL);
if (!rgb_regamma)
goto rgb_regamma_alloc_fail;
dividers.divider1 = dc_fixpt_from_fraction(3, 2);
dividers.divider2 = dc_fixpt_from_int(2);
dividers.divider3 = dc_fixpt_from_fraction(5, 2);
scale_user_regamma_ramp(rgb_user, &regamma->ramp, dividers);
if (regamma->flags.bits.applyDegamma == 1) {
apply_degamma_for_user_regamma(rgb_regamma, MAX_HW_POINTS, cal_buffer);
copy_rgb_regamma_to_coordinates_x(coordinates_x,
MAX_HW_POINTS, rgb_regamma);
}
interpolate_user_regamma(MAX_HW_POINTS, rgb_user,
regamma->flags.bits.applyDegamma, tf_pts);
// no custom HDR curves!
tf_pts->end_exponent = 0;
tf_pts->x_point_at_y1_red = 1;
tf_pts->x_point_at_y1_green = 1;
tf_pts->x_point_at_y1_blue = 1;
if (ramp && ramp->type == GAMMA_CS_TFM_1D)
apply_lut_1d(ramp, MAX_HW_POINTS, &output_tf->tf_pts);
// this function just clamps output to 0-1
build_new_custom_resulted_curve(MAX_HW_POINTS, tf_pts);
ret = true;
kfree(rgb_regamma);
rgb_regamma_alloc_fail:
kfree(rgb_user);
rgb_user_alloc_fail:
return ret;
}
bool mod_color_calculate_degamma_params(struct dc_color_caps *dc_caps,
struct dc_transfer_func *input_tf,
const struct dc_gamma *ramp, bool map_user_ramp)
{
struct dc_transfer_func_distributed_points *tf_pts = &input_tf->tf_pts;
struct dividers dividers;
struct pwl_float_data *rgb_user = NULL;
struct pwl_float_data_ex *curve = NULL;
struct gamma_pixel *axis_x = NULL;
struct pixel_gamma_point *coeff = NULL;
enum dc_transfer_func_predefined tf;
uint32_t i;
bool ret = false;
if (input_tf->type == TF_TYPE_BYPASS)
return false;
/* we can use hardcoded curve for plain SRGB TF
* If linear, it's bypass if no user ramp
*/
if (input_tf->type == TF_TYPE_PREDEFINED) {
if ((input_tf->tf == TRANSFER_FUNCTION_SRGB ||
input_tf->tf == TRANSFER_FUNCTION_LINEAR) &&
!map_user_ramp)
return true;
if (dc_caps != NULL &&
dc_caps->dpp.dcn_arch == 1) {
if (input_tf->tf == TRANSFER_FUNCTION_PQ &&
dc_caps->dpp.dgam_rom_caps.pq == 1)
return true;
if (input_tf->tf == TRANSFER_FUNCTION_GAMMA22 &&
dc_caps->dpp.dgam_rom_caps.gamma2_2 == 1)
return true;
// HLG OOTF not accounted for
if (input_tf->tf == TRANSFER_FUNCTION_HLG &&
dc_caps->dpp.dgam_rom_caps.hlg == 1)
return true;
}
}
input_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
if (map_user_ramp && ramp && ramp->type == GAMMA_RGB_256) {
rgb_user = kvcalloc(ramp->num_entries + _EXTRA_POINTS,
sizeof(*rgb_user),
GFP_KERNEL);
if (!rgb_user)
goto rgb_user_alloc_fail;
axis_x = kvcalloc(ramp->num_entries + _EXTRA_POINTS, sizeof(*axis_x),
GFP_KERNEL);
if (!axis_x)
goto axis_x_alloc_fail;
dividers.divider1 = dc_fixpt_from_fraction(3, 2);
dividers.divider2 = dc_fixpt_from_int(2);
dividers.divider3 = dc_fixpt_from_fraction(5, 2);
build_evenly_distributed_points(
axis_x,
ramp->num_entries,
dividers);
scale_gamma(rgb_user, ramp, dividers);
}
curve = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS, sizeof(*curve),
GFP_KERNEL);
if (!curve)
goto curve_alloc_fail;
coeff = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS, sizeof(*coeff),
GFP_KERNEL);
if (!coeff)
goto coeff_alloc_fail;
tf = input_tf->tf;
if (tf == TRANSFER_FUNCTION_PQ)
build_de_pq(curve,
MAX_HW_POINTS,
coordinates_x);
else if (tf == TRANSFER_FUNCTION_SRGB ||
tf == TRANSFER_FUNCTION_BT709 ||
tf == TRANSFER_FUNCTION_GAMMA22 ||
tf == TRANSFER_FUNCTION_GAMMA24 ||
tf == TRANSFER_FUNCTION_GAMMA26)
build_degamma(curve,
MAX_HW_POINTS,
coordinates_x,
tf);
else if (tf == TRANSFER_FUNCTION_HLG)
build_hlg_degamma(curve,
MAX_HW_POINTS,
coordinates_x,
80, 1000);
else if (tf == TRANSFER_FUNCTION_LINEAR) {
// just copy coordinates_x into curve
i = 0;
while (i != MAX_HW_POINTS + 1) {
curve[i].r = coordinates_x[i].x;
curve[i].g = curve[i].r;
curve[i].b = curve[i].r;
i++;
}
} else
goto invalid_tf_fail;
tf_pts->end_exponent = 0;
tf_pts->x_point_at_y1_red = 1;
tf_pts->x_point_at_y1_green = 1;
tf_pts->x_point_at_y1_blue = 1;
if (input_tf->tf == TRANSFER_FUNCTION_PQ) {
/* just copy current rgb_regamma into tf_pts */
struct pwl_float_data_ex *curvePt = curve;
int i = 0;
while (i <= MAX_HW_POINTS) {
tf_pts->red[i] = curvePt->r;
tf_pts->green[i] = curvePt->g;
tf_pts->blue[i] = curvePt->b;
++curvePt;
++i;
}
} else {
// clamps to 0-1
map_regamma_hw_to_x_user(ramp, coeff, rgb_user,
coordinates_x, axis_x, curve,
MAX_HW_POINTS, tf_pts,
map_user_ramp && ramp && ramp->type == GAMMA_RGB_256,
true);
}
if (ramp && ramp->type == GAMMA_CUSTOM)
apply_lut_1d(ramp, MAX_HW_POINTS, tf_pts);
ret = true;
invalid_tf_fail:
kvfree(coeff);
coeff_alloc_fail:
kvfree(curve);
curve_alloc_fail:
kvfree(axis_x);
axis_x_alloc_fail:
kvfree(rgb_user);
rgb_user_alloc_fail:
return ret;
}
static bool calculate_curve(enum dc_transfer_func_predefined trans,
struct dc_transfer_func_distributed_points *points,
struct pwl_float_data_ex *rgb_regamma,
const struct hdr_tm_params *fs_params,
uint32_t sdr_ref_white_level,
struct calculate_buffer *cal_buffer)
{
uint32_t i;
bool ret = false;
if (trans == TRANSFER_FUNCTION_UNITY ||
trans == TRANSFER_FUNCTION_LINEAR) {
points->end_exponent = 0;
points->x_point_at_y1_red = 1;
points->x_point_at_y1_green = 1;
points->x_point_at_y1_blue = 1;
for (i = 0; i <= MAX_HW_POINTS ; i++) {
rgb_regamma[i].r = coordinates_x[i].x;
rgb_regamma[i].g = coordinates_x[i].x;
rgb_regamma[i].b = coordinates_x[i].x;
}
ret = true;
} else if (trans == TRANSFER_FUNCTION_PQ) {
points->end_exponent = 7;
points->x_point_at_y1_red = 125;
points->x_point_at_y1_green = 125;
points->x_point_at_y1_blue = 125;
build_pq(rgb_regamma,
MAX_HW_POINTS,
coordinates_x,
sdr_ref_white_level);
ret = true;
} else if (trans == TRANSFER_FUNCTION_GAMMA22 &&
fs_params != NULL && fs_params->skip_tm == 0) {
build_freesync_hdr(rgb_regamma,
MAX_HW_POINTS,
coordinates_x,
fs_params,
cal_buffer);
ret = true;
} else if (trans == TRANSFER_FUNCTION_HLG) {
points->end_exponent = 4;
points->x_point_at_y1_red = 12;
points->x_point_at_y1_green = 12;
points->x_point_at_y1_blue = 12;
build_hlg_regamma(rgb_regamma,
MAX_HW_POINTS,
coordinates_x,
80, 1000);
ret = true;
} else {
// trans == TRANSFER_FUNCTION_SRGB
// trans == TRANSFER_FUNCTION_BT709
// trans == TRANSFER_FUNCTION_GAMMA22
// trans == TRANSFER_FUNCTION_GAMMA24
// trans == TRANSFER_FUNCTION_GAMMA26
points->end_exponent = 0;
points->x_point_at_y1_red = 1;
points->x_point_at_y1_green = 1;
points->x_point_at_y1_blue = 1;
build_regamma(rgb_regamma,
MAX_HW_POINTS,
coordinates_x,
trans,
cal_buffer);
ret = true;
}
return ret;
}
bool mod_color_calculate_regamma_params(struct dc_transfer_func *output_tf,
const struct dc_gamma *ramp,
bool map_user_ramp,
bool can_rom_be_used,
const struct hdr_tm_params *fs_params,
struct calculate_buffer *cal_buffer)
{
struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts;
struct dividers dividers;
struct pwl_float_data *rgb_user = NULL;
struct pwl_float_data_ex *rgb_regamma = NULL;
struct gamma_pixel *axis_x = NULL;
struct pixel_gamma_point *coeff = NULL;
enum dc_transfer_func_predefined tf;
bool do_clamping = true;
bool ret = false;
if (output_tf->type == TF_TYPE_BYPASS)
return false;
/* we can use hardcoded curve for plain SRGB TF */
if (output_tf->type == TF_TYPE_PREDEFINED && can_rom_be_used == true &&
output_tf->tf == TRANSFER_FUNCTION_SRGB) {
if (ramp == NULL)
return true;
if ((ramp->is_identity && ramp->type != GAMMA_CS_TFM_1D) ||
(!map_user_ramp && ramp->type == GAMMA_RGB_256))
return true;
}
output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
if (ramp && ramp->type != GAMMA_CS_TFM_1D &&
(map_user_ramp || ramp->type != GAMMA_RGB_256)) {
rgb_user = kvcalloc(ramp->num_entries + _EXTRA_POINTS,
sizeof(*rgb_user),
GFP_KERNEL);
if (!rgb_user)
goto rgb_user_alloc_fail;
axis_x = kvcalloc(ramp->num_entries + 3, sizeof(*axis_x),
GFP_KERNEL);
if (!axis_x)
goto axis_x_alloc_fail;
dividers.divider1 = dc_fixpt_from_fraction(3, 2);
dividers.divider2 = dc_fixpt_from_int(2);
dividers.divider3 = dc_fixpt_from_fraction(5, 2);
build_evenly_distributed_points(
axis_x,
ramp->num_entries,
dividers);
if (ramp->type == GAMMA_RGB_256 && map_user_ramp)
scale_gamma(rgb_user, ramp, dividers);
else if (ramp->type == GAMMA_RGB_FLOAT_1024)
scale_gamma_dx(rgb_user, ramp, dividers);
}
rgb_regamma = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS,
sizeof(*rgb_regamma),
GFP_KERNEL);
if (!rgb_regamma)
goto rgb_regamma_alloc_fail;
coeff = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS, sizeof(*coeff),
GFP_KERNEL);
if (!coeff)
goto coeff_alloc_fail;
tf = output_tf->tf;
ret = calculate_curve(tf,
tf_pts,
rgb_regamma,
fs_params,
output_tf->sdr_ref_white_level,
cal_buffer);
if (ret) {
do_clamping = !(output_tf->tf == TRANSFER_FUNCTION_PQ) &&
!(output_tf->tf == TRANSFER_FUNCTION_GAMMA22 &&
fs_params != NULL && fs_params->skip_tm == 0);
map_regamma_hw_to_x_user(ramp, coeff, rgb_user,
coordinates_x, axis_x, rgb_regamma,
MAX_HW_POINTS, tf_pts,
(map_user_ramp || (ramp && ramp->type != GAMMA_RGB_256)) &&
(ramp && ramp->type != GAMMA_CS_TFM_1D),
do_clamping);
if (ramp && ramp->type == GAMMA_CS_TFM_1D)
apply_lut_1d(ramp, MAX_HW_POINTS, tf_pts);
}
kvfree(coeff);
coeff_alloc_fail:
kvfree(rgb_regamma);
rgb_regamma_alloc_fail:
kvfree(axis_x);
axis_x_alloc_fail:
kvfree(rgb_user);
rgb_user_alloc_fail:
return ret;
}